## Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

## Citation:

Simon Stevin, [III] The Principal Works of Simon Stevin, Astronomy - Navigation, edition Vol. III, volume

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

# THE PRINCIPAL WORKS OF 

## SIMON STEVIN

## EDITED BY

ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES<br>M. G. J. MINNAERT, A. PANNEKOEK

# THE PRINCIPAL WORKS <br> OF <br> <br> SIMON STEVIN 

 <br> <br> SIMON STEVIN}

VOLUME III

ASTRONOMY<br>EDITED BY

# A. PANNEKOEK 

NAVIGATION<br>EDITED BY<br>ERNST CRONE

AMSTERDAM
C. V. SWETS \& ZEITLINGER

1961

The edition of this volume III of the principal works of

## SIMON STEVIN

devoted to bis publications on Astronomy and Navigation, has been rendered possible through the financial aid of the

Hollandsche Maatschappij der Wetenschappen

Printed by ,Jan de Lange" N.V., Deventer, Holland.

# The following edition of the Principal Works of SIMON STEVIN bas been brought about at the initiative of the Pbysics Section of the Koninklijke Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members: 

ERNST CRONE,
Cbairman of the Netherlands Maritime Museum, Amsterdam
E. J. DIJKSTERHUIS,

Professor of the. History of Science at the Universities of Leiden and Utrecht

## R. J. FORBES,

Professor of the History of Science at the Municipal University of Amsterdam
M. G. J. MINNAERT,

Professor of Astronomy at the University of Utrecht
A. PANNEKOEK,

Former Professor of Astronomy at the Municipal University of Amsterdam

The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C. Dikshoorn.

# THE ASTRONOMICAL WORKS 

## OF

## SIMON STEVIN

## DE HEMELLOOP

## THE HEAVENLY MOTIONS

## INTRODUCTION TO THE WORK

## § 1

In order to understand the place of Stevin's work on astronomical theory it is necessary first to give a short survey of the opinions prevalent among scholars in the second half of the sixteenth century.

Copernicus' great work De revolutionibus appeared in 1543 under the more extensive title, due to Osiander: De revolutionibus orbium coelestium. Immediately after its publication it became the object of assiduous study, at the main Protestant university of Wittenberg as well as among scholars at other seats of learning. This interest concerned not so much the heliocentric theory, but rather the numerical elements of the orbits. From the first the heliocentric theory was sharply attacked by the Protestant theologians. Melanchthon (the "praeceptor Germaniae"), the foremost among the Wittenberg professors, in a series of lectures and in his Initia doctrinae physicae, dismissed it as absurd 1). This qualification determined the opinion of contemporary authors. At the same time, however, Copernicus, because of the new basis he afforded for the computation of the celestial motions, was praised as the renovator of astronomy, the first and most famous of astronomers, the new Ptolemy. Several students of the book computed in advance the positions of the planets or the moon with the aid of the new data, and they were able to show that these were in better agreement with the observations than the Alphosine Tables. Foremost among them was Erasmus Reinhold 2), professor of mathematics at Wittenberg. First he had to correct several errors in the computations of Copernicus, and in many cases he derived new elements himself. Thus he was able to construct new and better tables, called the Prussian Tables, published in 1551 and reprinted several times afterwards. The new heliocentric world-system, however, is not even alluded to in this work. Reinhold's tables 'were used by Johannes Stadius 3) for the computation of his "Ephemerides" (daily tables) of the celestial bodies. These tables, destined chiefly for use in astrological prognostics, were published in 1556 for the first time, and in later years in five new editions.

In his valuable work on the origin and the extension of the Copernican doctrine, Ernst Zinner ${ }^{4}$ ) enumerates a number of authors of widely used textbooks on astronomy. Besides Melanchthon's book, mentioned above, with 17 impressions, and Clavius' explanation of the astronomical work of Sacrobosco, which appeared in 1570 and up to 1618 passed through 19 impressions 5), he mentions Kaspar Peucer, Hartmann Beyer, Michael Neander, Victor Strigel, Heinrich Brucaeus, Georg Bachmann, Alb. Leoninus, Paolo Donati, G. A. Magini, Jean Bodin and others ${ }^{6}$ ). They all reject the earth's motion or are silent on it. And he remarks:

[^0]"Were there any adherents of the new doctrine? We might have doubts, if we consider that until 1590 the work of Copernicus was reprinted only once ${ }^{7}$ ), whereas the textbooks mentioned above together saw 62 impressions. In these, the new doctrine either was not mentioned at all or was termed absurd; seldom was its special character set forth" 8). Only in England in 1576 an enthusiastic description of the new doctrine was added by Thomas Digges ${ }^{9}$ ) to a new edition of a book on prognostics by his father ${ }^{10}$ ).

Yet the number of adherents slowly increased. Christopher Rothmann, astronomer at the Cassel observatory, in his correspondence with Tycho Brahe, in 1589-90, with very well-chosen arguments defended the motion of the earth 11 ). Tycho Brahe himself tried to combine the simplicity of the Copernican system with the central position of the earth at rest by a system specially devised in 1583, as he said -: the planets in describing circles about the sun are carried along with it in its yearly orbit. Though here the motions were only nominally different from Ptolemy's, the Tychonic system found adherence as a symptom of an incipient critical attitude towards the old doctrine. In Italy in 1585 Benedetti spoke of the earth as a subordinate body 12). Giordano Bruno, extending the Copernican system into a fantastic conception of a world of innumerable suns and inhabited planets, expounded it during his travels all over Europe. Kepler 13) in his "Mysterium Cosmographicum", his first work, published in 1596, endeavoured to give the heliocentric system a deeper philosophical basis by explaining the number of the planets (six) and their distances by connecting them with the five regular polyhedra. The English physician William Gilbert 14) in 1600 , in his book on magnetism, introduced the daily rotation of the earth as Copernicus had done, but he did not speak of its yearly revolution.

This enumeration shows that when Simon Stevin, in explaining to his illustrious pupil the motion of the celestial bodies, expounded the Copernican as the true beside the Ptolemaic as the untrue system, he sided with an extremely small group of renovators. Whereas the other adherents had expressed their opinion occasionally, in short remarks or in connection with other subjects, Stevin's book was the first textbook destined to give a simple and easy exposition of the heliocentric theory. Soon after its publication (in Dutch in 1605, Work XI; i, 3) a Latin version appeared in the Hypomnemata Mathematica (Work XIb). A French translation of the Wisconstighe Gbedachtenissen was published by Girard in 1633 in his posthumous edition of the Works of Stevin: Oelures Mathématiques de Simon Stevin (Work XIII).

Victor Strigel, Epitome doctrinae de primo motu (1564).-Heinrich Brucaeus, De motu primo (I573-1604). Georg Bachman. Epitome Doctrinae de primo motu ( 159 I).-Albert Leoninus, Theoria motuum coelestium ( $\mathrm{I}_{5} 83$ ). -Paolo Donati, Theoriche overo Speculationi intorno alli Moti Celesti (1575).-J. A. Magini, Ephemerides coelestium motuum (1599-I6I6).—Jean Bodin, Universae Naturae Theatrum (1597).
${ }^{7}$ ) Basle, 1566.
${ }^{8}$ ) Ernst Zinner, l.c., pp. 275-276.
${ }^{9}$ ) Alae seu Scalae Mathematicae (1573).
${ }^{10}$ ) Leonard Digges, A Prognosticon everlastinge. . . (1576).
${ }^{11}{ }^{12}$ ) Cf. Tychonis Brahei Dani Opera VI, p. 217.
${ }_{12}^{12}$.J. B. Benedicti Diversae Speculationes, p. 195 and 256 (1585).
${ }^{13}$ ) Joh. Kepler, Mysterium Cosmographicum (1596).
${ }^{14}$ ) W. Gilbert, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure; Physiologia Nova ( I 600 ).

## § 2

In his discussion of the orbits of the heavenly bodies, Stevin follows a special method. He knows that in order to derive these orbits one has to proceed from the observed positions of the sun, moon, and planets in the sky. It would, however, have taken too much time to make such observations with his pupil, Prince Maurice, while this was also beyond the scope of their joint studies. On the other hand, an attempt to derive the orbits from the few observations communicated by Ptolemy and Copernicus would be too difficult. He therefore proceeds from existing printed tables, taking as such the ephemerides computed by Stadius. Since these tables are based upon elements derived from observations, he assumes that they represent the observed motion of the heavenly bodies, and may therefore be used instead of observations for an explanation of the astronomical system. They offer the further advantage that the positions are given for all consecutive days. He calls them "ervarings dachtafels" (empirical ephemerides). Though in the Definitions 22 and 23 he distinguishes the empirical ephemerides as determined by instruments, and the computed ephemerides predicted through knowledge of the orbits, he refers to the computed ephemerides as empirical.

Another characteristic of his work is that the theory is presented according to both world-systems. In his First and Second Books the orbits are treated as in the Ptolemaic system, with the earth at rest at the centre; in his Third Book the Copernican theory of the moving earth is introduced. His own opinion on this point is clearly shown by the fact that he calls them the apparent and the true motion (p. 4 of the Cortbegryp). The arguments are to be given later on, because the "unknown" motions, to be treated afterwards, show that there is no firm basis as yet for a good theory.

In dealing with the motion of the sun, Stevin first deduces the length of a year by deriving from Stadius' ephemerides the moments of return to the same longitude. From an interval of 52 years between 1554 and 1606 he finds 365d 5h 45 m 55 s . Finding that this deviates widely from Ptolemy's value ( 365 d 5 h 55 m 12 s , which, however, we know to be too long by 7 m ), he realizes that the interval of 52 years used was still too short for an exact result. He therefore adopts Ptolemy's value, so that the table of the sun's mean motion, which he adds to his treatment, is identical with Ptolemy's table. Stadius' ephemerides furthermore show that the daily increase of the sun's longitude is smallest in June ( $57^{\prime}$ ), greatest in December ( $1^{\circ} 1^{\prime}$ ); so the sun moves in an eccentric circle. To find the longitude of its apogee, Stevin determines by trial and error a date in June such that in an equal number of days before and after that day equal arcs of longitude were described. Thus he finds $94^{\circ} 24^{\prime}$, holding for 1554. Another method consists in finding two opposite longitudes of the sun, such that each of the semicircumferences is covered in the same time; the result was $95^{\circ} 14^{\prime}$. From the data of 1594 in the same way he finds $97^{\circ} 53^{\prime}, 3^{\circ} 29^{\prime}$ more, from which follows a yearly increase of $5^{\prime} 13^{\prime \prime}$. The interval of 40 years of course is too small to give a reliable
result for this increase; hence he compares his longitude of the apogee with Ptolemy's value of $65^{\circ} 30^{\prime}, 1455$ years earlier, from which follows a yearly progress of $1^{\prime} 20^{\prime \prime}$.

This is the method followed throughout for all the moving celestial bodies. In the case of the moon, in Chapter 2, which has been omitted from this abridged edition, a number of different periods have to be derived. First the moon's motion "in her own orbit"; this is how he denotes its motion from apogee through perigee to the next apogee. Stevin perceives that the greatest daily progress (in perigee) is different for full moon and quarters. In order to avoid such irregularities in the derivation of the period, he makes use of three dates of most rapid motion coinciding with full moon (in 1569, 1572, and 1581), and finds a period (the anomalistic month) of (written in sexagesimals) 27;32,56 days, corresponding to 27 d 13 h 10 m 24 s . The corresponding daily motion of $13^{\circ} 4^{\prime}$ is in accordance with Ptolemy's value of $13^{\circ} 3^{\prime} 54^{\prime \prime} 56^{\prime \prime \prime}$. Thereupon he derives the rapid progress in longitude of the lunar apogee; from an interval of 16,393 days (nearly 45 years), in which the apogee made 5 revolutions, a daily increase of $6^{\prime} 35^{\prime \prime}$ is found (Ptolemy gave $6^{\prime} 41^{\prime \prime}$ ). Adding this motion of the apogee to the first-derived lunar motion relative to the apogee, he gets $13^{\circ} 10^{\prime} 35^{\prime \prime}$ for the daily motion in longitude. From direct comparisons of the longitudes after five intervals of 9 years minus 9 days each, he finds $13^{\circ} 9^{\prime}$ for the moon's daily motion in longitude, which is sufficiently in accordance with the other value.

The mean length of a lunation is derived from two oppositions with an interval of 19 years in which occurred 235 oppositions; the result in days and sexagesimals is $29 ; 32$ days (i.e. 29 d 12 h 48 m ). The corresponding daily progress in elongation (called by Stevin the moon's gain) is found to be $12^{\circ} 11^{\prime} 25^{\prime \prime}$, which is hardly different from Ptolemy's value of $12^{\circ} 11^{\prime} 27^{\prime \prime}$. The same progress, when computed by simply subtracting the sun's daily motion from the moon's, is $12^{\circ} 11^{\prime}$. Finally the return of the latitude is derived from the statement that in 1,089 days the same maximum of latitude returned 40 times at the same longitude; consequently, the daily progress is $13^{\circ} 13^{\prime} 23^{\prime \prime}$, and the daily motion of the node is $3^{\prime} 10^{\prime \prime}$. For all these motions tables are given, "taken from Ptolemy's tables".

The 3rd chapter deals with the motion of Saturn. The retrogradations shown in the ephemerides indicate that Saturn moves on an epicycle, and that the centre of the epicycle describes an eccentric circle (the deferent). In order to eliminate the oscillations due to the epicycle, Stevin only makes use of longitudes in the opposition to the sun, because then the centre of the epicycle is situated behind the planet at the same longitude. To derive the longitude of Saturn's apogee, he makes use of the same method as with the sun; finding a longitude such that the arcs described in the same interval (here about 7 years) before and after this opposition are equal. Thus he finds $268^{\circ} 20^{\prime}$; a special computation is added to make sure that this point of symmetry is the apogee and not the perigee. Tables are then given for the mean motion in longitude of the epicycle's centre, and also of the planet on its epicycle. The latter is found as the difference between the sun's and Saturn's mean motions.

The 4th and the 5th chapter deal with the motions of Jupiter and Mars. The description is said by Stevin to be similar in kind to that for Saturn, and to differ osly as to the quantities. Hence we omit them in this edition. The same holds for Venus and Mercury as treated in the 6th and the 7th chapter.

Here, however, some difficulties arise, because there are no oppositions where the epicyclic movement is eliminated. Both coincidences of the planet with the epicycle's centre are conjunctions with the sun, where the planet cannot be observed. What can be observed is the greatest elongations on the evening and the morning side. Hence Stevin derives from Stadius' longitudes of the planet and the sun a table of the dates and the values of greatest elongation. Like Ptolemy, he uses elongations from the mean, not from the actual sun. The differences between these values show that the deferent is an eccentric circle. As to the longitudes of apogee and perigee in this circle, he explains that they may be found by looking for a case where at the same longitude the eastern and the western greatest elongations are equal. But he does not pursue this method any further, because he does not have a sufficient number of such data available. Since the construction of such tables, he says, would take more time than it behoves him to spend on it, and the aim is not to derive the planets' orbits with the utmost exactitude, but to understand matters in a general sense, he will use an easier method. From Stadius' tables he derives the conjunctions of the planets with the sun just as if they could have been observed, and he uses them in the same way as Saturn's oppositions. From one case, taken by way of example only, he finds $82^{\circ}$ for the longitude of the apogee of the Venus-deferent (which leaves differences partly above $1^{\circ}$ ). Then he remarks that a more exact determination should have given $76^{\circ} 20^{\prime}$, because this value had been used by Stadius as the basis of his tables. Exactly the same method is followed for Mercury, where $59^{\circ} 51^{\prime}$ for its apogee is taken from Stadius.

After the planets have been discussed, a short chapter deals with the fixed stars. The constancy of their relative distances and alignments since Ptolemy is stated, and the amount of the precession $1^{\circ} 29^{\prime}$ in a century (i.e. $53^{\prime \prime}$ a year) is derived from a comparison of the longitudes of Spica, as determined by Ptolemy and as found in Stadius.

The Second Book, entitled On the finding of the Motions of the Planets by Means of Mathematical Operations, extends the previous general knowledge by geometrical computations, resulting in numerical values for the eccentricities and dimensions. It presents the method followed by Ptolemy in computing, from three positions of a planet at known moments of observation, the exact place of the earth within the circular orbit of the planet. There is nothing new or peculiar in Stevin's exposition of the method, so that it was not necessary to include it in this edition. Simpler cases are treated by means of plane trigonometry.

The first application deals with the sun; from three longitudes taken from Stadius, Stevin computes an eccentricity of 0.0325 - which he expresses by 325 parts, 10,000 of which are equal to the radius of the solar circle - and a longitude $95^{\circ} 41^{\prime}$ of the apogee. From other such sets of data he finds the values 326 and $318,95^{\circ} 9^{\prime}$ and $95^{\circ} 14^{\prime}$. He then explains how from these elements the distance of the sun from the earth is computed, as well as the (negative or positive) correction that must be applied to the longitude of the mean sun to get the sun's true longitude. In translations and older astronomical treatises this correction - our modern aequatio centri - is called by the Greek term prosthaphairesis; Stevin is the only author of the time to render this term by an exact translation into his own language; voorofachtring, literally: advance-or-lag.

These results are applied in the derivation of the equation of time. The inequality of the days (intervals between two consecutive meridian passages of
the sun) had not been treated by Ptolemy; the Ancients reckoned with the true solar time. In the 16 th century, however, roughly regulated clocks had come into use, and these led to the conception of a "mean time", deviating periodically from the true solar time. Stevin says that he has borrowed the treatment of these concepts from Regiomontanus, who said that he took them from the Arabian Geber: ''but they seem not to be Arabian findings, but rather remnants from the Age of the Sages" ${ }^{15}$ ). Besides the eccentricity of the solar circle producing a yearly periodical inequality in the angular velocity of the sun, there is the obliquity of the ecliptic to the equator causing the equatorial progress to be alternately smaller and larger than the ecliptical progress. He finds from a table by Reinhold that the difference between longitude and right ascension reaches a maximum of $2^{\circ} 28^{\prime} 24^{\prime \prime}$ when the sun is about $46^{\circ}$ distant from the equinoxes. He adds a geometrical demonstration that this maximum occurs when the sine of the polar distance is equal to the square root of the cosine of the obliquity, i.e. when the ecliptical and the "equatorial" longitude (i.e. the right ascension) complement one another to $90^{\circ}$. The results of these computations are used to derive the deviation of the natural from the mean days, for the eccentricity on the one hand and for the obliquity on the other.

Next the distance, the diameter, and the parallax of the sun are dealt with, especially with a view to their subsequent use for the eclipses. For the finding of the parallax he assumes two observers, one at a more northern, one at a more southern latitude, "such as now could easily be done through the great Dutch navigations", if they both measure every day the solar altitude. When afterwards they compare their measurements made on the same days at known latitudes under the same meridian, the parallax can be found and the distance deduced. Though not workable at the time, the principle of later determinations of the parallax is clearly indicated. As a fictitious instance he supposes an observed parallax of $2^{\prime}$, and derives the sun's corresponding distance to be 1,147 times and its radius 5 times the semi-diameter of the earth.

The 3rd chapter deals with the moon. In the same way as with the sun, the eccentricity and the longitude of the apogee are computed from three observations (i.e. from data of Stadius), taking account of the rapid motion of the apogee. Parallax and distance are also deduced. The latitudes of the moon and the motion of the nodes afford the basis for a computation of the eclipses.

In the 4th chapter Saturn is first dealt with in the same way. With this difference, however, that Stevin does not here derive eccentricity and apogee, as Ptolemy was obliged to do, from three oppositions, but takes the latter from the First Book, the derivation of the eccentricity ( 0.1170 ) thus being much simpler. The radius of the epicycle is found to be 1,150 when the radius of the deferent is 10,000 . He also gives here the demonstration of Apollonius of the condition for retrogradation of a planet. The other planets are treated shortly, since the demonstrations are the same as for Saturn.

The last chapters of this Book deal with the planets' conjunctions and oppositions, i.e. chiefly with the eclipses of sun and moon. Since there is nothing of peculiar character in these chapters, the Second Book has been omitted from this edition.

Exception had to be made for the two "Remarks" at the close of this Book -

[^1]which for this reason have been included - because they show Stevin's attitude towards the problems of the heavenly motions. First he remarks that in the last chapters only the conjunctions of sun and moon have been treated, because the motions of the planets are not sufficiently well known for an exact computation of their conjunctions. Then he says that he originally intended to add a sixth chapter on the unknown irregularities detected by Ptolemy and by Copernicus, and a seventh chapter dealing with the motions in latitude. Because of the uncertainty of their explanation he had postponed them till after the Third Book, as being problems that still had to be cleared up. After some time, however, they became so much clearer to him, on the assumption of a moving earth, that he decided to treat them more extensively in a supplement and an appendix to the Third Book.

The Third Book explains the motions of the planets on the assumption of a moving earth. Stevin assumes that this true motion of the celestial bodies had been known in the "Age of the Sages", but that this knowledge was afterwards lost to men, so that Ptolemy did not know of it. Until at last Copernicus had again revealed this system, or a similar one. Stevin's arguments are primarily based on the simplicity and naturalness of the Copernican system: the velocity of the revolutions increases regularly as their size decreases, so that the starry heavens are at rest and the rotation of the small terrestrial globe is the most rapid. The argument is corroborated by the belief that all revolving motions in nature take place in the same direction, from West to East. The prejudice that the heavy earth cannot appear as a luminous star is dispatched by simply assuming that the earth is a heavenly body. Whilst in disproving Ptolemy's fear that buildings will be demolished by the velocity of the motion and the resistance of the air, Copernicus, as a philosophical thinker, stresses the contrast between natural and forcible motions, Stevin, being a practical engineer, refers to everyday experience, such as with a stick in rapidly flowing water.

In the Summary and in the first sections dealing with the general theory of the planets we meet repeatedly with the expression the "heavens" of the planets (the literal translation of Stevin's hemelen). This term implies a structure of the planetary system entirely different from that according to our modern ideas. On the outside we have the highest "heaven", that of the fixed stars, which is the immobile sphere assumed by Copernicus. Arranged inside this are the "heavens" of the planets, which are evidently understood as analogous spheres carrying along in their axial rotation the planets themselves. In the same paragraph the planets are said to move in eccentric circles; this is how they appear in the drawing on page 120, which in the wording of Proposition 1 is called the arrangement of the heavens of the planets. The two expressions used indiscriminately in the subsequent sections are sometimes given side by side, as alternatives, e.g. the planets revolving "in the largest circles or heavens...." (page 125).

The belief that the planets are attached to spheres and are carried along in their orbits by a rotation of these spheres was common among Arabian astronomers in the late Middle Ages. In a sense it was opposed to the epicycle-theory. A system of concentric spheres, detached from one another, could only be constructed on the basis of single circular orbits, without epicycles. By removing the epicycles, Copernicus opened the way for this ambiguous concept, and we find it clearly
described in his works. What Stevin refers to as the "heaven" of a planet, by Copernicus was called its orbis 16 ).

The system of the world described in the works of Copernicus thus is not identical with our modern heliocentric theory of planets running their course freely through empty space. Their orbis was sphere and circle at the same time. In the first of the seven theses of the Commentariolus, in the words "omnium orbium coelestium sive sphaerarum", the term is explicitly identified with sphere. The seven theses are followed by an exposition of the order of the orbs: De ordine orbium, from the immobile orbis of the fixed stars down via the planets, from Saturn to Mercury. In his great work De Revolutionibus this enumeration is repeated (in Book I, caput X, just before the figure): "ordo spbaerarum sequitur in bunc modum". In this description he says that between the convex orbis of Venus and the concave orbis of Mars there is space to take up "orbem quoque sive sphaeram" for the earth. In his dedication to Pope Paul III he refers to his work as the Books he wrote "de revolutionibus spbaerarum mundi". Accordingly, there can be no doubt that the term orbis is regularly used by Copernicus to indicate a sphere. At the same time there are numerous instances where it is used for a circular orbit. In the Commentariolus, immediately after the seven theses, he says that the magnitudes of the semi-diameters of the orbes will be given in the explanation of "the circles themselves". In the same treatise he speaks of the intersections circulorum orbis et eclipticae, called the nodes. In his great work, when describing how some authors added more spheres (up to an eleventh) beyond the outer starry firmament, he says that this number of circles (quem circulorum numerum) will be shown to be superfluous. Sphere and Circle therefore are both used as synonymous with orbis 17). There is some vagueness about the substance or the substantiality of these spheres called orbes. Frisch on this subject observes 18): "Copernicus nowhere in his work either explicitly asserts or implicitly denies the reality of the spheres".

There can be no doubt that Stevin's 'heaven" of a planet is intended to render in the vernacular what Copernicus denoted by orbis. There is, however, a difference: the difference between the theoretical philosopher and the practical engineer. What for Copernicus was an ambiguous geometrical concept, to Stevin is a structure of physical objects and materials. In order to emphasize the spatial character of the heaven he sometimes denotes it by hemelbol, "celestial sphere". Being natural objects and substances, they must be acting on one another. The structure is a dynamical system. This opinion is not presented as a systematically worked-out theory, complete with proofs and arguments. With Stevin it is rather a picture spontaneously arisen in the background of his mind, a vague feeling appearing in some arguments. The basic idea, viz. that bodies contained in another body are bound to share in the movement of the latter, may appear obvious enough. In the world-system it means that outer spheres by their motion.

[^2]influence the lower spheres contained within them; the primary force thus derives from the highest sphere, the outer firmament.

At first sight the character of these forces exerted by the higher upon the lower spheres looks very peculiar. The heaven of Mars, rotating in two years, would Stevin says - in the absence of other forces impose the same two years' period of revolution upon the earth's aphelion. He asserts this without providing any argument or proof. No proof can be given, because observation contradicts such a rapid motion of the aphelion. Where the motion of a planetary aphelion could be determined, it was less than one degree in several centuries. Evidently, strong other forces must be at work, which prevent any considerable motion of the aphelia. Stevin's statements about these motions consist entirely in theoretical ideas, which are not clearly formulated or systematically developed. This shows how he is struggling with the problem of understanding causes at a time when there were present as yet only the first traces of a causal natural science. His exposition impresses the modern reader as an entirely artificial and fantastic mechanism: a planet like Mars, attached to a sphere carrying it around in two years, at the same time carries the aphelion of the sphere of the earth along with it in the same period of two years, though this sphere itself revolves in one year. He himself sometimes refers to it as a contradiction, saying (p. 133) that Jupiter's heaven performs a revolution in 30 years, which it receives from Saturn, but at the same time in reality rotates in 12 years about an axis of constant direction; the enforced period relates to the aphelion that protrudes outwards, and it is this bulge which in Stevin's theory is drawn along in a rotation in which the sphere itself does not share. When we call this an attempt to understand something of the mechanism of the world, it should be borne in mind that the physical character of these "heavens" plays no part therein and remains indefinite; it is the geometrical forms - in this case the eccentric circles - which determine the motions. Probably Stevin took this idea from his knowledge of the tides, where, in the abstract simplified case of the absence of continents, a wave crest is drawn along by the moon to pass round the earth in the moon's period of 27 days, whilst the waters of the ocean themselves revolve as one body in 23 h 56 m .

In the first Proposition of the Third Book Stevin effects a significant improvement in the Copernican theory. Copernicus had assigned three motions to the earth. Besides the axial rotation and the orbital revolution there was a third - annual - motion. He was governed by the classical Greek idea of the revolving body being carried around by its fixed connection with the radius vector, so that the direction in space of the earth's inclined axis of rotation would describe a cone. To explain the constant direction of this axis in space, he was obliged to compensate that motion by another conical motion of the axis in the opposite direction, completed in one year.

Stevin is aware that this is an unnecessary complication. He does not believe that two independent motions in nature can compensate one another so exactly. Copernicus was less rigorous in this: he took the two movements to be independent; their small difference explained the precession. Stevin is of the opinion that their combined result should rather be considered as a single primary phenomenon. He looks upon the constant direction of the axis in space as a fundamental property. In this respect he was guided by the researches of William Gilbert
on magnetism, published in 1600 , shortly before his own work. Just as the magnet in the ship's compass continues to point in the same direction in space, notwithstanding the changing course of the ship, the axis of the earth continues to point in the same direction in space during its annual revolution. Stevin therefore calls this property of the earth "baer seylsteenighe stilstandt" (literally: "its loadstony standstill"), which has here been translated by "its magnetic rest". This is not a mere analogy; he quotes Gilbert's opinion that the earth itself is a huge magnet ${ }^{19}$ ).

Stevin widens the scope of this idea by applying it to the orbits themselves. From his ideas on the action of the "heavens" of the higher planets on the orbits of the lower planets he had deduced that the aphelia would show rapid rotations. In reality, however, they exhibited only minute, scarcely perceptible displacements. He solved this contradiction by imparting a magnetic character to the orbits. The directions of the planetary aphelia may also be said to be subject to a magnetic constancy. This subjection is the force referred to above as keeping the aphelia at rest. Whence does this force proceed? Arguing by comparison with magnets in closed boxes, Stevin derives that the origin of these forces is situated outside the spheres of the planets, in the sphere of the fixed stars. The matter is different for the moon; its apogee has a rapid daily motion of $6^{\prime} 41^{\prime \prime}$ (with a period of nine years), and the origin of the forces is to be sought in the regions of the nearer planets.

It is not only the orbits but the entire spheres constituting the "heavens" of the planets which are subject to a magnetic force. It causes the poles of their axes of rotation (hence also the orbital planes) to keep a constant direction in space. It is the cause that, in spite of the considerable deviation of Mars from the ecliptic, the ecliptic itself (the plane of the earth's motion) keeps its constant position. The constancy of the orbital planes, which the later science of theoretical mechanics styles conservation of moment of momentum, is explained by Stevin as magnetic stability. In his 3rd proposition he speaks of the doubts he had felt with regard to the real cause of the planetary motions; his initial conviction that the motion was transferred from the outer spheres to the inner spheres was disproved by the practical tests. Sometimes he had wondered whether the planets did not run their course freely through empty space "like birds flying around a tower", until finally the principle of magnetic rest suggested itself as the simplest solution of the problem.

Considerable space is devoted by Stevin to the transition from the old to the new system. With regard to the moon the exposition of its course has become more difficult; instead of simply describing a circle about a fixed centre, it now has to revolve about a body which itself revolves in a yearly period. Stevin assumes (in accordance with the Greek epicycle-theory) that in such a case as this the radius vector of the earth to the centre of its circle is the natural zero line for the position of adjacent bodies. Relative to this radius, which changes

[^3]its direction in space by progressing $360^{\circ}$ a year, i.e: $59^{\prime \prime} 8^{\prime \prime}$ daily, the small advance of the moon's apogee of $6^{\prime} 41^{\prime \prime}$ daily ( $360^{\circ}$ in 9 years) is a retrogression of $52^{\prime} 27^{\prime \prime}$ daily. In the same way the retrogradation (in the old system) of the nodes of the moon's orbit by $3^{\prime} 11^{\prime \prime}$ daily ( $360^{\circ}$ in 18 years), relative to the revolving terrestrial radius vector, is a retrogression of $1^{\circ} 2^{\prime} 19^{\prime \prime}$. Formally this contradicts Stevin's view that all motions in the universe have the direction from West to East; but no undue weight is to be attached to this, since apogee and node are no bodies, and may depend on exterior forces in some other way. In his short discussion of these points on page 135 Stevin cannot be said to have succeeded in harmonizing them.

The ensuing method of computing the moon's longitude - by first finding the sun's longitude and then subtracting the lag of the apogee - is demonstrated on page 161 to be right. He remarks that the computation according to the old system (i.e. using absolute positions in space) is more direct and rapid.

The orbit of the earth in the new system is exactly identical with what used to be the sun's orbit in the old system, with the same period and the same relative positions. A special figure is given on page 148 to show how the two systems result in the same observed longitudes and the same distances for the sun and the earth. The former longitude of the sun's apogee is identical with the new longitude of the earth's perihelion. The new data of the moon's motion are also shown to correspond directly to the old ones. The numerical data formerly derived for the planets and now transferred to the new system are summarized in a list, in which the earth ranks third in the series of the planets.

It is significant evidence of his practical-mindedness as well as of his pupil's that Stevin did not content himself with presenting the general argument that of course all the relative positions and motions of the planets are the same in the two world-systems. They want to see it in the details of each individual case. For this purpose Stevin gives for each of the planets Mars and Venus (as instances of an outer and an inner planet respectively) a drawing in which the connecting lines and the circles for the two systems are combined. The desire to see their relations illustrated in a geometrical drawing, however, was not the only motive. The interchange of the sun and the earth as central bodies presented certain difficulties. Copernicus neither mentioned nor solved these. In his 18 th proposition Stevin states that Copernicus: evidently supposed the matter to be so clear that no further proof was needed; but that he himself had met with difficulties, which called for a more detailed investigation.
If we suppose that we shall arrive at the new system by simply interchanging in the old system the positions of the sun and the earth and identifying the old deferent with the new planetary orbit, we are mistaken in the same way as when we sometimes say for the outer planets that the motion on the epicycle reflects the sun's motion about the earth. The perfectly uniform course of the planet on its epicycle, however, is not identical with the sun's course (in the other case) about the earth (which is not uniform), but with the sun's uniform motion about the centre of its circle. Hence, the deferent does not correspond to the planet's orbit about the sun, but to its orbit around the centre of the earth's annual circle. When we pass from the old to the new system, the earth at rest is to be replaced by the centre of its orbit, and not by the sun.

On page 182 Stevin presents the combined drawing for Mars, which is discussed in Proposition 15. Since the reader might easily be thrown into confusion by the
tangle of all these distances and circles, he separates the lines and letters belonging to either system into two drawings on page 192. The positions of the sun and the earth are $C$ and $A$; in the old system $A$ is fixed and the sun moves on a circle through $C$ (centre $B$ ); in the new system $C$ is fixed and the earth moves on a circle through $A$ (centre $K$ ). The fundamental law of the epicycle-theory states that the radius vector of the planet on its epicycle is always parallel to the radius vector of the sun on its circle, so that the arc described by the sun is the sum total of the arcs described by the planet on its epicycle and by the epicycle's centre on the deferent. In the old system Mars' deferent is HRE (centre G), in the new system Mars' orbit is $N V M$ (centre Q). At conjunction the epicycle's centre was at $H$, Mars at $F$; in the new system Mars was at $N$, the earth at $P$. At a later time the centre had progressed from $H$ to $R$, Mars from $F$ to $T$; in the new system Mars had passed from $N$ to $V$, the earth from $P$ to $X(\operatorname{arc} P X=\operatorname{arc} H R+\operatorname{arc} S T)$. Owing to the equality of circles and arcs, $R T$ and $K X$ as well as $A R$ and $K V$ are seen to be equal and parallel. Then from the equality of triangles $A R T$ and $K V X, A T$ and $X V$ are demonstrated to be equal and parallel. This means that Mars is seen from the earth in the same direction and at the same distance according to both systems.

The same demonstration is then given for Venus as an instance of an inner planet. Because the planet's deferent is equal in size to the sun's orbit, with the centres at a small distance, it is more difficult in this case than in that of Mars to disentangle the combined drawing for Venus (on page 196). A separation of the combined drawing into its two components is here all the more necessary; we therefore give these two drawings on page 17.
The positions of the earth and the sun are denoted by $A$ and $C$; in the old (geocentric) system, $A$ is fixed and the sun moves on a circle (centre $B$ ) through $C$; in the new (heliocentric) system, $C$ is fixed and the earth moves on a circle (centre $K$ ) through $A$. The eccentricity of the sun's orbit is $A B=C K$, that of Venus' orbit is $A G=K Q$. For time zero we take an upper conjunction at the apogee; the centre of the epicycle is at $H$, Venus itself at $F$; in the new system Venus is at $N$, the earth at $P$. We have to show that at any other time the lines joining the planet to the observer in the old and the new system are equal and parallel. As to their length, we observe that the orbit of the sun and the deferent of the planet (in the old system) are equal in size to the orbit of the earth (in the new system); the planet's epicycle also is equal to the planet's orbit in the new system. This entails the equality of all semidiameters drawn from any point of such a circle to its centre; $G R=G H=B C=$ $K P=K X$, and $H F=R T=Q N=Q V$. As to the directions of these lines, we observe that they rotate entirely uniformly. The planet (in the old system) has two motions, one along the epicycle (e.g. the arc ST) and another with the epicycle along the deferent (e.g. the arc $H R$ ). These two motions combined in the heliocentric system convey the planet by its uniform rotation from $N$ to $V$, so that $Q V$ is equal and parallel to $R T$.

Positions eccentric to these circles (e.g. A) do not fall under these headings, so that here an additional computation is needed. For this purpose we compare the acute-angled triangles $A G R$ and $Q K X . A G$ and $Q K$ (the eccentricity of the planet's orbit) as well as $G R$ and $K X$ are equal and parallel; so the triangles are equal and similar, and consequently their third sides $A R$ and $Q X$ are equal and parallel. Since the triangles $A R T$ and $X Q V$ now have two pairs of sides equal and parallel,


Motion of the planet Venus
according to the geocentric system (above)
and to the heliocentric system (below).
this holds also for the third pair $A T$ and $X V$. This means that the planet is seen from $A$ (the earth in the old system) and from $X$ (the earth in the new system) in the same direction and at the same distance.

For the understanding and the derivation of the motions in longitude Stevin considers the old, untrue system with the earth at rest to be the simplest and most appropriate - probably because it directly represents the observed motion. It is different, however, with the latitudes of the planets. For this reason he omitted the latter from his Second Book, and postponed them until, at the end of the Third Book, he should have treated them according to the true system of the moving earth; for, so he says, in this way we can arrive better at a causal knowledge of the motion in latitude. This reverse way of arguing, $v i z$. the derivation of the older imperfect theory from the new, more perfect theory, is an indication of the real underlying character of the problem. Whereas for the three upper planets the epicycle theory was the direct expression of the observed phenomena of the longitudes, this was not the case with the latitudes. Here Ptolemy's theory was an artificial construction; it was complicated because two independent inclinations had to be derived, viz. one of the epicycle to the deferent, and one of the deferent to the ecliptic. The new heliocentric system required one angle only, the inclination of the planet's orbit to the ecliptic. Copernicus, assuming that Ptolemy's theory was a good representation of the observed motions in latitude, had to make the inclination variable by assigning an oscillation (between opposition and conjunction) to the orbit. With the epicycle itself, Stevin discarded also its special inclination and stated as the basic structure for the geocentric system: the epicycle in its course along the deferent always has to keep parallel to the plane of the ecliptic.

In dealing first with Saturn, Stevin starts from the values in Ptolemy's tables, which he assumes to represent Ptolemy's observations. In these tables the maximum northern latitude (at a longitude $50^{\circ}$ behind the apogee, i.e. at longitude $183^{\circ}$ ) is $3^{\circ} 2^{\prime}$, the maximum southern latitude is $3^{\circ} 5^{\prime}$, the planet in both cases being at the lowest point of its epicycle. Ptolemy had derived $2^{\circ} 26^{\prime}$ for the deferent's inclination, $4^{\circ} 30^{\prime}$ for the epicycle's inclination. From the latitude $3^{\circ} 2^{\prime}$ and the known distances Stevin finds $2^{\circ} 43^{\prime}$ for the inclination of Saturn's orbit to the ecliptic. He shows how easy the computation of Saturn's latitudes is now, since they follow directly from the horizontal distances of Saturn from the earth and the vertical distances of Saturn above or below the ecliptic. Ptolemy's observation that near the nodes Saturn does not show any latitude, which is accidental in his theory, is a necessity in the new theory, because it shows the epicycle at that time to coincide with the ecliptic. In explaining this state of affairs, Stevin cannot refrain from remarking that it forms a strong argument in favour of the moving earth.

The other planets for which the same holds are mentioned in brief statements only, in which their numerical data are given. More space is devoted to Mercury. Stevin begins by expounding Ptolemy's theory of the latitude of Mercury, as an instance of the two inner planets, in the form given by Peurbach and also used by Copernicus. It assumes three oscillations. An oscillation of the deferent about the line of nodes as axis makes its inclination vary between zero and $1^{\circ} 45^{\prime}$ to the South. The epicycle has two oscillations about two perpendicular axes, one axis tangential to the deferent's circumference, the other in the radial direction; when the former is zero, the latter reaches its maxima in opposite senses in apogee
and perigee; and conversely the former reaches its maxima in opposite senses at longitudes $90^{\circ}$ and $270^{\circ}$, when the latter is zero. Stevin mentions in margine their Latin names deviatio, declinatio, reflexio, and himself calls them afweging, afwycking, and afkeering; they have here been translated by "deviation", "declination" and "deflection". Stevin has no use for this complicated theory. The greater simplicity - he says - of the heliocentric system was not realized by Copernicus himself, who slavishly copied Ptolemy's three oscillations, with the numerical values given in the Tables, and incorporated them in his fundamentally different world-system. Stevin draws the former epicycle (representing the planet's orbit) as a small circle at rest about the centre of the larger surrounding circle (the earth's orbit, formerly the deferent) and then has to determine its inclination to the latter. From the "observed" latitudes (in reality, as always in his explanations, taken from Ptolemy's tables) of Mercury at two opposite points at $90^{\circ}$ and $270^{\circ}$ from the apogee, $1^{\circ} 45^{\prime}$ North and $4^{\circ} 5^{\prime}$ South, he derives (as illustrated in the lower figure on page 248) an inclination $5^{\circ} 32^{\prime}$.

In this short paragraph of Stevin's work the simple construction of the heliocentric system is used as the new basis of computation. Of course it was done in one instance only; much more was not yet possible at the time. His was not the task which Kepler was to accomplish afterwards. He was only interested in explaining the theory of the heavenly motions, not in constructing numerical tables for their computation.

As a Supplement (Byvough) Stevin gives what should have been the last chapter of the Second Book, with the treatment of the latitudes in the old geocentric system. He introduces it by presenting this system in a form different from the original one. Originally the two lowest. planets, Mercury and Venus, in contrast with the three upper planets have deferents that are completed in a year and thus represent the earth's orbit, whilst the smaller epicycles here represent the planets' orbits. Instead of the size of the circles, Stevin now takes their function in the system to be their specific character. In all cases the circles representing the earth's orbit are to be called epicycles; deferents is to be the name for the planetss' circles. Accordingly; for Venus and Mercury the old terms have to be interchanged. He says it in the following way: the circles which are called deferents here are epicycles, and conversely; and he uses these names in the following propositions. Instead of two kinds of planets with different characters, we now have one homogencous series, with only the size of their orbits regularly decreasing from Saturn to Mercury, the earth finding its place among them. In an illustrative drawing on page 260 Stevin pictures the planetary system in which all the orbits have been provided with terrestrial circles of equal size and all parallel to the ecliptic.

Stevin's task was to show that the phenomena of latitude, too, are the same in the two systems. This was not difficult, since his corrected geocentric system, with the epicycles parallel to the ecliptic, was a formal transformation of the true system. He compares this geocentric system with Ptolemy's and finds that for the upper planets Ptolemy came very near to the truth, since he found the two inclinations (for Saturn $2^{\circ} 26^{\prime}$ and $4^{\circ} 30^{\prime}$ ) to be nearly equal, the difference being only $2^{\circ} 4^{\prime}$. His criticism (pages 277 and 279) that Ptolemy's tables are not in conformity with. his theory is unfounded (cf. p. 279, note 3). His statement that for the two lower planets Ptolemy's theory was not successful is true; the basic reason is that the epicycle theory did not fit Mercury.

Stevin knows that his exposition of the motions of the planets is neither exact nor complete. An Appendix is therefore added on the "unknown motions" observed by Ptolemy, i.e. on motions which formerly were unknown and had not been included in the theory as given in Stevin's three Books. They are Ptolemy's "second inequality" of the moon, and his introduction of a "punctum aequans" in the orbits of the planets. Since, in his treatment of the former, Stevin (in his Propositions 2 to 5) renders Ptolemy's discussion rather exactly, it was not necessary to reproduce it here in detail. The other point is dealt with by Stevin in the 6th Proposition of the Appendix.
Ptolemy had found that the simple theory of the epicycle's centre uniformly describing an eccentric circle about the earth does not tally with the observed motions of the planets. The motion along the deferent is not uniform, but it seems to be uniform when viewed from the equant (punctum aequans) situated at the same distance as the earth from the centre of the deferent, but on the opposite side. This irregularity of the motion along the deferent is the main point in Ptolemy's planetary theory. The radius vector drawn from the equant to the epicycle's centre, though of variable length, rotates perfectly uniformly. Since the planet moves uniformly along the epicycle, the anomaly, reckoned from the apogee of the epicycle as its zero point, also increases uniformly when viewed from the same point. Stevin directs the reader's attention to this point. He first remarks that Ptolemy must have found the simple theory entirely satisfactory as long as he considered only the oppositions to and conjunctions with the sun, i.e. the planet in the nearest and the farthest point of the epicycle, where it bas the same longitude as the centre of the epicycle. But in the other points it is different. He takes an example where shortly before opposition (anomaly $150^{\circ}$ ) the planet is observed to have a smaller longitude, hence has progressed farther on its epicycle than had been computed. With the aid of a figure he shows that this can be accounted for if the zero from which the anomaly in the epicycle is reckoned is shifted in a forward direction. Then, in order to see it coincide with the epicycle's centre, Ptolemy had to look not from the centre of the deferent, but from another point, situated nearer to the apogee of the deferent. The precise situation of this point, when computed, would have turned out to be exactly the punctum aequans. In this deduction, instead of the most striking property, viz. the non-uniform motion of the epicycle along the deferent, the less striking, non-uniform motion of the planet along the epicycle is used to introduce the punctum aequans.
This is Stevin's explanation of Ptolemy's theory for the planets Saturn, Jupiter, Mars, and Venus. For the more complicated motion of Mercury he simply reproduces Ptolemy's description of the circles and their motions.
Thereafter Stevin explains how the same "unknown motions", first of the moon (in Proposition 8), then of the planets (in Proposition 9), are dealt with by Copernicus. For the planets Stevin first introduces the "unknown motions" into the geocentric theory. The distance of the earth from the centre of the deferent is diminished by one-fourth of its value; e.g. for Saturn, instead of 0.1139 , it is taken 0.0854 . The one-fourth subtracted (here 0.0285 ) is taken as the radius of a small circle, which is described by the planet in such a way that in apogee and perigee the effects are subtracted, whereas in a lateral position they are added. Copernicus of course presents this construction on a heliocentric basis; the deferent is now the planet's orbit, with the sun at a distance from
the centre of 0.0854 times the orbit's radius; the planet, in addition, describes the small circle (of radius 0.0285 ) twice in one revolution. Stevin supposes that Copernicus, though he did not say so, had devised the small circle first in the geocentric, and then transferred it to the heliocentric theory. In any case he himself has chosen this method in order to make the matter clearer to his readers.

In the case of Venus the centre of its circle, of radius 0.7194 , situated within the circle of the earth with radius 1.0000 , does not have a fixed eccentric position, but moves on a small circle with diameter 0.0208 in such a way that its eccentricity varies between once and double this amount. It is described by the centre of Venus' orbit twice a year in a direct sense; the eccentricity is at its minimum when the earth is in the planet's line of apsides, and at its maximum when it is at a distance of $90^{\circ}$. Stevin, as in all these cases, does not make any comparison with observations; his task is solely to expound the theories of Ptolemy and Copernicus; and he simply adds: "by this means, Copernicus says, the longitudes of Venus are always found in the right way".

The still more complicated system of circles .for Mercury as devised by Copernicus is expounded correctly by Stevin in his 12th Proposition. The centre of Mercury's orbit describes a small circle with radius 0.0316 every half year in such a way that the eccentricity is greatest when the earth is in Mercury's line of apsides, and smallest when its longitude is $90^{\circ}$ different. In addition, the planet moves to and fro linearly along the radius of its orbit; such a linear movement, as Stevin demonstrates in his 11th Proposition, is produced by two circular movements in opposite directions.

The Book closes with an article on the "unknown motion" of the stars, dealing with the precession of the equinoxes. The difference between Ptolemy's value ( $1^{\circ}$ in a century) and the larger values of later authors is thought by Stevin to be perhaps due to wrong equinoxes caused by irregularities and differences of the refraction. He points to the abnormal phenomenon of the sun observed by the Dutch mariners in Novaya Zemlya in 1596-97, which he also ascribes to a refraction, abnormally large in February, caused by the cold nebulous atmosphere. New measurements of stellar altitudes and refractions in the countries of ancient astronomy as well as at its present centres, he says, will be needed to remove these uncertainties. Moreover, for greater precision in measuring the positions of the planets and the stars better instruments are necessary, such as those constructed and used by Tycho Brahe. The present deviations between observations and theory show that our theory is unsatisfactory and must be improved by means of the best observations available.

Little did Stevin suspect that at the very time when he wrote these words, mapping out the programme in a vague and general way, Kepler was already engaged in establishing the true theory of the planetary motions.

# D E R D E DEELDES <br> WEERELTSCHRIFTS <br> VANDEN <br> HEMELLOOP. 

## CORTBEGRYP des Hemelloops.


c x falint begin der befchrijving defes Hemelloops de faeck nemen al of fer gantich niet af bekent en vvare, en daer na den handel met fulcken oirden vervolghen, gelijck daerfe haer vermeerdering dadelick me fchijnt ghenomen tehebben, daer af befchrijvende drie boucken.

Heteerfte bouck vande vinding der dvvaelderloopen ender vafte fterren deur ervarings dachtafels met ftelling cens vaften Eertcloots.

Het tvvede vande vinding der dvvaelderloopen deur vvifconftighe vverckingen metfelling eens vaften Eertcloots, en eerfteoneventheden.

Het derde vande tvveede oneventhedē, vvaerin comt Copernicus felling eens roerenden Eertcloots.

## SUMMARY OF THE HEAVENLY MOTIONS

In the beginning of the description of the Heavenly Motions I will assume the matter to be altogether unknown, and then I will proceed with the discussion in the same order in which it seems to bave taken its progress in actual fact, describing it in three books.

The first book, of the finding of the motions of the Planets and of the fixed stars by means of empirical ephemerides, on the assumption of a fixed Earth.

The second, of the finding of the motions of the Planets by means of mathematical operations, on the assumption of a fixed Earth, and the first inequalities.

The third, of the second inequalities, in which Copernicus assumption of a moving Earth is set forth.

# E E R T E <br> BOVCK DES <br> HEMELLOOPS VANDE VINDING DER *DWAELDERLOOPEN Manam en der vafter fterren deur ervarings <br> dachafels, met ftelling eens <br> vatten Eercloots. 

# FIRST BOOK <br> <br> OF THE HEAVENLY MOTIONS 

 <br> <br> OF THE HEAVENLY MOTIONS}

OF THE FINDING OF THE PLANETS' MOTIONS
AND THE MOTION OF THE FIXED STARS
by means of Empirical Ephemerides, on the Assumption of a Fixed Earth

# CORTBEGRYP 

defes ecriten Boucx.


E bepaling ben beffhriven $\int$ jinde foo fal dit eerfte bouck acht onderflbeytels bebben, vande vinding deur ervarings dachtafels des loops. Vans Son, Maen, Saturnus, Lispiter, Mars, Venus, Mercurius, ender vafte sterren, alles met felling eens vaSten Eertcloots als vocerelts middelpunt, voant hoevoelfe eyghentlickineen rondt Eumesta draxyt ghelijck dander Dvivaelders, nochtans leertmen de * beghinf elen defer const licbselickerverrstaen deur het fchijnbaer, dan deur bet egghen, foo daer af breeder ghefeyt fal yporden in des 3 boucx 7 voorstel. Angaende voorder* Pieghelinghen veaer
Specthion- 3 boutx 7 fo deyghen stelling des Loopenden Eeertcloots bequamer is, daer af falick int bovefchreven derde bouck handelen.

## SUMMARY OF THIS FIRST BOOK

After the definitions have been described, this first book is to comprise eight sections, of the finding by means of empirical ephemerides of the motion of Sun, Moon, Saturn, Jupiter, Mars, Venus, Mercury, and of the fixed stars, all this on the assumption of a fixed Earth as centre of the universe; for though in reality it revolves in a circle, like the other Planets, nevertheless it is easier to understand the elements of this science from the apparent than from the true motion, as will be set forth more in detail in the 7th proposition of the 3rd book. As to further theories, for which the true assumption of the moving Earth is better suited, I will deal with those in the third book referred to above.

## BEPALINGHEN.

 Nghefien in des driehouckhandels 4 bouck, befchreven fijn de bepalinghen der Hemelfche ronden boghen en punten die wy daer behoufden, foo houden wy de felve hier voor bekent: Sulcxdat nu gheftele fullen worden de refteren:
de bepalinghenint volghende noodich.

## 1 BEPALING.

Den tijt van dat de Sonnens middelpunt uyt het middachront gaet, tot dattet vvederdaer in comt, is een ${ }^{\star}$ na- Dier nata: tuerlicken dach. En die natuerlicke dagen vvorden ooc ralies inne oneven ghefeyt. En fulcke tijtint ghemeen * oneven tijt. Tempurina quale.
Defe tijt eens natuerlicken dachs is van een keer des * evenacrs, met noch dequatoris. fulcken boochf ken des felfden, alfer deurlijdt te wijle de Son met haer cygen loop daerentuffchen te rugh ghegaen is. Nu by aldien al die booch f kens evegroot waren, foo fouden de natuerlicke daghen al evelanck fijn, t'welck niet en ghebcurt. De reden van dier boochrkens onevenheyt is tweederhande : Ten eerfen deur dien de Sonwechboochfkens op dientijt vande Son befchreven niet evegroot en fijn,om de * uytmiddelpunticheyts wille. Ten anderen al Excenrriciwarenfe evegroot, nochtans foo en gaenfe met gheen even boothfkens destatem. evenaers deur * t'middachront, om de fcheef heyr of afwijcking des * Duyfte-Meridiantr, raeis. En hoe wel dit verfchil op een dach ongevoelelick is, nochtans op veel Zodiaci. daghen t'famen cant merckelick fiji.

2 BEPALING.
${ }^{*}$ Natuerlick jaer is dē tijt der Sonnens omloop, vviens Anmumatrubegin en einde.een ghenomen punt is dat altijts evevvijt raik. vande lentfne blijfe, gheduerende 30 s daghen s uyren, met noch een onfekerghedeelte.

Ptolemeus heefrdat onfeker ghedeelte boven de $s$ uyren, gheftelt op s 3 (1) 12 (2): Albategni op 46 (1) 24 (2). Ander hebben ander uytcomit bevonden.

## 3 BEPALING.

Egipsjaer isdat 365 daghen begrijpt.
Defe Egipfche jaren verleken by de natuerlicke verloopen alle vier jaren bycans een dach.

A3 4 BEPA.

## DEFINITIONS

Since in the 4th book of the treatise on trigonometry ${ }^{1}$ ) the definitions of the heavenly circles, arcs, and points which we there needed have been described, we here assume them to be known, so that the remaining definitions needed hereafter will now be given.

## 1st DEFINITION.

The time from the moment when the centre of the Sun leaves the meridian up to the moment when it returns thereto is a natural day. And these natural days are also said to be unequal. And such time in general: unequal time.

This time of a natural day is of one revolution of the equator, together with an arc thereof such as it passes through while the Sun with its proper motion has meanwhile gone back. If all these arcs were equal, all the natural days would have the same length, which does not happen. The reason of the inequality of these arcs is twofold. Firstly, that the arcs of the Sun's orbit described in that time by the Sun are not equal, because of eccentricity. Secondly, even if they were equal, yet they would not pass with equal arcs of the equator through the meridian, because of the obliquity or deviation of the Ecliptic. And although this difference is insensible in one day, yet it may be perceptible in a large number of days taken together.

## 2nd DEFINITION.

A natural year is the time of the Sun's revolution, whose beginning and end is an adopted point which always remains at the same distance from the vernal equinox, this being 365 days and 5 hours, with an uncertain fraction in addition.

Ptolemy 2) has put this uncertain fraction over and above the 5 hours at $55 \mathrm{~m} \mathrm{12s}$; Albategni 3) at 46 m 24 s . Others have found other results.

## 3rd DEFINITION.

An Egyptian year is one that comprises 365 days.
These Egyptian years, when compared with the natural years, shift nearly one day in every four years.

[^4]
## 4 B EPALING.

Iuliaenfche jaren fijn vvelckerdrie 365 dagen vervanghen, het vierde 366 , hebbende dan de maent Februarius 29 daghen, daerfe anders maer 28 en heeft.

Om t'verloop der Fgipfche jaren weerom te innen, en t'natuerlickjaer naerder te commen, foo heeft Iuliues Cefar den voorfchreven dach alle vier jaren in Eebruario veroirdent, welck gedaente van jaren Iulizenfche genaemt werden.

## 5 BEPALING.

Soo men neemt het natuerlickjaer te hebben fooveel even dagen en even uyren met haer gedeelte, alfer oṇeven dagen en oneven uyren met haer gedeelte in fijn:Sy vvorDies anades den * evedaghen oock middeldagen ghenoemt. En fulcTempers med. ken tijt int ghemeen * eventijt ende middeltijt.
equile Tem
pus mediuro.
Doirfaeck des naems middeldaghen, is van weghen date middelmatich fijn tuffchen de langher en corter natuerlicke daghen der i bepaling.

6 BEPALING.

* Dvvaelders fijn feven vveereltlichten, dieint uyterlick anfien fchijnen fonder regel teloopen aloffedvvaelden, met naem Saturnus, Iupiter, Mars,Son, Venus, Mercurius, Maen.

Hocwel den Fertcloot eyghentick me een Dwaelder is, nochtans anghofien wy om de redenen vooren int Cortbegrijp verhact, die nemen vaft ic ftaen, $f 00$ en worife hier onder de $D$ waelders niet ghetelt.

7 BEPALING.

* $u_{\text {ytmiddelpuntichront noemtmen diens middel- }}$

Excentricus
circulus.
Concentricus, punt buyten den Eertcloot ftaet. Maer * middelpuntichront diens middelpunt oockdesEertcloors middelpuat is.

## 4th DEFINITION.

Julian years are such that three of them contain 365 days, the fourth 366 , the month of February then having 29 days, whereas otherwise it has only 28.

In order to recover the shifting of the Egyptian years and come nearer to the natural year, Julius Caesar ordained the above-mentioned day to be added every four years in February, which kind of years were called Julian years.

## 5th DEFINITION.

If the natural year is taken to have as many equal days and equal hours with their fraction as there are unequal days and unequal hours with their fraction in it, they are called equal days and also mean days. And such time in general: equal time and mean time.

The origin of the name mean days is that they are the mean between the longer and shorter natural days of the 1 st definition.

## 6th DEFINITION.

Planets are seven luminaries which in outward appearance seem to move without rule, as if they were wandering; their names are Saturn, Jupiter, Mars, Sun, Venus, Mercury, Moon.

Although the Earth is in reality also a Planet, yet because for the reasons related hereinbefore in the Summary we assume it to be fixed, it is not reckoned here among the Planets.

## 7th DEFINITION.

Eccentric circle we call a circle whose centre is outside the Earth. But concentric circle, a circle whose centre is also the centre of the Earth.

Laet A BC cen rondt fijn diens middelpunt D , en E den Eertcloot: Dit foo wefende, A B Cheet uytmiddelpuntichront. Maer foo men naem het punt $D$ den Eertcloot te fijn, t'foude dan middelpuntich hecten.


## 8 BEPALING.

Delini van des uytmiddelpuntich ronts middelpunt totten Eertcloots middelpunt heet ${ }^{\star}$ uytmiddelpuntic-Limention heyclijn.

Als indeform der 7 bepaling de liniD $E$.

## 9 BEPALING.

Uytmiddelpuntichronts $\star$ verftepunt noemtmen dat 1 pogem, verft vanden Eertclootis: En $\star$ naeftepunt dat den Eert-Perigam. cloot naeft ftaet.

Lact inde form der 7 bepaling de uytmiddelpunticheyt DE op beyden fij: den voortghetrocken worden tot inden omtreck an A, en C, Twelck foo fijndc, want het punt A, inden omtteck A B Caldervert vanden Eertcloot Eis, cn C aldernacft, foo wert A des uymiddelpuntichronts A BC verftepunt genoemt, en Chet naeftepunt.

10 BEPALING.

II BEPALING.
Wefende opeen puntals middelpunt, inden omtreck
A 4 eens

Let $A B C$ be a circle, whose centre shall be $D$, and $E$ the Earth. This being so, $A B C$ is called eccentric circle. But if the point $D$ were taken to be the Earth, it would be called concentric.

## 8th DEFINITION.

The line from the centre of the eccentric circle to the centre of the Earth is called line of eccentricity.

Thus, in the figure of the 7th definition the line $D E$.

## 9th DEFINITION

Apogee of the eccentric circle we call the point farthest from the Earth, and perigee the point nearest to the Earth.

In the figure of the 7 th definition let the line of eccentricity $D E$ be produced on either side to the circumference, at $A$ and $C$. This being so, because the point $A$ on the circumference $A B C$ is farthest from the Earth $E$, and $C$ nearest to it, $A$ was called the apogee of the eccentric circle $A B C$, and $C$ the perigee.

10th DEFINITION.
Planet's orbit is an eccentric circle in which a Planet moves.
eensuytmiddelpuntichronts, befchreven een cleen ront, daer in men neemt een Dvvaelder te loopen: Datcleen-
Epirycims. der heet ${ }^{\text {infront, en rgrooter }}{ }^{*}$ inrontvvech.

Laet inde form der 7 bepaling opeenich punt als $\boldsymbol{\Lambda}$ des tiytmiddelpuntichronts $A B C$ befchreven worden her cleender rondt $F G H$ daer in men neemt cen Dwaclder teloopen, t'felvecleender heet inront, en t'grooter A BC inrontwech.

## 12 BEPALING.

Inronts verftepunt noemtmen dat verft vanden Ecrtcloot is: En ${ }^{*}$ naeftepunt dat die naeft is: Maer *inronts

## 13 BEPALING.

Desinronts boochfken tuffchen de trvee verftepunten noem ick ${ }^{*}$ verftepuntensbooch:Tander tuffchende

Aegratio centri inepitycle. middelverftepunt, dat verft van fijn vvechs middelpunt is: En . middelnaefte puntdat die naeft is.


#### Abstract

delverstepunt, en middelnaefte punt, foolaet het inront ghecommen fijn tot cen ander placis fijnswechs, ick neem met fijn middelpunt an $B$, daer na fy getrocken de rechie $D B K$, friende den omtreck ten naeftenan $I$, enten verften an K: Sghelijcx de rechte ELB M, fniende den omtreck ten naeften an $L$, en ten verften an $M$ : Dit $f 00$ wefende, $M$ is om de voorgaende redenen verfte punt, en L nactepunt : Maer K verf van $D$ is middelvertepunt, en I naef $D$ middelnaellepunt: Sulcx dat defe twee verftepunten $M, K$; het inront daer wefende, verfcheyden plaetfen hebben : Maer als het intonts middelpunt an des wechs verttcpunt $A$, of naeftepunt $C$ is, dan fijn verfepunt en middelverfe. punt een felve, alfoo oock fijn naeftepunt en middelnacfepunt. D'oirfacck des naems van middelverftepunt en middelnaeftepunt is defe : Want K een verfepunt is, t'welck uyt $D$ ghefien altijt eenvaerdelick everas voortgact, maer M alfnu raffcher dan tragher, tuffchen welck deloop van Kals middelmatich fijnde, wort middelvertepunt gheheeten.


.

tvvice naefte punten, naeftepuntensbooch.

Als t'boochfken K M inde form der 7 bepaling tuffchen t'verflepunt $K$, en het middelverflepunt $M$ heet verfepuntenbooch, maer I I naeftepuntenfooch.

14 BEPA-

## 11th DEFINITION.

When about a point as centre, on the circumference of an eccentric circle, there be described a small circle, on which a Planet is taken to move, the smaller circle is called epicycle and the larger, deferent.

In the figure of the 7th definition, let there be described about any point of the eccentric circle $A B C$, such as $A$, the smaller circle $F G H$, on which a Planet is assumed to move; this smaller circle is called epicycle, and the larger $A B C$, deferent.

## 12th DEFINITION.

The epicycle's apogee we call the point which is farthest from the Earth, and perigee that which is nearest to it. But the epicycle's mean apogee: the point which is farthest from the centre of its orbit, and the mean perigee: that which is nearest to it.

In the figure of the 7 th definition let the diameter $C A$ be produced to $F$ on the circumference of the epicycle. This point $F$ being farthest of all points of the epicycle from the Earth $E$, it is called the epicycle's apogee, and $H$, being nearest, is called perigee. But in order to explain the nature of the mean apogee and the mean perigee, let the epicycle have arrived at another point of its orbit, I assume with its centre in $B$. Thereafter let there be drawn the straight line $D B K$, intersecting the circumference at the nearest point in $I$ and at the farthest in $K$; likewise the straight line $E L B M$, intersecting the circumference at the nearest point in $L$ and at the farthest in $M$. This being so, for the above reasons $M$ is the apogee and $L$ the perigee. But $K$, being farthest from $D$, is the mean apogee, and $I$, being nearest to $D$, is the mean perigee, so that these two apogees $M, K$, when the epicycle is in this position, are in different places. But when the epicycle's centre is in the orbit's apogee $A$ or perigee $C$, the apogee and the mean apogee are one and the same point, and so are the perigee and the mean perigee. The origin of the name mean apogee and mean perigee is as follows: because $K$ is an apogee which, viewed from $D$, always moves at uniform velocity, but $M$ moves now faster, now slower, between which the motion of $K$, as being a medium value, is called the mean apogee.

## 13th DEFINITION.

The epicycle's arc between the two apogees I call arc of the apogees, the other between the two perigees, arc of the perigees.

Thus, the arc $K M$ in the figure of the 7th definition, between the apogee $M^{1}$ ) and the mean apogee $K^{1}$ ), is called arc of the apogees, but $I L$, arc of the perigees.

[^5]
## 14 B E P ALIN G.

Wechs eerfte halfront noem ick de booch vant verftepunt tortet naeftepunt, na'tvervolgh der trappen, dats van t'begin totten 180 , d'ander booch tvveede halfront.
15. BEPALING.

Schijnbaer Dvvaelder is een punt daer hy fchijnt te vvefen, doch eygentlick niet en is: En Schijnbaerloopeen booch die hy fchijnt teloopen, doch eyghentlick niet en loopt.

Laet A B C den Dwaelderwech beteyckene, diens middelpunt $D$, en $E$ den Eertcloot, op welckeals middelpunt befchrevē fy den Duyfteraer F G H. Voori fy ghetrocken deur E D des duyferaers middcllini FI, fniende den Dwaelderwech in $A$ als verttepunt, en in $C$
 àlsnaeftepunt: En den Dwaelder fy inde wech ant punt $B$, deur r'welck uyt Egetrocken isde rechte lini E B G. Dit foo wefende, den Dwaelder eyghentlick an B fijnde, fal uyt den Eertcloot E gefien, inden duyfteraer fchijnen te wefen tuffchen de vafte fterren an $G$, en daerom hectet felve punt G fchijnbaer $D$ waelder. Maer fo hy van B voortloopt, ick neem tot $K$, en deur $K$ ghetrocken de rechte lini E KH, den Dwaelder die eyghentlick gheloopen heeft den booch BK, fal uyt den Eertcloot Eghefien fchijnen gheloopen te hebben den booch $G H$, die metten eyghen loop $B K$ onghelijck is: En daerom heet de felve booch $G H$ (daermen anders oock wel voor neemt den houck BE K of G EH) des Dwaelders ichijnbaerloop.

## VERVOLGH.

Deur dit voorbeelt van fchijnbaer Dwaelder en fijn fchijnbacr joop met felling eens uyımiddelpuntighe wechs, is cock derghelijcke openbaer met felling eens inronts.

Voort, deurt'ghenehier ghefeyt is van fchijnbaer Dwaelder en fchijnbaer loop, is kennelick genouch watmen verftaen fal met fchijnbaer booch, fchijnbaer verttepunt als F, fchijnbaer naettepunt als I, en dierghelijcke, welcke hier na alft de fake vereyfchtghenoemt fullen worden.

16 BEPA .

## 14th DEFINITION.

The first semi-circle of the orbit I call the arc from the apogee to the perigee, in the order of the degrees, i.e. from the beginning to 180 degrees; the other arc, second semi-circle.

## 15th DEFINITION.

Apparent Planet is a point where it appears to be, but is not in reality, and Apparent Motion is an arc through which it appears to move, but does not move in reality.

Let $A B C$ denote the Planet's orbit, whose centre shall be $D$, and $E$ the Earth, about which as centre let there be described the Ecliptic FGH. Further let there be drawn through $E D$ the ecliptic's diameter FI, intersecting the Planet's orbit in $A$ as apogee and in $C$ as perigee. And let the Planet be in the orbit at the point $B$, through which is drawn from $E$ the straight line $E B G$. This being so, the Planet, which is in reality at $B$, will, viewed from the Earth $E$, appear to be in the ecliptic between the fixed stars at $G$, and on this account this point $G$ is called apparent Planet. But if it moves on from $B$, I assume to $K$, and through $K$ there be drawn the straight line $E K H$, the Planet, which has in reality moved through the $\operatorname{arc} B K$, will, viewed from the Earth $E$, appear to have moved through the arc $G H$, which is different from the proper motion $B K$. And on this account this arc GH (for which is sometimes also taken the angle $B E K$ or $G E H$ ) is called the Planet's apparent motion.

## SEQUEL.

From this example of an apparent Planet and its apparent motion on the assumption of an eccentric orbit the same is also evident on the assumption of an epicycle.

Furthermore, from what has been said here about the apparent Planet and apparent motion it is sufficiently obvious what is to be understood by apparent arc, apparent apogee, e.g. F, apparent perigee, e.g. I, and the like, which will be mentioned hereinafter, when required.

16 BEPALING.

Middeldvvaelder is een verdocht punt inden duyfteraer cenvaerdelick voortgaende, en altijt ant fchijnbaer verftepunt vivefende, als den vvaren Dvvaelder gheeninront hebbende an fin vvechs verftepunt is: Maer een inront hebbende, als des felfden inronts middelpunt ant verftepunt is: En fijn loop heet middelloop.

Als by voorbeelt wanneer den Dwaelder inde form der is bepaling is ant verftepunt $A$, foo iffer een verdochr puntant fchijnbaer verftepunt Falrijt cenvaerdelick voortgaende,fulcx dat wanneer den waren Dwaelder weerom ghecommen is ant verftepunt A, ghedaen hebbende cen volcommen keer, foof dat punt commen fijn an t'fchijnbaer verftepunt, oock ghedaen hebbende cén volcommenkecr, met foo veel meer als daerentruffchen het fchijribaer verflepunt geloopē heeft: Sulck punt heetMiddeldwaelder,en fijn loop middelloop: De felve hier verclaert fijnde op den tijt eens volcommen keers des waren Dwaelders, wy fullen om alles noch breeder uyt te legghen, voorder verclaring doen op deel eens keers; tot welckeneinde ick aldus fegh : Den waren Dwaelder ghecommgn fijnde ick neem van $A$ tot $B$, foo fal den middeldwaelder volghende tgheftelde daerentuffchen gheloopen hebben een booch ghelijck met A B, welcke fyFL (te weten I foo gheftelt, dat E L evewijdeghe fy met D B) en noch foo veel meer als daerentuffchen den loop des fchijnbaer verftepunts bedraecht,' t'welck fy van $M$ tot $F$ : Inder voughen dat $M L$ is den middelloop overcommendein tijı met des waren Dwaelders wechloop AB, en heet mid. delloop, uyt oirfaeck dat foodanighe even loopen middelmatich fijn tuffehen de fchijnbaer raffcher en tragher.

Deur dit voorbeelt van Middeldwaelder en middelloop met telling eens dwaelderwechs, is oock derghelijcke openbaer met ftelling eens inronts, want nemende des inronts middelpunt als voor Dwaelder, foofalalighene vooren ghefeyt is daer op overcommen.

## 17 BE PALING.

Voordering is t'ghene den wvaren Dvvaelder in den duyfteraer fchijnbaerlick voorder is dan den Middeldvvaelder:En*achtering t'gene hy fchijnbaerlick meer achtervvaert is. Fin defer tvvee ghemeene naem vvort
Proflephe* voorofachteringh ghefeyt.

Als by voorbeelt den waren Dwaelder inde form der is bepaling geloopen hebbende van $A$ tot $B$, en fchijnbacrlick fijnde an $G$, foo fal daerentuffich den Middeldv̌vaelder geloopen hebbėde booch FL gelijck met A B:Twelck foo wefende, dé Dwaeider is in dé duyfterier an $G$ fchijnbaerlick meer achterwaert dan den Middeldwaelder L, foo veel als de booch G L, en daerom heet de felve booch $G$ L achtering, welcke achtering overal int cerfte halfront des wechs

## 16th DEFINITION.

Mean Planet is an imagined point which moves uniformly in the ecliptic and is always at the apparent apogee when the true Planet, if it has no epicycle, is at its orbit's apogee; but if it has an epicycle: when the centre of this epicycle is at the apogee; and its motion is called mean motion.

Thus, when in the figure of the 15 th definition the Planet is at the apogee $A$, there is an imagined point in the apparent apogee $F$ which always moves uniformly, so that when the true Planet has returned to the apogee $A$, and has performed a complete revolution, this point will have arrived at the apparent apogee, having also performed a complete revolution, with the addition of the distance meanwhile passed through by the apparent apogee. This point is called Mean Planet, and its motion mean motion. This having been expounded here with regard to the time of a complete revolution of the true Planet, in order to set forth everything even more fully we shall give a further explanation with regard to part of a revolution, to which end I say as follows. When the true Planet has come, I assume, from $A$ to $B$, according to the supposition the Mean Planet will meanwhile have passed through an arc similar to $A B$, which shall be $F L$ (to wit, $L$ being so placed that $E L$ shall be parallel to $D B$ ), with the addition of the distance meanwhile passed through by the apparent apogee, which shall be from $M$ to $F$. In such a manner that $M L$ is the mean motion corresponding in time to the distance $A B$ passed through by the true Planet, and it is called mean motion because such uniform motions are the mean between the apparently faster and slower ones.

From this example of the Mean Planet and mean motion on the assumption of a Planet's orbit the same is also evident on the assumption of an epicycle, for when we take the epicycle's centre for the Planet, all that has been said above will apply thereto.

## 17th DEFINITION.

"Voordering" (advance) is the amount by which the true Planet is apparently in advance of the Mean Planet in the ecliptic, and "achtering" (lag) is the amount by which it apparently lags behind. And the common name of these two is "voorofachtering" (advance-or-lag 1).

Thus, when in the figure of the 15 th definition the true Planet has moved from $A$ to $B$ and is apparently at $G$, meanwhile the Mean Planet will have passed through the arc $F L$, similar to $A B$. This being so, the Planet in the ecliptic at $G$ apparently lags behind the Mean Planet $L$, as much as the arc $G L$, and for this reason this arc $G L$ is called lag, which lagging takes place all through

[^6]wechs ghebeurt. Maer alsfulcx met voordering valt, ${ }^{\prime}$ 'welck overal int tweede halfrondt ghefchiet, men noemet voordering, en foodanighe twee int gheghemeen voorofachtering.

Merckt noch datmen foo wel den houck D B E,als de booch G I, achtering des Dwaelders noemt, om dat de ghetalen haerder tr. even fijn, uyt oirfaeck dat $G$ L booch is des houcx $G$ E $L$, even fijnde met $D$ B E.

Tot hier toe is voorbeelt befchreven vaneen Dwaelder in een wech loopende, maer bovë dien een inrondt hebbende, hy heeft iweederley voorofachtering, d'eene van wegen fijn inrondts middelpunt, t'welck een voorofachtering ontfangt van ghedaente ghelijck de bovefchreven des Dwaelders in fijn wech, d'ander van wegen fijn loop int inrondt, en de voorofachtering veroitfaecki deur defe twee voorofachteringen t'famen; wortint gemeen des Dwaelders voorofachtering ghefeyt.

Laet tot breeder verclaring inde form det 7 bepaling den Dwaclder int in. rondt fijn an $N$, alwaer hy benevens de achtering diehy van weghen fijninrondıs middelpunt ontfangt, voordering crijcht des houcx B E N , welck by dander D B E vervought (te weten vergaert alfe beyde eennamich fijnmaer van malcander ghetrocken verfcheennamich wefende als hier)datter uyt comt is des Dwaelders voorofachtering

Merckt noch t'ghetal der trappen des verftepuntenfooch als hier M K, of des naeftepuntenfbooch als I L, altijt t'overcommen met het getal der voorof= achtering vant middelpunt des inrondts als DBE, om dat IL befchreven is opt middelpunt $B$.

## 18 BEPALING.

Eerfte voorofachtering is die des middelpunts zantinrondt. Tvvcede voorofachtering die des Dvvaeldersint inrondt. Gheeffende voorofachtering die veroirfaeckt vvort deur t'vermenghen van d'ecrfte en tvveede.

Den' Dwaclder fonder intondt maer een voorofachtering hebbende, te we: ten die hy door de middeluytpunticheyt fijns wechs crijcht, en behoufi gheen onderfcheyden namen van eerfte tweede noch gheeffende voorofachering defer bepaling, welcke allcen de Dwaelders toecommen in inronden loopende, wiens certte en tweede beyde voordering fijnde, haer fomme is gheeffende voordering, ende beyde achtering wefende, haer fomme is gheeffende achtering, maer d'een voordering d'ander acheering fijnde, foo is haez verrchil mette naem van tgrootte ghetal der twee de gheeffende voorofachtering.

## 19 BEPALING.

Tghene deen Dvvaelder opeengheftelde tijt voorder loopt als d'ander, of daer op vvint, vyort $\star$ Dvvaelder- mane \& vvinftgheheeten.

Defen tijt wort dickwils verfaen te beghinnen op de faming tweer Dwaelders, fulcx dat metre fchijnbaerbooch nai'vervolgh der trappen vandé traechAten
the first semi-circle of the orbit. But if this is positive, which happens all through the second semi-circle, it is called advance, and these two together, advance-or-lag.
Note also that both the angle $D B E$ and the arc GL are called lag of the Planet, because the numbers of their degrees are equal, owing to $G L$ being the arc of the angle $G E L$, which is equal to $D B E$.

Up to this point the example has been described of a Planet moving in an orbit; but if it also has an epicycle, it has two kinds of advance-or-lag, one cwing to its epicycle's centre, which receives an advance-or-lag of a similar nature to that described above with regard to the Planet in its orbit, the other owing to its motion on the epicycle, and the advance-or-lag caused by these two together is generally called the Planet's advance-or-lag.

With a view to a fuller explanation, in the figure of the 7th definition let the Planet be on the epicycle at $N$, where, in addition to the lag it receives owing to its epicycle's centre, it receives the advance of the angle $B E N$; when the latter is combined with the other, $D B E$ (to wit, added when they have the same sign, but one subtracted from the other when they have the opposite sign, as here), the result is the Planet's advance-or-lag.

Note also that the number of degrees of the arc of the apogees, such as here $M K$, or of the arc of the perigees, such as $I L$; always corresponds to the amount of the advance-or-lag of the centre of the epicycle, such as $D B E$, because $I L$ has been described about the centre $B$.

## 18th DEFINITION.

The first advance-or-lag is that of the centre of the epicycle. The second advance-or-lag is that of the Planet on the epicycle. The total advance-or-lag is that which is caused by combining the first and the second.

The Planet without an epicycle, having only one advance-or-lag, to wit, that which it receives owing to the eccentricity of its orbit, does not need the different names of first, second or total advance-or-lag of this definition, which are only to be assigned to the Planets which move on epicycles; when its first and second are both advances, their sum is the total advance, and when both are lags, their sum is the total lag; but when one is an advance and the other a lag, their difference, with the sign of the larger of the two, is the total advance-or-lag.

## 19th DEFINITION.

That by which one Planet moves in advance of another in a given time, or gains thereon, is called the Planet's gain.

This time is frequently understood to begin at the conjunction of two Planets,

I VOORSTEL.

Te verclaren hoet fchijnt dat de Menfchen eerft begoften tot kennis vande loop der * Dvvaelders te gheraken, Plannarumt. of daer toc fouden meugen beginnen te commen, fooder gantfch gheen afen vvaer.

WAnt het kennelick is datmen om een conft wel engrondelick te verfaen, behoort an te vanghen met haer uyterte beginfelen: Soo fal ick mijn ghevoclen fegghen hoet fchijnt dat fy deden die eern begoften de ghedaenten des Dwaelderloops te leeren, of hoemen foude meughen doen datter gantichelick niet af befchreven en ware. Om dan van defe Hemeliche fof cert deur aerifche by voorbecltte fpreken, ick fegh dat gelijck ymant die in Caert wil brenghen een Lantchap dat noyt caetriche wijfe gheteyckenten was, of daer hem gheen teyckening noch onderrichting af ter handt ghccommen en is,foude moeten het Landifchap of felf dadelick befien, of feker onderricht hebben vande gene diet dadelick gefien hadden : Alfoo eenen die de manier des loops der Dwaelders wil verfaen en befchrijven, moet ecrft haer loop of felf ghefien hebben, of daer af fekerlick onderricht fijn van hemlien djet deur dadelicke ervaring weien: En fulcx bebben de voorganghers ghedaen, welcke alfoofe eerrijits ernfeclick galloughen de plaetfen der Hemelfche lichten, ende fiende tuffihen de groote menichte der vafte ferren, beneven Son en Maen noch feker vijf beweeghlicke, diens loop int uyterlick anfien feer ongheregelt fcheen, nu ras, dan గap, fomwijlen fili faen, en ettelicke macl te rugh keeren, fy hebben hun begeven tottet onderfoucken der oirfaken dier ongeregeltheyt, beginnende metdaghelicx feer nau ga te faen, en op te teyckenen haer fchijnbaet plaetfen tuffchen de vaftefterren, oock Maen duyfteringhen, en Sonduyfteringhen, met haer omflandighen, als tijt van haer begin tottet eynde, hoe groot $i$ 'verduytterde deel was,en op welcke fijde verduyftert, onder wat dayteraerlangde en breede ${ }^{\prime}$ middel der duyftering ghefchiede, en tot wat plaets des Eercloois fy dat gageflaghen hadden. Het ftreckte oock tot noch meerder fekerheyt des handels, op te teyckenen den tijt met ander omftandighen vande duyfteringhen der vafte ferren, te weten als fy die vande Dwaelders bedeckt faghen, en oock de duyfteringhen van d'ander Dwaelders onder malcander. uyt de bovefchreven Cchijnbaer plaetfen der Dwaelders, merckten fy haer daghelickiche veranderingen in langde en breede, welcke fy dachtafelfche wijfe opreyckenden, daer by noch voughende de bovefchreven anclevin. ghen van der Dwaelders duyteringen: En creghen alfoo de nacommelinghen metuer tij, benevens haer eygen gageflagen dachtafels, oock die haerder voorgangers van feer veel jaren : Inde felve hadden fy bequame middel om de ghedaente des eyghen loops der Dwaelders t'onderfoucken, ghelijck oock fouden ghehadt hebben Hypparchus, Ptolemeus, en hun nacommers, by aldienfe 'haerder hande ghecommen waren.
Maer verloren blijvende, en federt gheen ander foo ghemaeckt wefende als de faeck vereylcht, ick fal om defen handel te verclaren, in die plaets nemen ee-1 nighe berekende nu in druck uytgaende, als die van Stadius, want hoewelfe op effentijt berckent fijn:daermen de ervarings dachafels op oneven of natuerlicke mackkr, en darfe daer benerens nier genouch mette faeck en oversommen,
so that by the apparent arc, in the order of the degrees, from the slowest Planet to the fastest the Planet's gain is generally denoted, which is calculated with mean as well as true Planets.

## 20th DEFINITION.

When two luminaries have the same apparent ecliptical longitude, they are said to be in conjunction. But when they differ by an apparent semi-circle: in opposition.

## 21st DEFINITION.

The Mean Planets' conjunctions and oppositions are called the Planets' mean conjunctions and mean oppositions.

## 22nd DEFINITION.

Empirical ephemerides of the Planets are tables in which are described in regular order, from day to day, the positions of the Planets as they have been found in practice by means of suitable mathematical instruments, with the times of their conjunctions, both with the fixed stars and among themselves, further their related phenomena, such as eclipses, size of the eclipsed part, on which side they are eclipsed, when the eclipse begins, when it ends, and the like.

## 23rd DEFINITION.

Calculated ephemerides of the Planets are tables which are calculated by means of knowledge of the Heavenly Motions, in which are described in regular order, from day to day, the positions of the Planets as they are expected to be in the future; further eclipses of Sun and Moon, with their related phenomena.

Such calculated ephemerides are now frequently printed, e.g. those of Jobannes Stofflerus, Erasmus Rbeinoldus, Leovitius, Stadius, Maginus, Martinus Everarti, and the like 1).
${ }^{1}$ ) Johannes Stöffer (Blaubeuren 1452-ibid. I531), professor of mathematics at Tübingen. Author of the Tabulae Astronomicae (Tubingen I 500 and I514). Jointly with Pflaum he published ephemerides of the planets for 1499-1531: Almanach Nova (Ulm, 1499). Later he published alone the sequel: Ephemeridum opus . . . a capite anni 1532 in alios 20 proxime subsequentes. . e elaboratum (Tübingen, 1531 and subsequent editions in 1533 and 1548 ).
Erasmus Reinhold the Elder (Saalfeld 151 1-ibid. 1553), professor of mathematics at Wittenberg. Shortly after his ephemerides for $1550-155$ I (Tübingen, 1550) appeared his celebrated Prutenicae Tabulae coelestium motuum. (Tübingen 155 I and several subsequent editions up to 1585), dedicated to the Duke Albrecht von Preussen. They were based on the work of Copernicus and remained the best until the publication of the Rudolphine tables; they formed the basis for the Gregorian reform of the calendar.

Cyprian Leowitz (Leowitz in Bohemia 1524-Lauingen 1574), mathematician to Count Otto Heinrich, author of Ephemeridum novum atque insigne opus ab A. ${ }_{555}$-1606 accuratissime supputatum (Augsburg 1557).
Johannes Stadius (Leonhout near Antwerp 1527-Paris 1579), professor of mathematics at Louvain and Paris, author of Ephemerides novae et exactae ab A. 1554 ad A. 1570 (Cologne 1556 ; later editions up to 159I contain an extension up to the year 1606). They were based on the Prutenicae Tabulae.
Giovanni Antonio Magini (Padua 1555 -Bologna 1617), professor of mathematics, physics and astronomy at Bologna, author of Ephemerides coelestium motuum ab A. 158 I -

# EERSTE <br> ONDERSCHEYT <br> DESEERSTEN <br> BOVCX,VANDE VIN- <br> ding des Sonloops deur <br> ervarings dachtafels. 

Eer ick comme totte Sonloop int befonder, falbefobrijuen t'volghende eerfte Voorfel vande vinding der Dvovalderloopen baer en dander int ghemeen angaende.

## 24th DEFINITION.

The period of revolution of a Planet we call the time in which from a great multitude of observed revolutions is found the velocity of the motion in each circle in a known time.

NOTE.
The ecliptic, like the equator and other circles, will here be divided into 360 degrees, without using the twelve signs, each of 30 degrees, or their names as used of old, the reason of which I will set forth in the Appendix to these Heavenly Motions ${ }^{1}$ ).

[^7]
## DES HEMELIOOPS.

 ronden, ghevonden vvort de rafheyt yan yder rondts loop op bekende tijt.
## MERCKT.

Den duyfteraer fal hierghelijck den evenaer en meer ander ronden, ghedeelt worden in 360 trappen, fonder twaelf teyckens te ghebruycken elck van 30 tr . of namen van dien na d'oude ghewoonte, wàer af ick de reden inden Anhang defes Hemelloops verclarenfal.

## FIRST CHAPTER

## OF THE FIRST BOOK

Of the Finding of the Sun's Motion by Means of Empirical Ephemerides

Before I come to the Sun's motion in particular, I will describe the following first Proposition of the finding of the Planets' motions, relating to her and the others in common.

Bepalinghen
ften Dwaelder totten fnelften, int ghemeen Dwaelderwinft beteyckent wort, welcke men foo wel berekent met middeldwaelders als ware.

20 B EPALING.
Tvvee vveereltlichten een felve fchijnbaer duyfteraerCorjumfio. langde hebbende vvorden in $\star$ famingghefeyt. Maer cen ocoppofiame. fchijnbaer half rondt verfchillende, in ${ }^{*}$ tegheftant.

2I BEPALING:
Der Middeldvvaelders faminghen en tegheftanden ${ }^{\text {carimfio }}$. vvorden haer* middelfaminghen ende middeltegeftan-
 $\underset{\substack{\text { dition } \\ \text { dir. } \\ \hline}}{ }$

22 BEPALING.
Ervarings dachtafels der Dvvaeldersfijn vvaerin oirdentlick van dach tot dach befchreven ftaen de plaerfen Infrumensa der Dvvaelders foomenfe deur* vvifonftuygen daer toe ${ }_{\text {cal }}$ matemait- bequaem dadelick bevonden heeft, met tijt haerder faminghen, foo mette vafte fterren als onder malcander, voort haeranclevende alsduytteringhen, grootheytdes verduyftert deels, over vvelcke fijde verduyftert, vvanneer beginnende, vvanneer cindende, en dierghelijcke.

## 23 BEPALING.

Ephmeri- Berekende dachtafels der dvvaelders,fijn die deurkendes. nis des Hemelloops berekent voordé, vvaer inoirdentlick van dach tot dach befchreven ftaen, der Dvvaeldersplaetfen, foo men meynt datfe in toccommende tijden fijn fullen: Voortduy fteringhen van Sonen Maen, met haer anclevende.

Sulcke berekende dachtafels gaen nu veel in druck ayt, als van Toannes Stoffec rus, Erafmus Rbeinoldus, Leovitius, Stadius, CMaginus, Chartinus Everarti, en dierghelljicke.

24 BEPALING.

$\underset{\substack{\text { Tempupec } \\ \text { rodicem. }}}{ }$ Keertijt eens Dvvaelders noemtmen, in vvelcke deur rodicm. een groote menichteder gagheflaghen keeren van fijn ron-

## 1st PROPOSITION.

To set forth how man first seems to have begun to acquire knowledge of the motions of the Planets, or might begin to acquire it, if there were none at all.

Because it is obvious that, in order to understand a science well and thoroughly, one should start with its first principles, I will give my opinion how it seems that those proceeded who first began to learn the nature of the planetary motions, or how one might set about it if there were no description of it at all. In order first to speak of these heavenly matters by means of terrestrial examples, I say that just as a man who wishes to map out a region of which no map has ever been drawn or of which no drawing or report has come into his hands, would either have to inspect the region actually himself or to have reliable information from those who had actually inspected it: thus a man who wants to understand and describe the manner of the motion of the Planets must either first have seen their motion himself or must have been reliably instructed on it by those who know it from practical experience. And this is what our predecessors did, who - when formerly they seriously observed the positions of the heavenly luminaries and saw, among the great multitude of the fixed stars, besides the Sun and the Moon at least five more moving stars, whose motion to all outward appearance seemed very irregular, now fast, now slow, sometimes stopping, and several times returning - started to examine the causes of this irregularity, beginning by observing every day very closely and noting their apparent positions among the fixed stars, also Lunar eclipses and Solar eclipses, with their circumstances, such as the time from their beginning to their end, how large was the eclipsed part and on which side it was eclipsed, at what ecliptical longitude and latitude the middle of the eclipse took place, and in what place on the Earth they had observed this. It also tended to greater certainty in the treatment to note the time and other circumstances of the eclipses of the fixed stars, to wit, when they saw them covered by the Planets, and also the eclipses of the other Planets among themselves. From the apparent positions of the Planets described above they noted their daily changes in longitude and latitude, which they recorded in the manner of ephemerides, adding thereto the circumstances described above, of the Planets' eclipses. And thus, in due time, the successors obtained, besides the ephemerides observed by themselves, also those of their predecessors of a great many years. In these they had suitable means for examining the nature of the true motion of the Planets, as Hipparchus, Ptolemy, and their successors would also have had, if these had come into their hands.

But because these remained lost and no others have since been made such as the matter requires, in order to set forth this subject I will take instead some calculated tables, now printed, namely those of Stadius ${ }^{1}$ ); for though they are calculated for exact time, whereas empirical ephemerides are made for unequal or natural time, and though moreover they do not agree sufficiently with the facts,

[^8]
# MAECKSELDESTAFELS <br> VANDE MIDDELLOOP <br> DER SON. 

V
ANDE bovefchreven loopeensdachs,dats van 24 uyren doende 59 (1) 8.17.13.12.31.
Ghenomen het $\frac{1}{24}$, comt voor 1 uyr 2 (1) 27.50.43. 3. 1. Diens dobbel voor 2 uyr 4 (1) 55.41 .26 . 6. 2. Ende foo voortgaende men crijeht den loop van al d'ander uyren tot 23 toc: Daer na tot den loop van een dach, vergaert den loop van noch een dach; men heeftre van twee: Ende foo vervolghende men crijchtfe van mecr dagen, oock van Egipfche jaren tot 810 , ghelijckfe inde nabefchreven tafel faen.

## $\mathrm{B}_{4}$

on the one hand owing to miscalculations, on the other hand because the Heavenly Motions are not sufficiently known, yet by way of example it will be permissible to explain therewith my intention: to wit, how firstly the Planets are supposed to move on eccentric circles, and some moreover on epicycles. Secondly, how thus the Planets' mean motions are found. Further the apparent ecliptical longitudes of the apogees or perigees of the orbits and epicycles.

The Planets' motions thus far being roughly known by means of simple intelligible reasons, I will thereafter, in the second book and the others, proceed to examine this matter by mathematical means, in the order set forth in the Summary of the Heavenly Motions. For though the above things are now at once examined after the manner of Hipparchus, and as they came into Ptolemy's hands and were left to us by them (for which we owe them thanks), to wit by certain mathematical operations, based on three observed apparent ecliptical longitudes of a Planet, it is natural to suppose that the first investigators did not begin in this way, but that many other things had to precede, from which people learned that the observation of this would tend to produce a sure basis of knowledge of the Heavenly Motions, further that those mathematical operations were thereupon added to the others for greater completeness and certainty. And thus I will also describe them, after the matter has first been understood by means of empirical ephemerides. Note also that since to outward appearance the Earth seems to stand still and the beginning of the knowledge of the Heavenly Motions started from this assumption, and also begins thus more suitably and understandably, we shall imitate this here, describing on this basis the first and the second book, but in the third the Heavenly Motions on the natural assumption of a moving Earth.

Further it is to be noted that the description of the Heavenly Motions, as it came into Ptolemy's hands, according to his own reports was very simple, namely, the motion of the Moon, like that of the Sun, in an eccentric circle and the other Planets only in eccentric epicycles. But Ptolemy, being of opinion that this was not sufficiently in agreement with his actual experience; combined the theory devised by him for this purpose with the above-mentioned simple assumption and wrote a treatise about it. The same was also done by Copernicus on the assumption of a moving Earth. But I will not here follow this mixed method, but will describe the Heavenly Motions only on the first simple assumption, so that we may first have it as it came into Ptolemy's hands; and with those inequalities devised afterwards, which are unnaturally obscure, and are erroneous, I will deal in particular in an Appendix, in order that it may appear all the more clearly to the pupil what is sought for in the improvement of the Heavenly Motions, thus to be able to strive on a firmer basis after more suitable theories, because this appears to me the most suitable method for making his PRINCELY GRACE understand in the shortest possible time and with the greatest clearness what is known to me about the motions of the Planets, and also for showing manifestly how needful are empirical ephemerides and Observers for acquiring such knowledge of this science as existed in the Age of the Sages.

## NOTE.

Before I go on, I will also say this: to wit, that my intention is not to prove with great certainty the Planets' future true positions, but only to set forth the
brack den tijt des loops van 29 (1): Om welcke te vinden, ick fie inde dachtafel dat de Son doen op een dach liep 59 (1), daerom fegh ick, 59 (1) gheven 24 uyren, wat de bovefchreven 29 (1) ?comt alfvooren in uyren 47 (1) 48 (2). Nu vanden in maerte int jaer $15 \$ 4$, totten 10 Macrte 11 uyr 47 (1) 48 (1) int jaer 1606, fijn ghefchiet 52 keeren, waer over de Son gheloopen hecft 18992 daghen 11 uyren 47 (1) $4^{8 \text { (2) ( }}$ (te weten 22 mael 365 min 1 (ick fegh min 1 om dattet is vanden 11 Macrte totten 10 Maerte) dats 18979 , met noch 13 dagen der 13 (chrickeljaren, die in Februarius vervought worden) Dit (oo (jjnde, ick fegh, 52 keeren duyren 18992 dagen 11 uyren 47 (1) 48 (3), hoc langh fal i keer duyren? Comt voor de begheerde lanckheyt des jaers na defe rekening, $36 \rho$ daghen suyren 45 (1) ss (2).

Tbesivyt. Wy hebben dan deur ervarings dachtafels de lanckheyt des natuerlick jaersghevonden, na den eyfch.

## 3 V OORSTEL.

De Sonnens middelloop op een ghegeventijt tevinden, en daer afeen tafel te befchrijven.

I M ERCK.

Int 2 Voorftel is ghefeyt bet jaer bevonden te wefen van 365 daghen 5 uyren 45 (1) ss (2), waer op men als gront foude moghen voortvaren, int maken van nieurve tafels des middelloops der Son: Doch want my trelve moeylick foude vallen, dat oock daerbenevens dit befluyt vande lanckheyt des jaers (ghelijck oock alleander na den wijfentijt) weynich fekerheyts heeft, en dat alles maer voorbceltfche wijfe en ghefchiet, om de redenen van dies breeder verclaert int i voorftel, foo fal ick om fulcke moeyte te fchuwen, nemende lanckheyt des jaers by Ptolemeus befchreven, en de tafelen by hem daer op berekent. Defe lanckheyt des jaers heeft hy na de wijfe alfvooren bevonden van 365 daghen $s$ uyren $5 s$ (1) 12 (2), die in ander verdeeling fonder uyren te noemen, doen 365 daghen 14 (1) 48 (2), ofie anders $365 \frac{37}{150}$ daghen.

En fulce als hier in dit merck ghefeyt is vande Sonloop, derghelijeke falint volghende cock alfoo ghedaen worden met Ptolemeus tafels der middelloopen van d'ander Dwaelders, die ick nemen fal in plaets van nieuwe te maken.
Tghegeven. Het isden tijt van cen dach. Tbegheerde. Men wil daer op de Son nens middelloopgevonden hebben. TwERCK. lck fegh, op $365 \frac{37}{150}$ daghen, loopt de Son 360 tr. deur het 1 merck defes voorftels, wat op 1 dach : Comt voor t'begheerde $59 .(1) 8.17$.13.12.31.

## 2 MERCK.

Wy hebben hier een roorbeclt gheftelt, int welcke de Sonnens eyghenloop eens dachs ghevonden wert door een reghel van drien, waer me kennelick is hoemen deur derghelijcke wercking, de Sonloop feude vinden van alle ghegheven tijt, maer want die wercking moeyelick valt, ende dat boven dienons fulcx in delen handel dickwils te vooren comt, foo wordender tafels ghemacekt, om van alle onimoetende tijt den loop met lichticheyt te vinden, welck macekfel ick befchtijven fal als volght.

MAECK.
manner of their motion, taking the examples that are most appropriate, either certain or uncertain, because in my opinion the treatment as a whole does not have a sufficiently firm basis, on account of the unknown second inequalities, and requires a new and more certain foundation, which it will not be possible to lay so soon, on the one hand because there is no nation whose members together practise this science very earnestly in their native language, and further because there cannot be found as many observers as are required for the matter, as has been stated more fully in the 6th definition of the first book of Geography. Secondly, because such an improvement also takes time.

CONCLUSION. We have thus set forth how men first seem to have begun to acquire knowledge of the motion of the Planets, or might begin to acquire it, if there were none at all; as required.

## 2nd PROPOSITION.

To find the length of the natural year by means of empirical ephemerides.
The work is suitably started by investigating the length of the natural year, because a certain well-defined time is needed in which the motions of all the Planets and the Heavenly Bodies are calculated. To come to the matter, it is necessary, in order to understand the sequel easily, to have the above-mentioned ephemerides of Stadius, or others instead for that matter, which we use as if they were empirical ephemerides, for without them everything would be more obscure. These tables therefore being to hand, I seek in some one year - I take the first, which is the year 1554 - at what noon the Sun was nearest to the Vernal Equinox, and find on 11th March, for then it was at $359^{\circ} 59^{\prime}$, which is only $1^{\prime}$ from the Vernal Equinox. I then seek in the following year 1555 when the Sun was again at the above $359^{\circ} 59^{\prime}$, and find 11th March, after noon at 5 h 36 m , for at noon according to the ephemeris it was at $359^{\circ} 45^{\prime}$, so that the time of the motion of $14^{\prime}$ is still wanting. In order to find this, I see in the ephemeris that the Sun then moved in one day $1^{\circ}$, that is $60^{\prime}$; therefore I say: $60^{\prime}$ give 24 hours, what do the above $14^{\prime}$ give? This gives, as above, 5 h 36 m . But from 11th March 1554 to 11th March 1555 there are 365 days; therefore, according to this calculation the length of the year would be 365 d 5 h 36 m .
This has thus first been calculated by way of example for the motion of one revolution of the Sun in order that everything may be understood more clearly and thoroughly. But since the certainty is greater for many revolutions or years than for one or few (for one hour's error on a thousand years only makes $1 / 1000$ hour on a year, whereas one hour's error on one year amounts to a whole hour for every year), we shall now take for this as many years as there are in the ephemerides.
I then seek in the last year, which is 1606 , when the Sun was again at $359^{\circ} 59^{\prime}$, and find 10th March, after noon, at 11 h 47 m 48 s , for at noon it was at $359^{\circ} 30^{\prime}$, so that the time of the motion of $29^{\prime}$ was still wanting. In order to find this, I see in the ephemeris that the Sun then moved in one day 59'; therefore I say: $59^{\prime}$ give 24 hours, what do the above $29^{\prime}$ give? This gives, as above, 11 h 47 m 48 s . Now from 11th March of the year 1554 to 10th March at 11 h 47 m 48 s of the year 1606, 52 revolutions have taken place, which the
deware plaetfen, maer alleen te verclaren de manier des loops, nemende voorbeelden die beft te pas commen, ghewis of onghewis, uyt oirfacek dat den handel int gheheel na mijngevoelen om der orbekende twcedc oneventbeden wille, alfnugheen ghenouchfaem vafte gront en heeft, en een nieuwe ghewiffer vereyfcht; die foo haeft niet gheleyt en fal connen worden, eenfdeels om datter geen geflacht van volck en is die in hacr aengeboren tael hun heel cenflicick daer in t'famen oeffenen, en vervolghens nier foo veel Gaflaghers en cornen ghevonden worden als de faeck vereyfcht, ghelijck daer af breeder ghefeyt is onder de 6 bepaling des eerften boucx vant Eertclootichrif. Ten anderen dat bovendien fulcke verbetering oock tijt vereyicht.

TBes LVy T. Wy hebben dan verclaert hoet fchijnt dat de menfchen eerft begofen tot kennis vande loop der Dwaelders te gheraken, of daer toc fouden meughen beghinnen te commen, foeder gantich gheen af en waer, na den cyich.

## 2 VOORSTEL.

## Deur ervarings dachtafcls de lanckheyt des natuerlick jaers te vinden.

Men beghint billichlick mettet onderfoucken derlanckheyt des natuerlick jacrs,omdatmen een feker bepaclde tijt behoufr, waer in alder Dwaelders en Hemelen loopen berekent worden, Op dat wy dan totie faeck commen, t'is noodich darmen om t'volghende lichelick te verftaen, hebbe de voorfchreven dachtafels van Stadius, of immersander in haer plaets, welcke wy nemen al oft crvarings dachtafels waren, want fonder die foude alles duyfterder vallen. De ielve dan by der handt wefende, ick fouck in eenich jaer, ick neem het cerfte, wefende t'jaeris 54 op welcke middach de Son de Ientine ten naeften was, en bevinde opten 1 I Maerte, want doen waffe onder den 359 tr. 59 (1), ${ }^{\prime}$ welck alleenlick i(1) vande Lentfne is. Ick fouck dace na opt volghende jaer'15s5, wannecrdeSon weerom was inden voorfchreven 359 tr . 59 (1), en bevinde den 11 Maerte na middach te s uyren 36 (1), want op den middach wafle na ruytwijfen des dachtafels inden $359 \operatorname{tr} 45$ (1), fulcx datter noch gebreect den tijt des loops van $\mathrm{I}_{4}$ (1): Om weicke te vinden ick fie inde dachtafel dat de Son docn op cen dach liep itr. dais 60 (1); daerom fegh ick, 60 (1) geven 24 uyren, wat de bovefchreven 14 (1) ? comt alfvooren 5 uyr 36 (1). Maer vanden in Miaert iss4, totten in Maert isss, fijn 36 s daghen, daerom t'jacr foude na die rekening dueren 365 daghen $s$ uyr 36 (1).

Dit is aldus cerft voorbeeltiche wijfe metten loop van een Son keer berekent, op dat allesclaerder en grondelicker verftaen worde. Maer anghefien men op vecl keeren of jaré, meer fekerheyt heeft dan op een of weynich (want op duyfent jaren een uyre ghemift, en maeckt op een jacr maer $\frac{1}{1 \times 0}$ uyrs, daer anders opeen jaer een uyr ghemift, voor t'felve cen yder jaer een heele uyr bedraecht) foo fullen wy nu daer toe foo veel jaren nemen alfer inde dachtafels dijn.
lck fouck dan opt laetfe jaer, wefende het 1606 , wanncer de Son wecrom was inden 3 s9tr. 59 (1), en bevinde den 10 Maerte na middach 11 uyr 47 (1) 48 © want op den middach waffe inden 359 tr. 30 (1), fulcx datter noch gheB 3 brack

Sun performed in $18,992 \mathrm{~d} 11 \mathrm{~h} 47 \mathrm{~m} 48 \mathrm{~s}$ (to wit: $52 \times 365$ minus 1 ) (I say minus 1, because it is from 11th March to 10 th March), that is 18,979 plus 13 days of the 13 leap years, which are added in February). This being so, I say: 52 revolutions take $18,992 \mathrm{~d} 11 \mathrm{~h} 47 \mathrm{~m} 48 \mathrm{~s}$, how long will 1 revolution take? According to this calculation the required length of the year is 365d 5 h 45 m 55 s .

CONCLUSION. We have thus found the length of the natural year by means of empirical ephemerides; as required.

## 3rd PROPOSITION.

To find the Sun's mean motion in a given time, and to describe an ephemeris thereof.

## 1st NOTE.

In the 2nd Proposition it has been said that the year has been found to be 365 d 5 h 45 m 55 s , on which basis we might proceed to make new ephemerides of the Sun's mean motion. But because this would be difficult for me, while moreover there is little certainty in this conclusion as to the length of the year (just as in all other things subsequent to the Age of the Sages), and everything is only done by way of example, for the reasons set forth more fully in the 1st Proposition, I will, in order to eschew this trouble, take the length of the year described by Ptolemy, and the tables calculated by him thereon. This length of the year was found by him in the above manner to be 365 d 5 h 55 m 12 s , which by another division, without mentioning hours, makes $365 ; 14,48,1$ ) or otherwise $365 \frac{37}{150}$ days.

And the same as has been said in this note for the Sun's motion will also be done hereafter for Ptolemy's tables of the mean motions of the other Planets, which I will take instead of making new ones.

SUPPOSITION. The time is one day. WHAT IS REQUIRED. The Sun's mean motion is required to be found. PROCEDURE. I say: in $365 \frac{37}{150}$ days the Sun moves $360^{\circ}$, by the first note of this proposition; what does it move in one day? The required value is $\left.0^{\circ} ; 59,8,17,13,12,312\right)$.

## 2nd NOTE.

We have here given an example in which the Sun's proper motion of one day was found by the rule of three, from which it is evident how by a similar operation the Sun's motion might be found in any given time, but because this operation is difficult, while moreover we shall often meet with it in this work, tables are made for easily finding the motion for any time that may occur, the construction of which tables I will describe as follows.

[^9]eenfdeels deur mifrekeninghen dieder vallen; ten anderen om dat den Hemelloop na niet ghenouch bekent en is, doch falt voorbeelfiche wijfe meughen beftaen, om daer me mijn voornemen te verclaren: Te weten hoemen voor teerfte vermoedt de Dwaelders te loopen in uytmiddelpuntige ronden, en ecnighe boven dien noch in inronden. Ten anderen hoemen daer deur vindt der Dwaelders middelloopen : Voort de Cchijnbaer duyfteraerlangden der verftepunten of naeftepunten van weghen en inronden.

Den Dwaelderloop dus verre deur platte vertanelicke redenen uytden rouwen bekent fijnde, foo falick daer na int tweede bouck en d'ander volghende voorder commen tottet onderfoucken defer ftof deur wifconflighen handel, na doirden int Cortbegrijpdes Hemelloops verclacrt : Want datmen de bovefchreven dinghen ten eerften begint te foucken na de wijfe van Hypparchus, en Ptolemeus ter handt ghecommen, en deur hemlien ons achtergelaren (daer wy hun danck af fchuldich fijn) te weten deur feker wifconftighe wercking, ghegront opeen Dwaeldersdrie gagheflaghen fehijnbaer duy feraerlangden, de natuerlicke reden fchijnt te willen dat d'cerfte onderfouckers daer me niet en begoften, maer dat veel andere dinghen voor moeften gaen, deur welcke men leetde dattet gaflaen van fulcx tot foo feker gront vande kennis des Hemelloops ffrecken foude, voort dat die wifconflighe werckinghen daer na tot meerder overvloet en fekerheyt by d'ander vervought wierden. En alfoo Gal ick die oock befchrijven, na dat de faeck eerft deur wercking met ervarings dachiafels verfaen fal ijin : Merckt noch dat nadien den Eertcloot int uyterlick anfien fchijnt filite flaen, en dat den anvang der leering des Hemelloopsop fulcke felling begoft heff, oock alfo bequamelicker en verfaenlicker begint, foo fallen wy t'felve hier na volghen, befchrijvende op fulcken gront het eerfle en tweede bouck, maer int derde den Hemelloop mette natuerlicke felling eens roerenden Eertloots.
Voort iste weren dat de befchrijiving des Hemelloops Ptolemeus ter hande gecommen, na fijn eygen feggen feer eenvoudich was, namelick de Maenloop; gelijck vande Son in een uytmiddelpuntichront,en dander Dwaelders alleenelick in uytmiddelpuntige intonden: Maer Polemeus achtende dat fulcs niet genouch met fijn dadelicke crvaringē overeen en quam, hecft de fiegeling deur hem daer toe verdocht, ghemengı mette voorfchreven eenvoudige ftelling, en daer af een werck gemaeckt : Sgelijcx heeft oock Copernicus op de felling eens roerendē Eertcloots gedaen: Doch ick en fal hier die vermengde wijfenict volgen, maer den Hemelloop met d'eerfte eenvoudige ftelling alleĕ befchrijvē,op dat wy die voor t'eertte alfoo hebbë,gelijckfe Ptolemeres ter handt quam, en van die naverdochte oneventhedé wefende onnatuerlick duyfter en gemift, fal ick in een Anhang befonderlick handelen, op dat voor den leerlinck te claerlicker blijcke watter inde verbetcting des Hemelloops gefocht wort, om alfoo op cen vafter voet na bequamer * fpiegelinghen te meughen trachten, want dit de bequaemfte wech is die my nu te voren comt, om op den cortfen tijt mette meefleclactheyt, fijn Vorstelicze Ghenade te doen verfaent ghene my vandê loop der Dwaelders bekent is, oock mede om opentlick te doê blijcken, hoe noodich ervarings dachiafels en $*$ Gaflagers fjn , om tot fulckenkennis defer conft te gheraken, alffer inden Wijfentijt af gheweef heeff.

## MERCKT.

Eer ick voorder comme fal nochdit fegghen : Te weten dat mijn voornemen niet en is metgroote fekerheyt te bewijfen der Dwaelders toecommende ware

## CONSTRUCTION OF THE TABLE

 OF THE SUN'S MEAN MOTION.If of the above-mentioned motion of one day, that is 24 hours, being $0^{\circ} ; 59,8,17,13,12,31$
there be taken $\frac{1}{24}$, we get, for 1 hour $0^{\circ} ; 2,27,50,43,3,1$
The double of this is, for 2 hours $0^{\circ} ; 4,55,41,26,6,2$
And, proceeding in this way, we get the motion of all the other hours, up to 23 . If thereupon to the motion of one day there be added the motion of another day, we have the motion of two days. And, proceeding in this way, we get it of more days, also of Egyptian years up to 810, as they appear in the following table.

## GHEBRVYCK DES TAFELS.

Laet begheert fijn de Sonnens eyghen loop op 879 Egipfche jaren 66 dagen 2 uyren. T'w ER CK. Sooinde tafel de 879 Egipfche jaren 66. dag. 2 uyr. metten middelloop van dien al in een reghel ghevonden wierden, wy fouden ten eerften den begheerden middelloop hebben, fonder eenighe vergaring van ghedeelten te behouven: Maer dat niet wefende, wy moeten verfcheyden fticken by malcander voughen die t'famen dat heel maken:Tot defen eynde neem ick ten eerften uyt de tafel de jaren die de begheerde 879 naeft fijn, als 810 , die ftellende met haer middelloop alleenelick tot (2) toe (als totte faeck ghenouch fijnde, om dat de reft dient tottet maeckfel der tafel, niet tottet ghebruyck van dien,fooint laettte deel der nabefchrevē waetfchouwing opt maeckfel der tafel, breeder verclaert fal worden) En de gheftalt der wercking fal dufdanich fijn:
810. jaren. 163 tr. 4. 12.

Nu ghebreken my noch 69 jaren, daer toe neem icker (hoe wel men die noch anderfins foude meughen nemen) 45 en 15 : Daer na 60 dag.en 6 dag. ende ten laetten de twee uyr : De felve altemael oirdentlick vervought onder de bovefchreven 810 jaer, ende alles vergaert nat'behooren, foofalde gheftalt der wercking fijn als hier onder.

| 810 jaer. | 163 tr. | 4. | 12. |
| ---: | ---: | ---: | ---: | ---: |
| 54 jacr. | 346 tr. | s2. | 17. |
| 15 jaer. | 356 tr. | 21. | 11. |
| 60 dag. | 59 tr. | 8. | 17. |
| 6 dag. | 5 tr. | 54. | 50. |
| 2 uyr. | 0 tr. | 4. | 560 |
|  | 931 tr. | 25. | 43. |

uyt defe 931 tr. ghetrocken al de heele ronden dieder in fijn elck van 360 tr. comt twee ronden, die ick verlaet, ende reft 211 tr. welcke metre reft doen 211 tr. 25 (1) 43 (2), doch verlatende de 43 (2), comt ten naeften voor den begheerden loop op den ghegheven tijt 211 tr. 26 (1).

Tbesivy t. Wy hebben dan de Sonnens middelloop op een ghegeven tijt ghevonden, en daer af een tafel befchreven, na den eyfch.

## WAERSCHOVWING OPT MAECK- <br> SEL DER TAFEL.

Hier valt te bedencken dat de tafel van een dach vermeerderende, vereyfcht ghemaeckt te worden altijt deur menichvulding of vergaring, ende niet deur deeling of aftrecking: Als by voorbeelt, my bekent geworden fijnde den loop van 18 jaren, doende 168 tr. 49. 52.9.9.45.0. foo ick daer me wil vinden den loop van 4 mael 18 , dats van 72 jaren, ick menichvuldighe den voorfchreven loop met 4 ,eñ comt (heele ronden verlaten) 315 tr. 9.28.36.39. o. o. T'welck alfoo deur menichvulding wel gaet, ghelijck boven ghefeyt is: Maer foo ons deur ander wech eerft bekent hadde geweeft de felven loop van 72 jaren, ende datmen deur verkeerde wech der voorgaende, dats deelende dien loop 3 is tr. 9. 28. 36. 39.0. o. deur 4, foude meenen te vinden den loop van 18 jaren, ten foude niet volgen, als blijckt, want fulck vierendeel den loop van 18 jaren niet uyt en brengr, ende dat om bekende oirfaken, te weren darmen al menichvul-
dighen-

## USE OF THE TABLE.

Let it be required to find the Sun's proper motion in 879 Egyptian years 66 days and 2 hours. PROCEDURE. If in the table the 879 Egyptian years 66 days and 2 hours, with the mean motion thereof, were all found in one line, we should at once have the required mean motion, without having to add together any parts. But this not being so, we have to add different parts which together form the whole. To this end I first take from the table the years which are nearest to the required 879 , namely 810 , recording them with their mean motion only to seconds (this being sufficient for the matter, because the rest serves for the construction of the table, not for its use, as will be set forth more fully in the last part of the caution to be given hereafter about the construction of the table). And the form of the procedure will be as follows:

810 years
$163^{\circ} 4^{\prime} 12^{\prime \prime}$
Now there are still 69 years short; for this I take (though one might also take them differently) 54 1) and 15. Thereafter 60 days and 6 days, and finally the two hours. When these are all placed in the right order below the abovementioned 810 years and everything is properly added together, the form of the operation will be as shown below.

| 810 years | $163^{\circ} 4^{\prime} 12^{\prime \prime}$ |
| :---: | :---: |
| 54 years | $\left.346^{\circ} 52^{\prime} 17^{\prime \prime} 2\right)$ |
| 15 years | $356^{\circ} 21^{\prime} 11^{\prime \prime}$ |
| 60 days | $59^{\circ} 8^{\prime} 17^{\prime \prime}$ |
| 6 days | $5^{\circ} 54^{\prime} 50^{\prime \prime}$ |
| 2 hours | $0^{\circ} 4^{\prime} 56^{\prime \prime}$ |
|  | $931^{\circ} 25^{\prime} 43^{\prime \prime}$ |

When from these $931^{\circ}$ I take all the complete circles which are contained therein, each of $360^{\circ}$, I get two circles, which I discard, and the remainder, $211^{\circ}$, which together with the rest make $211^{\circ} 25^{\prime} 43^{\prime \prime}$; but when I discard the $43^{\prime \prime}$, I get approximately $211^{\circ} 26^{\prime}$ for the required motion in the given time.

CONCLUSION. We have thus found the Sun's mean motion in a given time, and described a table thereof; as required.

## CAUTION ABOUT THE CONSTRUCTION OF THE TABLE.

It should be borne in mind that the table, progressing by days, requires to be made always by multiplication or addition, and not by division or subtraction. For example, when I have found the motion of 18 years, making $168 ; 49,52,9,9,45,0^{3}$ ), when I wish to find by means of this the motion of 4 times 18, that is of 72 years, I multiply the above-mentioned motion by 4 , and this makes (whole circles being discarded) $315 ; 19,28,36,39,0,0$. Which is thus done correctly by multiplication, as has been said above. But if by other means this motion of 72 years had first been known to us, and if by the converse method to the above, i.e. dividing that motion of $315 ; 19,28,36,39,0,0$ by 4 , we thought we might find the motion of 18 years, this would not follow, as is

[^10]dighende hecle ronden verlaet, diemen al deelende daer by foude inoeten docr., maer de felve onbekent fijnde en can niet bequamelick te wegheghebrocht worden. Tis oock openbact waerom dattet werck deur de bovefchreven deeling gheen hindernis en crijcht deur deeling des dach in uyren, ghelijckt oock en foude in de ghedeelten des tijts van 365 daghen, namentlick om dat daer in gheen heel ront encan wefer.

V
OORT, anghefien wy van cleender ghedeelten dan (1) als (E) (3) \& c . in dadelicke ervaringhen weynich of gheen fekerrheyt en helbben, als t'fijnder plaets verclaert is,fo mocht ymant dencken, waerom defe Sonloopen inde tafel cleender dan met (1) befchreven fijn tot (1) toe, te weten waerom datmen niet en feyde den loop eens dachs te wefen alleenelick van 59 (1), achterlatende de reft: Ofte waerom datmen even tot (1) comt, ende niet tot noch cleender gedeelté: De reden daer afcan deur t'voorgaende openbaer fijn: Want na dien der ouden voornemen was, te befchrijven een tafel van sio jaren, begrijpende 295650 dagen, ende dat de Sonloop der felve gevonden wort deur verlaming van foo veel dagelicfehe Sonloopen (want van elcke tijt des tafelshaer loop deur reghel van drien te vinden, als eensgedaen is int vinden des loops van i dach, men foude alfoo wel cen tafel meughen maken alleen tot (2) toe, maer fulck maeckfel foude veel te moeyelick vallen, als boven ghefeyt is) daer uyt foude volghen datter inde Sonloop vande voorfchreven 810 jaren, gemint foude fijn over de 29565omael 8(2) (dieder boven de 59 (1) fijn,bedragende over de 657 tr. Daerom de Sonloop der tafels in (1) te cinden en waer uyt cirfacck van fulcx niet behoorlick. Ende om de felve reden falmen oock verftaen, dattet niet behoorlick en waer die te einden in (2), (3), of (4), want in (4) cindende, ende eenighe (5) daer an ghebrekerde, ofte overfchietende, het foude inde groote tijden cenige (2) feyls connen geven, want 30 (4) genomen 2956so mael, maken over de 40 (2), welcke deur vergaring van verfcheyden gedeelten, feyl van eenighe (1) foude connen veroirfaken. Inder voughen dat in fulck anfien, de Sonloopen des tafels tot (5) fouden moeten commen,om int gebruyck van dien fcketheyt van (1) te hebben: Doch tot noch meerder gewifheyt,ende om Sonloopen te meughen berekenen op grooter tijden dan 8ıjaren,io hebben deouden, ghelijckt fchijnt, ot (6) gheconmen, ende met goede reden tot gheen cleender ghedeelten, als onnoodich fijnde.

## MERCKT.

Ghelijck hier een tafel gemaeckt is mette gevonden eygenloop der Son eens dachs; Alfoo fullen int volgende tafels gemaedt worden mette gevonden loop eens dachs van d'ander dwaelders, ende haer Hemelen : Doch wy en fullen aldaer noch manier des maeckfels, noch des ghebruycx van dien, befchrijven, als gelijck fijnde ande voorgaende. Men fal oock verftaen de bovefchreven waerichouwing over deghelijcke volghende tafelen ghemeen te wefen.

## VOORSTEL.

Deur ervarings dachtafels te vinden de fchijnbaer * duyfteraerlangde van des Sonvvechs verftepunt en Lamparane naeftepunt
apparent, because such fourth part does not give the motion of 18 years, such from well-known causes, to wit that, in multiplying, whole circles are discarded, which, in dividing, would have to be added thereto; but since they are unknown, this cannot be brought about adequately. It is also evident why the procedure of the above-mentioned division is not impaired by the division of the day into hours, just as it would not be in parts of the time of 365 days, namely because there cannot be a whole circle therein.

- Further, as we have little or no certainty in practical experience of parts smaller than $1^{\prime}$, such as higher-order sexagesimals, as has been set forth in its proper place, one might think why these Sun's motions have been described in the table in parts smaller than $1^{\prime}$, down to sixth-order sexagesimals, to wit, why it was not said that the motion of one day was only. $59^{\prime}$, discarding the rest. Or why we go precisely up to sixth-order units, and not to even smaller parts. The reason for this may be evident from what precedes. For as it was the intention of the Ancients to describe a table of 810 years, containing 295,650 days, and the Sun's motion therein is found by addition of as many daily Sun's motions (for by finding for each time of the table its motion by the rule of three, as has once been done in finding the motion of one day, one could thus make a table only up to $1^{\prime \prime}$, but the construction of this would be much too difficult, as has been said above), it would follow therefrom that in the Sun's motion in the above-mentioned 810 years there would be an error of more than 295,650 times $8^{\prime \prime}$ (which there are in addition to the $59^{\prime}$ ), which is more than $657^{\circ}$. On this account it would not be right to end the Sun's motion in the tables at $1^{\prime}$. And for the same reason it is also to be understood that it would not be right to end them at the second, third or fourth order of fractions, for if we stopped at the fourth and there should be some of the 5th order short or in excess, this might produce an error of some seconds in long periods, for if we take 295,650 times 30 fifth-order units, this makes more than $40^{\prime \prime}$, which through the addition of different parts might cause an error of several times $1^{\prime}$. In such a way that in this respect the Sun's motions in the table would have to go up to the 5 th order if we are to have a certainty of $1^{\prime}$ in using it. But for the sake of even greater certainty, and in order that they might be able to calculate Sun's motions in periods greater than 810 years, the Ancients apparently went up to the 6th order, and with good reason not to smaller parts, this being unnecessary.


## NOTE.

Just as here a table has been made by means of one day's proper motion of the Sun as found, thus tables will be made hereafter by means of the motion of one day, as found for the other planets and their Heavens ${ }^{1}$ ). But we shall there describe neither the manner of making the table nor its use, since they are identical with the preceding case. It is also to be understood that the above-mentioned caution applies to the similar following tables as well.

## 4th PROPOSITION.

To find, by means of empirical ephemerides, the apparent ecliptical longitude of the apogee and perigee of the Sun's orbit.
${ }^{1}$ ) Cf. Third Book, Chapter I; also Introduction, p. 1 I.

## 24 SONIOOPSVINDING DEVR

Alfmen de dachtafels van Stadius (die wy om de redenen des 1 voorfels nemen al offe uytervaringhen befchreven waren) wel deurfiet, men bevint onevenheyt inde fchijnbacr Sonloop, te wetē op d'cen tijt wel 3 of 4 (1) fdaech 8 meer als op d'ander, en daerbenevens dattet cen jaer voor t'ander na, den lcop ontrent het middel van Iunius altijt ten flapten is,daghelicx van 57 (1). Als by voorbeelt opden is lunius int jaer 1 s $s s$, bevinde ick de Son onder den 92 tr . 39 (1), en op den 16 daer na onder dē 93 ir. 36 (1): Sulcx dauf op dien dach vanden 15 lunius totten 16 ,geloopen heeft 57 (1) : en fo veel loopife oock van yder ${ }_{15}$ Iunius totten 16 op elck der volgende ende voorgaende jaren. Macr ontrent half December iffe alle jare ten fnelften van ontent 1 tr. 1 (1). Nuditaldus jaerlicx ghebeurende ; het gheeff den eerfen onderfouckers der oisfaken defer dinghen billichlick vermoen, dat de Son in een rondt draeyt, diens middelpunt dcs Eercloots middelpunt niet en is, maer daer buyten. Om t'welck deur een form breeder te verclaten, laet
 A B den duyftraer fijn, diens middelpunt dats dē Eertcloor C, en DE de Sonwech, dier. middelpunt $F$, t'verftcpunt $D$, inaeftepunt E:Laet daer na van $C$ totien duyfte. raer an $\mathbf{G}$, getrockē worden CG rechthouckich op A B, en fạiende de Sonisech in H. Dit foo wefende, men fiet doirfaeck waerom de Son in haer wech loopende van D tot H meer dan cé vicrendeel ronts, nochans inden daytteraer fchijnbaerlick van $A$ tot $G$ alJeenelick een vierendeelronts: Sghelijcx waerom fy in haer wech eyghentick loopende van H tot E min dan een vierendeelrents, nochtans inden duyflerecr fchijnbaerlick van $G$ tot $B$ een volcommen vierendeelronts. Men fiet oock de oirfack waerom de Son over even ichijibaerboghenals A Gen $G$ B oneren tijden loopt, te weten langer van $D$ tot $\mathrm{H}_{2}$ dats de fchijnbaerloop A , dan van H tot E,das de fchijnbactloop G B. Maer in des fchijnbaerloofs twee half ronden A G B, B A, looptre even foo lang als in des eyghen loops twee half fonden DHF,ED. Hier uyt is openbacr dat de Son ant verttepunt D wefende, int middel van haer fchijnbaer raechffe loop moet fijn, en an t'naeflepunt E int middel ran haer íchijnbaer fnelfe. Maer om dar middel, iwelck r'begeerde defes voorfièls is, op een feker voet te foucken, ick falder eerft defe verclaring af doen. Laet inden duyfteraer gheteyckent worden de twee punten I en K,alfoo dat de booch $A I$ even fy an $A K$ : Daer na fy ghetrocken van $C$ tot I inden duyfteraer de lini C 1 , fniende de Sonwech in I, lghelijex C K fniende de Sonwech in M. Ditfoo fijnde, tis openbaer dat ghelijck de fchijrbaer booch AI over d'een fijde, even is mette fchijnbaer booch A K over d'ander, alfoo is de Sonwechbooch D L over d'een fijde,oock even mette Sonwech booch D M over d'ander: En vervolghens alle twee fchijnbaerboghen die over beyde fij-
den van

If we look through the ephemerides of Stadius (which for the reasons mentioned in the 1st proposition we use as if they had been described from experience) attentively, we find inequality in the Sun's apparent motion, to wit at one time as much as $3^{\prime}$ or $4^{\prime}$ a day more than at another, and moreover that year in and year out its motion is always slowest about the middle of June, being $57^{\prime}$ daily. Thus, for example, on 15th June of the year 1555 I find the Sun at $92^{\circ} 39^{\prime}$, and on the 16 th after that at $93^{\circ} 36^{\prime}$, so that in that day, from 15th June to 16 th, it moved '57'; and the same is also its motion from every 15th June to the 16th in each of the following and preceding years. But about the middle of December its motion is fastest every year, namely about $1^{\circ} 1^{\prime}$. Since this happens every year, it gives the first investigators of the causes of these things reasonable conjecture that the Sun revolves in a circle the centre of which is not the centre of the Earth, but outside it. In order to explain this more fully by means of a figure, let $A B$ be the ecliptic whose centre is the Earth $C$, and $D E$ the Sun's orbit, whose centre is $F$, its apogee $D$, its perigee $E$. Thereafter let there be drawn from $C$ to the ecliptic, at $G, C G$ at right angles to $A B$ and intersecting the Sun's orbit in $H$. This being so, we see the cause why the Sun in its orbit, while moving from $D$ to $H$ more than a quarter circle, yet in the ecliptic appears to move from $A$ to $G$ only a quarter circle. Likewise why, moving in reality in its orbit from $H$ to $E$ less than a quarter circle, yet in the ecliptic it appears to move from $G$ to $B$ a complete quarter circle. We also see the cause why the Sun passes through equal apparent arcs such as $A G$ and $G B$ in unequal times, to wit, longer from $D$ to $H$, i.e. the apparent motion $A G$, than from $H$ to $E$, i.e. the apparent motion $G B$. But through the two semi-circles $A G B, B A$ of the apparent motion it moves just as long as through the two semicircles $D H E, E D$ of the proper motion. From this it is evident that the Sun, when it is at the apogee $D$, must be in the middle of its apparently slowest motion, and at the perigee $E$ in the middle of its apparently fastest motion. But in order to seek this middle - which is the thing required in this proposition - on a sure basis, I will first give the following explanation of it. Let there be marked in the ecliptic the two points $I$ and $K$, in such a way that the arc $A I$ shall be equal to $A K$. Thereafter there shall be drawn from $C$ to $I$ in the ecliptic the line $C I$, intersecting the Sun's orbit in $L$; likewise $C K$, intersecting the Sun's orbit in $M$. This being so, it is evident that just as the apparent arc $A I$ on the one side is equal to the apparent arc $A K$ on the other side, the arc of the Sun's orbit $D L$ on the one side is also equal to the arc of the Sun's orbit $D M$ on the other side. And consequently the two apparent arcs which are equally large
den van A evegroot fijn, gheven cock twee Sonwechtogen over beyde fijden vā D evegroot. Hier uyt volght dat alfmen inde ervarings dachtafels cen fchijnbaer plaets fulex vint, dat haer twee loopen op even tijden over beyde fijden evegroot fijn, de felve placts de Sonnens fchijnbaer verftepunt moet wefen.

Het foucken van dien gaet aldus toe: İck verkies eenighe maent van Iunius (daer in meñ den fchijnbaerloop over al ten traechften vindt) als neem ick lu. nius int jaer 1 s $\$ 4$, onderfouck daer me het voornemen op eenighen dach die by xaming ontrent het middel des traechften loops der Son is, ick neem opdē 10,alwaer de Son bevonden wort onder den 88 tr. 2 (1): Maer binnē drie maenden daer te. vooren (welcke drie maenden, of tijt waer me de Son ontrent een vierendeel haers wechs lcopt, ick liever neem als ander, om de redenen die daer af int volgende Merck verclaert fullen worden) te weten den 10 Maerte, waffe onder den 359 tr. doende die booch 89 tr. 2 (1): En bimnen drie maenden na den 10 lunius, dats totten 10 September, alwaer de Son is ender den 176 tr. 39 (1), wort fulcken booch bevonden van 88 rr: 37 (1), welcke niet even fijnde mette 89 tr .2 (1), foo en was onder den 88 tr .2 (1) het verftepunt niet.

Daerom dit alfoo onderfocht op een ander dach, ick neem op den is Iunius, alwaer de Son beyonden wort onder den 92 tr. 49 (1), ick vinde de booch op drie maenden daer te vooren van 88 tr. 53 (B), en op drie maenden daer na van 88 tr. 46 (1); welcke twee noch niet even lijinde, en de laette bcoch cleen. der dan d'eerfe, ghelijek inde voorgaende onderfoucking, tis teycken darmen noch voorder in Iunius moet conimen : I atet onderfocht worden op den 19 dach,alwaer ick de Son vinde onder dé 96 tr. 39 (1), en den, booch opdrie maenden daer te voor van 88 tr. 46 (1), maer op drie maendé daér na van 88 tr .51 (1), welcke twee nöch niet even fijnde,en de laetfe nu grooter dan d'eerfte, tis teycken dat ick te verre in Iunius gecommen ben, en deyfen moet : Daerom onder ${ }^{*}$ fouck ick dergelijcke op dē 16,alwaer ick de Son bevinde onder dē 93 tr. 46 (1); en de boorh op d'ecrffe drie maenden van 88 tr . si (1), maer op de lactfte dric van 88 tr. 48 (1): Twelck noch niet effen commende, ick verfouck dergelijcke op dē 17 van Iunius, en bevinde dan de Sonindē 94 tr. 43 (1), en d'ecrffe booch opdrie maenden van 88 tr. 48 (1), de laetfte van 88 tr . 50(1).

Sulce dat ick tot hier toe bevonden heb t'verftepunt te moeten wefen tuffchen den 93 tr. 46 (1), en den 94 tr. 43 (1). Maer om nu noch naerder te commen, ick fie dat de laetfle booch op den 16 van lunius te cleen bevondē wiert, en op den 17 te groot, t'welck teycken is, t'begheerde tufichen beyden te moes tenfchuylen, te weten op den 16 Iunius met eenighe uyren: Daerom dit onderfouckende eert neem ick op den 16 lunius met noch 12 uyren, daer na met meer, ick vinde mette 16 uyren de Son te wefen onder den 94 tr- 24 (1), en d'eerfte booch op drie maenden van 88 rr. 49 (1), maer de laetfte van 88 tr. 49 (1) 20 (2), t'welck weynich verfchilt, doch diet noch nauwer begeerde, mocht metgedeelten van uyren wercken, Dit foo fijnde, ick houde den bovefchreven 94 tr. 24 (1) voor de begheerde fchijnbaer duyfteraerlangde des verftepunts: Waer toe vergaert 380 tr. comt voor begheerde fchijnbaer dayfteraerlangde des naeftepunts 274 tr. 24 (1). Mercktdat Copernicus dit verfte punt t'fijnder tijt ftelde onder den 96 tr. 40 (1) : Doch dit comtaldus na t'inhoude defer dachtafels op die manier ghewrocht.

Maer beneffens de felve, foo iffer noch eenander die tot proef van deerfte verftrecken can, welcke ick oock verclaren fal als volght :

Hier vooren is gefeyt de Son fchijnbaerlick even foo lang te loopen int cen halfront $A G B$, als int ander $B A$, waer uyt volght, datalimen inde dachtafels
on either side of $A$ also give two arcs of the Sun's orbit which are equally large on either side of $D$. From this it follows that if we find in the empirical ephemerides an apparent point such that the motions on both sides of it in equal times are equally large, this point must be the Sun's apparent apogee.

The seeking of this takes place as follows. I choose some month of June (where the apparent motion is always found to be slowest), for example June of the year 1554, investigate therewith the object in view on some day which is estimated to be near the middle of the slowest motion of the Sun, for example on the 10th, when the Sun is found at $88^{\circ} 2^{\prime}$. But three months previously (which three months, or time in which the Sun moves about one-fourth of its orbit, I take rather than any other, for the reasons that will be set forth about it in the succeeding Note), to wit 10 th March, it was at $359^{\circ}$, that arc being $89^{\circ} 2^{\prime}$. And three months after 10th June, i.e. on 10th September, when the Sun is at $176^{\circ} 39^{\prime}$, this arc is found to be $88^{\circ} 37^{\prime}$; and this not being equal to $89^{\circ} 2^{\prime}$, the apogee was not at $88^{\circ} 2^{\prime}$.

Therefore, when this is examined on another day, for example, 15th June, when the Sun is found to be at $92^{\circ} 49^{\prime}$, I find the arc three months previously to be $88^{\circ} 53^{\prime}$ and three months afterwards $88^{\circ} 46^{\prime}$, and these two not yet being equal and the last arc smaller than the first, as in the preceding investigation, this is a sign that we have to be further still in June. Let it be examined on the 19th day, where I find the Sun at $96^{\circ} 39^{\prime}$, and the arc three months previously $88^{\circ} 46^{\prime}$, but three months afterwards, $88^{\circ} 51^{\prime}$; and these two still not being equal, and the last now larger than the first, this is a sign that I have come too far in June and have to go back. I therefore examine the same thing on the 16 th, where I find the Sun at $93^{\circ} 46^{\prime}$, and the arc three months previously, $88^{\circ} 51^{\prime}$, but three months afterwards, $88^{\circ} 48^{\prime}$, and this still not being equal, I examine the same thing on 17th June, and then find the Sun at $94^{\circ} 43^{\prime}$, and the first arc three months previously $88^{\circ} 48^{\prime}$, and the last $88^{\circ} 50^{\prime}$.

Thus I have hitherto found that the apogee must be between $93^{\circ} 46^{\prime}$ and $94^{\circ} 43^{\prime}$. But in order to come nearer still, I see that the last arc on 16 th June was found to be too small and on the 17th too large, which is a sign that the required point must be between the two, to wit on 16 th June with a few hours added. Therefore, investigating this, I first take 16th June with 12 hours in addition, thereafter with more; I find that with 16 hours the Sun is at $94^{\circ} 24^{\prime}$, and the first arc three months previously $88^{\circ} 49^{\prime}$, but the last $88^{\circ} 49^{\prime} 20^{\prime \prime}$, which is a slight difference, but who should wish it even closer might operate with parts of hours. This being so, I take the above-mentioned $94^{\circ} 24^{\prime}$ to be the required apparent ecliptical longitude of the apogee. When to this is added $180^{\circ}$, we get for the required apparent ecliptical longitude of the perigee $274^{\circ} 24^{\prime}$ (Note that Copernicus in his day put this apogee at $96^{\circ} 40^{\prime}$ ). But this results from the data of these ephemerides, made in the said manner.

But in addition to this there is still another manner that may serve as proof of it; which I will also set forth as follows:

It has been stated above that the Sun apparently moves as long in the one semi-circle $A G B$ as in the other $B A$, from which it follows that when we have found in the ephemerides two apparent places of the Sun which are $180^{\circ}$ apart,
twee fchijnbaer Sonplaetfen ghevonden heeft 180 tr. van malcander, fulcx dat de Son over elck halfront eveveel tijts geloopen heeft, d'een diertwee plactfen t'fchijnbaer verftepunt d'ander tichijnbaer naeftepunt te moeten wefen. Om deur fulckewech i'verftepunt te vinden, ick vergaer 180 tr,totten voorfchreven 94 tr. 24 (1) des fchijnbaer verftepunts, comt gelijck bové gefeyt is 274 tr .24 (1) voor fchijinbaer naeftepunt : Ick fouck daer na inde dachtafels wanneer tot die plaets de fchijnbaer Son was, en bevinde int felve jaer 1554 in December dē 16 dach 8 uyr 16 (1) : By aldiē nu den tijt des Sonloops dier 180 tr. te weten vandē 16 Iunius 16 uyr, tottē 16 December 8 uyr 16(1), even waer ande Sonloop des ander halfronts: Of anders gefeyt dat den felven loop duerde den helft des jaers doende 182 daghen 14 uyren 88 (1),foofoude d'ecrfighevonden plaets des verftepunts de begheerde wefen: Maer vanden bovefchreven 16 lunius 16 uyr totten 16 December 8 uyr 16 (1), fijn 182 daghen 16 uyr 16 (1), t'welck alleenelick 1 uyr 18 (1) te veel fijnde, foo en ift niet verre van daer. Doch om t'begeerde naerder te commen, ick verfouck derghelijeke tot een ander plaets, nemende. t'verftepunt te fijin daer deSon fchijnbaerlick was op den 18 lunius, te weten inden 9 str. 41 (1), en volghende daer me de bovefchreven manier van wercking, vinde over den loop des halfroniso uyr 25 (1) te luttel, fulcx dat na defe wijfe t'verftepunt moet wefen muffehen den 94 ir. 24 (1), en den 95 tr. 41 (1): Maer om de faeck noch naerder te commen, ick veriouck derghelijcke tot een plaets tuffchen de twee voorfchreven, ick neem op den 17 dach 13 . uyren van lunius, op welcken tijt ick inde dachtafels merck de Son geweeft te hebben onder den 95 tr. 14 (1), en volghende daer me de bovefchreven manier van wercking, vinde den loop des halfronts van ouyri 2 (1) re cleen, t'welck als voor even meughende genomen worden, foo foude na defe wijfe t'verftepunt fijn onder den 95 tr. 14(1), dat nu d'ander bevonden wient onder den 94 tr. 24 , (1) die alleenelick verfchillen so (1), wefende in defen gevalle van clecnderacht, en con. nende fpruyten uyt der dachiafels onvolcommentheyt.

## VERVOLGH.

Ghelijck hier de twee boghen elck van drie maenden loops evegroot vallen, alfoo moeten om de voorgaende redenen (de dachtafels wel fijnde) alle ander foodanighe twee boghen op even tijden gheloopen oock evegroot fijn, als by voorbeelt op 1 maent doende 3 I dagen vooren na den 17 lunius $15 \$ 4$,was de Son bycans eveverre vant verfepunt, te weten over d'een fijde 29 tr. 37 (1), over d'ander 29 Ir .39 (1). Ende op twee maenden van 61 daghen waffe over d'een fijde 58 tr. 31 (1), overd'ander 58 tr. 33 (1). Angaende dit verfchilken van 2 (1), dat Spruyt openbaerlick uyt onvolcommenheyt der tafels. Maer tot ander plaeifen can fulck verfchil groot ghevonden worden: Als by voorbeelt opden 14 September 15 54, was de Son onder den 180 tr. 36 (1), en op 3 maenden daer te vooren, hadfe. 3 tr. s (1) fchijnbaerlick min geloopen dan op 3 maenden daer na, want op den 14 lunius, te weten daer te vooren 3 maenden doende 92 daghen, waffe onder den 91 tr. 51 (1) : Maer 92 daghen na den 14 September, te weten op den is Deceniber waffe onder den 273 tr. 2 (1) : Deerfte fchijnbaerloop doende 89 tr. 21 (1), isals vooren 3 tr. 5 (1) cleender dan de tweede, doendeg2tr. 26 (1).

## MERCKT.

Hier boven is ghefeyt, dat ick verclaren foude de reden waerom het nemen destijts waer me de Son een vietendeelronts van t'verttepunt comt, fekerder benluyt
in such a way that the Sun has passed through each semi-circle in the same time, one of these two places must be the apparent apogee, the other the apparent perigee. In order to find the apogee in this way, I add $180^{\circ}$ to the above-mentioned $94^{\circ} 24^{\prime}$ of the apparent apogee, which makes, as said above, $274^{\circ} 24^{\prime}$ for the apparent perigee. I then look up in the ephemerides when the apparent Sun was in that place and find this to be in the said year 1554 in December, the 16 th day, at 8 h 16 m . If the time of the Sun's motion through those $180^{\circ}$, to wit from 16th June at 16 h to 16 th December at 8 h 16 m , were equal to the Sun's motion of the other semicircle; or in other words: if the said motion took half a year, making 182d 14 h 58 m , the place of the apogee first found would be the one required. But from the abovementioned 16 th June at 16 h to 16 th December at 8 h 16 m there are 182 d 16 h 16 m , which, being only 1 h 18 m too much, is not far amiss. But in order to come nearer to the required value, I examine the same thing in another place, taking the apogee to be where the Sun was apparently on 18 th June, to wit at $95^{\circ} 41^{\prime}$, and carrying out therewith the above method of operation, I find the interval over the semi-circle to be 0 h 25 m short, so that the apogee must be between $94^{\circ} 24^{\prime}$ and $95^{\circ} 41^{\prime}$. But in order to come nearer still to the matter, I examine the same thing in a place between the two mentioned above, for example, on 17th June at 13 h , at which time I find in the ephemerides that the Sun was at $95^{\circ} 14^{\prime}$, and carrying out therewith the above method of operation, I find the interval over the semi-circle to be 0 h 2 m short, and since this can be considered equal, in this way the apogee would be at $95^{\circ} 14^{\prime}$, so that, since the other was found to be at $94^{\circ} 24^{\prime}$, they differ only by $50^{\prime}$, which in this case is insignificant and may be due to the imperfection of the ephemerides.

## SEQUEL.

Just as here the two arcs, each of the motion of three months, are equal, for the above reasons (the ephemerides being correct) all other two such arcs passed through in equal times must also be equal; for example, one month - making 31 days - before and after 17th June 1554 the Sun was almost the same distance from the apogee, to wit, on the one side $29^{\circ} 37^{\prime}$, on the other side $29^{\circ} 39^{\prime}$. And at two months - 61 days - (before and after the said date) it was on the one side $58^{\circ} 31^{\prime}$, on the other $58^{\circ} 33^{\prime}$. As to this small difference of $2^{\prime}$, this is evidently due to the imperfection of the ephemerides. But in other places this difference may be found to be large. For example, on 14th September 1554 the Sun was at $180^{\circ} 36^{\prime}$, and 3 months before it had moved apparently $3^{\circ} 5^{\prime}$ less than 3 months after, for on 14th June, to wit, 3 months - making 92 days before, it was at $91^{\circ} 51^{\prime}$ ). But 92 days after 14 th September, to wit, on 15 th December, it was at $273^{\circ} 2^{\prime}$. The first apparent motion, being $89^{\circ} 21^{\prime}$, as before is $3^{\circ} 5^{\prime}$ less than the second, being $92^{\circ} 26^{\prime}$.

## NOTE.

Above it has been said that I would set forth the reason why a more certain conclusion is gained by taking the time in which the Sun has reached a point

[^11]befluyt gheeft als ander tijt waer mefy naerder of verder vant verftepuntis: Om nu daer toe te commen ick fegh by vooibeelt aldus: Op den 12 Maerte isss, was de Son onder den 0 tr. 45 ( 1 , en drie maenden daer te vooren, te weten 90 dagen (tis, wel waer dat d'alder meefte fekerheyt het recht vierendeel jaers foude fijn, doch t'voornemé fal bier me genouch connē verclaert wordé) hadfe 3 tr. 7 (1) fchijnbaerlick meer gheloopen, dan op 3 maenden daer na. Dit groot verfchil onsmeer verfekerende dan cleen dat den 180 tr. 36 (1) wijt vant fchijnbaer verftepunt is, wort bemertt deur de bovelchreven neming des tijts waer me de Son een vierendeelronts loopt: Want foo wy, by voorbeelt gefeyt, macr ghenomen en hadden 2 daghen voor en naden 14 September, wy fouden den loop fulcker twee boghen evegroot bevinden, elck van itr. 58 (1), fonder ken$n$ is of wy ant verfepunt waren of niet. Maer dattet nemen van iwce even tijden waer mede Son verder dan cen vierendeelronts vant verftepunt comt, ooc achterlick fijn, wort dacr deur verftaen, datmen daer me comt tot twee cleene bocch kens niet wijt van t'naeftepunt, waer af de reden de felve is als vant verflepunt.

Noch is te weten, dat al hebben wy hier boven ghefeyt van trnemen des tijts waer mede Son een vietendeclronts vant verftepunt is, daer by verftaetmen fulce nietalleenelick te wefen het vierendeel jaers als boven ghenomen wiert, maer alle tijden die de Son daer brengen, als een of meer heele jaren met noch een vierendeel daer toe: Oock drie vierendeclen jaers alleen, of met cen of ettelicke heele jarē daer toe,op alle welcke de Son een vierendeelronts van t'verftepunt comt, uyighenomen foo veel als t'verftepunt daerentuffichen mocht verloopen fijn, t'welck op weynich jaren van gheender acht en is.

Noch faet te ghedencken dat t'ghene hier in dit merck gefeyt is de Sonloop angaende, derghelijckeocck plaets te houden met d'ander Dwaelders daer int volghende afghehandelt fal worden, wantmen daer int foucken van haer verftepunten, om de bovefchreven redenen oock de meefte fekerheyt hecfi mettet nemen des tijts waer me den Dwaelder cen vierendeelronts vant verftepunt comt.

Tbeslvyt. Wy hebben dan deur crvarings dachtafels ghevonden de fchijnbaer duyfteraerlangde vande Sonwechs verftepunt en naeftepunt, na den eyfch

## SVOORSTEL.

## Deur crvarings dachtafels den loop vandeSonvvechs * verftepunt te vinden.

Eerft gefocht hebbende gelijck int 4 voorftel defchijnbaer duyfteraerlangde van des Sonwechs verftepunt, en die int jaer 1554 bevonden inden 94 tr. 24 (1) , ick fouck op de felve wijfe waer die op eenich volghende jaer, ick neem 1 s 94 gheweeft heeft, en bevindefe inden 97 tr. 53 (1); waer onder de Son bevonden wiert opden 20 Iunius, want drie maenden daer te vooren waffe onderden 9 tr.en drie maenden daer na onder den 186 tr.46(1), wiens iwee bo. ghen even fijn doendeelck 88 tr . 53 (3). Sulcx dat vant jaer $15 \$ 4$, tot 1594 , makende 40 jaren, fo is t'verftepunt op dien tijt verloopé volgende defe dachtafels en voor t begeerde 3 tr. 29 (1), want fo verre ift vanden 94 (r. 24 (1) totten 97 tr. ${ }_{53}$ (1).En hier me wort bekent des vertepunts loop op alle ghegheven tijt:A is

C 2 by voos.
a quarter circle away from the apogee than by taking another time in which it is nearer to or further away from the apogee. To arrive at this explanation, I say, for example, as follows: On 12th March 1555 the Sun was at $0^{\circ} 45^{\prime}$, and in three months before this, to wit, 90 days (it is true indeed that the greatest certainty would be the exact quarter of a year, but the intention can be sufficiently set forth in this way), it had apparently moved $3^{\circ} 7^{\prime}$ more than in three months after. That this large difference gives us greater certainty than the small one does, about this longitude of $180^{\circ} 36^{\prime}$ being far away from the apparent apogee, is perceived from the above-mentioned ascertaining of the time in which the Sun moves through a quarter circle. For if, for example, we had taken only. 2 days before and after 14th September, we should find the motion of two such arcs to be equal, each $1^{\circ} 58^{\prime}$, without knowing whether we were at the apogee or not. But that the taking of two equal times in which the Sun reaches two points further than a quarter circle away from the apogee would also be less accurate, is understood from the fact that thus we get two small arcs not far away from the perigee, the cause of which is the same as with the apogee.

It is also to be noted that, though we have spoken above of the taking of the time in which the Sun has reached a point a quarter circle away from the apogee, it should be understood that this is not only the quarter of a year as was taken above, but all those times which bring the Sun there, e.g. one or more whole years with a quarter added. Also three quarters of a year alone, or with one or several whole years added, at all of which times the Sun reaches a point a quarter circle away from the apogee, except for the amount the apogee should meanwhile have moved, which is of no significance in a few years.

It is also to be borne in mind that what has been said in this note with regard to the Sun's motion also applies to the other Planets which will be dealt with hereafter, for there, in seeking their apogees, the greatest certainty is for the above-mentioned reasons also reached by taking the time in which the Planet has reached a point a quarter circle away from the apogee.

CONCLUSION. We have thus found, by means of empirical ephemerides, the apparent ecliptical longitude of the apogee and perigee of the Sun's orbit; as required.

## 5th PROPOSITION.

To find, by means of empirical ephemerides, the motion of the apogee of the Sun's orbit.

First having sought, as in the 4th proposition, the apparent ecliptical longitude of the apogee of the Sun's orbit, and having found it in the year 1554 at $94^{\circ} 24^{\prime}$, I look up in the same way where it was in some later year - for example, 1594 and find it at $97^{\circ} 53^{\prime}$, at which the Sun was found to be on 20th June, for three months before it was at $9^{\circ}$ and three months after at $186^{\circ} 46^{\prime}$, which two arcs are equal, since they are each $88^{\circ} 53^{\prime}$. Thus, according to these ephemerides, from the year 1554 to 1594 , making 40 years, the apogee in that time (as required) has moved $3^{\circ} 29^{\prime}$, for that is the distance from $94^{\circ} 24^{\prime}$ to $97^{\circ} 53^{\prime}$. And in this way the motion of the apogee in any given time becomes known. For example, in
by voorbeelt om die te hebben op een jaer, ick fegh 40 jaren gheven 3 tr. 29 (1), wat een jaer ? comt s (1) 13 (2).

Merckt dat int berckenen defer dachtafels heeft moeten ghemift fijn, doch het voorbeelt can dienen om te betoonen de wijfe hoemen met beter exvarin: ghen doen fal, maer om de faeck naerder te commen, men foude d'eerfte ervaring meughen nemen over veel langher tijt gefchiet, als die Ptolemeus befchrijft int 4 hooftftuck fijns 3 boucx 463 jaren nat'overlijden vanden grooté Alexander, alwaer hy feght des Sonwechs verftepunt ghevonden te hebben onder des duyfteraers 65 tr . 30 (1) (en hoe wel ick volghende fijn gheftelde vinde 65 tr . 30 (1), doch latet voorbeelifche wijfe fijn foo hy feght) Voor d'ander ervaring ghenomen den bovefchreven 97 tr. $\$ 3$ (1) ghebeurt op den 20 Iunius 1594, iwelck was ig18 jaren na Alexander, foo heeft het verftepunt van d'een tijt tot d'ander bedraghende ontrent 145 s jaren, gheloopen 32 tr .23 (1), want foo verre ift vanden os tr. 30 (1) totten 97 tr. 33 (1): En alfmen hier me wil vinden den loop eens ghegheven tijts, ick neem eens jaers, men feght 1455 jaren gheven 32 tr. 23 (1), wat 1 jaer ? comt 1 (1) 20 (12): En dit laetfe getal (in plaets vant eerfe $s$ (1) 13 (2) fal ick ghebruycken in voorbeelden daer van defen loopgehandelt wort.

Tbeslyyt. Wy hebben dan deir ervarings dachtafels den loop vande Sonwechs verftepunt ghevonden, na den eyfch.

## 6 VOORSTEL

## Deur ervarings dachtafels de Sonnens loop in haer vvech te vinden.

De loop vande Sonwedhs verftepunt wort op een jaer bevonden deur het 5 voorftel van
Dieghetrocken vande middelloop der Son oock op een jaer, te weten een Egips doende deur het 3 voorftel 359 tt.45 (1).
Blijft voor begheerde loop der Son in haer wech op een
Egips jaer 359 tr.43(1) 40.(2).
Fnde is openbaer dat alfoo ghevonden fal worden den loop van alle voorge: Atelden tijit.

Tbewys. Angefien de Son op een jaer inden duyfteraer fchijnbaerlick een keer doet, en dat daerentuffchen haer wech felf $I$ (1) 20 (2) geloopen heeft, foo moetce in haer wech die 1 (1) 20 (2) min gheloopen hebben.

Tbesivyt. Wy hebben dan deur ervarings dachtafels de Sonnensloop in haer wech ghevonden, na den eyfch.

## 7 VOORSTEL,

## Deur ervarings dachtafels de Sonvvechs afvvijcking vanden $\star$ evenaer te vinden.

## Aequatore,

De Sonnens dagelickfche fchijnbaer duyfteraerbreeden, en worden in defe dachufels nevens haer fchijnbaer duyfteraerlangden niet bef̣hreven, maer in fommige dachtafels deur gemeene reghel met een tafel gevonden: Doch by aldienfer fonden, ghelijekie in ware ervarings dachtafels fijn (t'welckmen leerings halven fich mach inbeelden foo te wefen) men foude die grootfte bree-
order to have that in one year, I say: 40 years give $3^{\circ} 29^{\prime}$; what does one year give? It gives $5^{\prime} 13^{\prime \prime}$.

Note that in the calculation of these ephemerides errors must have been made, but yet the example may serve to show the way in which to proceed with better experiences. But in order to get nearer to the matter, we might take the first experience a much longer time ago, such as Ptolemy describes in the 4 th chapter of his 3rd book, 463 years after the death of the great Alexander, where he says he has found the apogee of the Sun's orbit at $65^{\circ} 30^{\prime}$ of the ecliptic (and though, following his supposition, I find $65^{\circ} 30^{\prime}$, let it be as he says, by way of example ${ }^{1}$ )). When for the other experience the above-mentioned $97^{\circ} 53^{\prime}$ is taken, which happens on 20th June 1594, which was 1918 years after Alexander, the apogee has moved $32^{\circ} 23^{\prime}$ from one time to the other - amounting to about 1455 years - for this is the distance from $65^{\circ} 30^{\prime}$ to $97^{\circ} 53^{\prime}$. And if from this we wish to find the motion in a given time - for example, in one year - we say: 1455 years give $32^{\circ} 23^{\prime}$; what does 1 year give? It gives $1^{\prime} 20^{\prime \prime}$. And it is this latter value (instead of the first $5^{\prime} 13^{\prime \prime}$ ) which I ṣhall use in examples in which this motion is dealt with.

CONCLUSION. We have thus found, by means of empirical ephemerides, the motion of the apogee of the Sun's orbit; as required.

## 6th PROPOSITION

To find, by means of empirical ephemerides, the Sun's motion in its orbit.
The motion of the apogee of the Sun's orbit is found to be in one year, by the 5th proposition,

This being subtracted from the mean motion of the Sun, also in one year, to wit an Egyptian year, making by the 3rd proposition

There remains, for the required motion of the Sun in its orbit in an Egyptian year

And it is evident that thus the motion in any suggested time will be found.
PROOF. Since in one year the Sun apparently performs one revolution in the ecliptic, while its orbit itself has meanwhile moved $1^{\prime} 20^{\prime \prime}$, it must have moved those $1^{\prime} 20^{\prime \prime}$ less in its orbit.

CONCLUSION. We have thus found, by means of empirical ephemerides, the Sun's motion in its orbit; as required.

## 7th PROPOSITION.

To find, by means of empirical ephemerides, the deviation of the Sun's orbit from the equator.

The Sun's daily apparent equatorial latitudes ${ }^{2}$ ) are not described in these ephemerides in addition to its apparent ecliptical longitudes, but in some ephemerides are found by a common rule with a table. But if they were there, as they are in true empirical ephemerides (which we may imagine to be the case for the sake of instruction), the greatest latitudes would be found twice a year,

[^12]ERVARINGS DACHTAFELS.
den.jaerlicx twee mael vinden, d'eene ontrent den 12 van lunits na t'Noorden, d'ander ontrent den ie van December na t'Zuyden, en dat in defe dachafels - volgherde Cepernicues ftelling van 23 1r. 28 (1). En dammen hier opnoch vorder lette, men foude merckenfulcx altijts te gebeuren wefendé de Son fehijnbaerlick gotr. vanden Lentine, waer uytmen benuyt de Sonwechs afivijcking re wefen vande felve 23 tr. 28 (1), om dat fulcke breetheyts booch gherrocken op delanckheyrs booch doende cen vierendeèlronts, voor grootheyt haers tegen. overhoucx verftreckt, als blijckt inden handel der clootiche drichoucken.

Tbeslvyt. Wy hebben dan deur ervarings dachtafels de Sonwechs afwijcking vanden evenaer ghevonden, na den cyfch.

## 8 V OORSTEL.

## Deurervarings dachtafels te makē berekende ${ }^{\star}$ dach-Ethemeritafels des Sonloops van toecommende tijden.

Alfmen in Stadius dachtafels (die wy om de bovefchreven redene hicr houden al offe deur ervaringhen ghevonden waren) fiet na t'ghelijck vervolgh der fchijnbaer Sonplaetfen van d'een tijt by d'ander verlekē, omdeur de Sonplaetfen des voorleden tijts; te oordeelen vande Sonplateren des toccommenden, men merckt datmen overal van vier tot vier jaren, de Son opghclijcke daghen bycans onder cen felve duyfteraerlangde vint. Als by voorbecte int jacr $15 \$ 4$ den 1 van lanuarius wasde Son onder den 290 tr. 36 (1). En vicr jaer daer na, te weten den I lanuaritis 1598 onder den 290 tr. 37 (1). Voort inde jaren 1562, $1566,1570,1574,1578$, telcken op den 1 lanuarius wiertfe bevonden onder dé 290 tr. 37 (1), 290 tr. 36 (1), 290 tr. 37 (1), 290 tr. 37 (1), 290 tr. 38 (1), cnal$f 00$ met ander dierghelijcke:

Hiet uyt machmen befluyten, dat by aldien de dachtafels niet voorder gageflagen waren dan neem ick tottē 1 van lanuarius 1578 , en datmē nadién voorleden tijt wilde maken dachtafels van toecommenden tijt , mee foude de 4 volghende jaren meughen maken met fulcken voortganck, als de vier voorgaende, feggende de Son op den 2 van lanuariusint laer is74 te fullen fijn, tot fulc. ken fchijnbaer plaets alfe was den 2 lanuarius int jaer 1570 , te weten onder den 291 tr. 38 (1): Maer op dē 3 lánuarius onder den 292 tr. 40 (1), en fo voorr, welcke dachtafelfche wijfe opgeteyckent, men crijcht berekeinde dachtafels des Sonloops van toecommendetijden;na t'begheerde.

I MERCK.
By aldien de lancheyt des natuerlic jaers effen waer v〒 365 dagẽ 6 uyten, gelijck het Iuliaens jaer inhout, daer en foude gantfchelick geen verandering vallen van 4 tot 4 jaren: Macri'wiert in defe dachtafels deur het 2 voortel bevon. den alleenelick van $36 s$ dagen g uyren 45 (1) $s s$ (2), daerom gebreecteralle jare 14(1) $s$ (2) van cen uyr; op welcke de Sonloop bedraecht nagenouch 35 (2), die doen te vier jaren 2 (1) 20 (2), en fo veel foudemen na die rekening alle vier jare tot yder dach der voorgaende moeten toedoen. Maer de langde des jaers genomẽ na Ptolemeus rekening op 365 dagen 14 (1) $4^{8}$ (2), waer an torte $356 \frac{1}{4}$ dage alleenelick gebreken 12 (2) eens daechs, op welcke de Sonloop bedraecht nagenouch oock 12 (2), die doen te vier jaren 48 (2), en fo veel foudmé na Ptolemeus rekeninge des jaers,alle vier jaren tot yder dach der voorgaende moeté toedoē.
one about 12th June towards the North, the other about 12th December towards the South, and such in these ephemerides according to Copernicus' assumption of $23^{\circ} 28^{\prime}$. And if we observed this further, we should perceive that this always happens when the Sun is apparently $90^{\circ}$ from the Vernal Equinox, from which we conclude that the deviation of the Sun's orbit is the said $23^{\circ} 28^{\prime}$, because the arc of the circle of latitude at $90^{\circ}$ longitude represents the magnitude of its opposite angle, as appears from the work on spherical triangles.

CONCLUSION. We have thus found, by means of empirical ephemerides, the deviation of the Sun's orbit from the equator; as required.

## 8th PROPOSITION.

To make, by means of empirical ephemerides, calculated ephemerides of the Sun's motion in future times.

If in Stadius' ephemerides (which for the above-mentioned reasons we here use as if they had been found by experience) we look at the similar sequence of the apparent positions of the Sun of one time as compared with another, in order to judge from the positions of the Sun in the past what will be the positions of the Sun in the future, we perceive that every four years the Sun is found on similar days almost at the same ecliptical longitude. Thus, for example, in the year 1554, the 1st of January, the Sun was at $290^{\circ} 36^{\prime}$. And four pears later, to wit, on 1st January 1558, it was at $290^{\circ} 37^{\prime}$. Further in the years 1562 , $1566,1570,1574,1578$, each time on 1st January, it was found at $290^{\circ} 37^{\prime}$, $290^{\circ} 36^{\prime}, 290^{\circ} 37^{\prime}, 290^{\circ} 37^{\prime}, 290^{\circ} 38^{\prime}$, and the same in other similar years.
From this it may be concluded that if the ephemerides did not contain observations beyond, for example, 1st January 1578, and if from this past time it was desired to make ephemerides of the future, the 4 following years could be made by the same procedure as the four preceding years, saying that the Sun would be on 2nd January of the year 1574 in the same apparent place as it was on 2nd January of the year 1570 , to wit, at $291^{\circ} 38^{\prime}$. But on 3 rd January at $292^{\circ} 40^{\prime}$, and so on; and when these values are recorded in the manner of ephemerides, we get calculated ephemerides of the Sun's motion in future times; as required.

## 1st NOTE.

If the length of the natural year were exactly 365 d 6 h , as the Julian year comprises, there would be no change at all every four years. But in these ephemerides it was found by the 2nd proposition to be only 365 d 5 h 45 m 55 s ; therefore every year the hour is short of 14 m 5 s , in which the Sun's motion amounts to almost $35^{\prime \prime}$, which makes in four years $2^{\prime} 20^{\prime \prime}$, and this amount according to this calculation we should have to add every four years on every day to the preceding value (of the Sun's longitude). But if the length of the year were taken according to Ptolemy's calculation to be $365 ; 14,48^{1}$ ), where in $3651 / 4$ days a day is short of only $12 \times \frac{1}{3600}$ of a day; in which the Sun's motion also amounts to almost 12, in four years this makes 48, and this amount would according to Ptolemy's calculation of the year have to be added every four years to the longitudes of the preceding years.

[^13]$2^{-}$M ERCK.

Merckt wijder datmen hier fiet de oirfaeck van t'verloop des tijts, te weten waerom den I Maerte die nu int voorjaer comt, met lancheyt van tijt inde fo. mer foude vallen, daer na inden Herbft, en fo voorts, ten waer dat fomwijlen voorcommen wierde mer afcorting van daghen ghelijck int jaer issz met so daghen ghedaen is, want volgende de rekening der lanckheyt des jaers van $P$ to. lemeres, foo beloopet op de 3 co jaren cen dach,t'welck na de rekening des jaers van anderen meer bedraccht.

## 3 MERCK.

Soo yemant de dachtafels van Stadims, voorder onderfocht op de voet als boven, hy foude faute bevinden:- Laet by voorbeelt hier ghenomen worden al de Sonplaetien opden 1 laumarius van 4 tot 4 jaren, als hier na volght :

| S4. | 290 tr. 36 (1) |
| :---: | :---: |
| 15s8. | 290 tr. 37 (1) |
| 1562. | 290 tr. 37 (1) |
| 1566. | 290 tr. 36 (1) |
| 1570. | 290 tt. 37 (1) |
| 1574. | 290 tr. 37 (1) |
| 1578. | 290 tr. 38 (1) |
| 1582. | 290 tr. 39 (1) |
| 1585. | 290 tr. 39 (1) |
| 1590. | 290 tr. 40 (1) |
| 1594. | 290 tr. 40 (1) |
| 1598. | 291 tr. 31 (1) |
| 1602. | 291 tr. 32 (1) |
| 1606. | 291 tr. 7 (1) |

Alwaermen een tamelick vervolgh fiet totopt jaer 1594 (doch niet ghenouch vernicerderende) maer van daer voort opt jaer 1598 , is by de 51 (1) onbehoorlick verfchil, en by de 25 (1) vant jaer 1602 tot 1606 . Döch ten isgheen feylinde boverchreven ghemeenheyt der reghel, macr openbaerlick deur mifrekening of mildrucking.

Tbeslvyt. Wy hebben dan deur ervarings dachtafels ghemaeckt berekende dachtafels des Sonloops van toecommende tijden, na den eyfch.

Tot hier toe is befchreven miin voorghenomen anvang vande kennis des Sonloops diemen deur ervarings dachtafels crijcht, op welcke men als geleyde gront nu voorder met wifconflighe fof foude meughen handelen, macr ick fal cerft verclaren derghelijcken anvang deur ervarings dathtafels van d'ander Dwaclders, en daer na het 2 bouck befchrijven vande wifconftighen handel der Dwaelders int ghemeen, volghendet'voornemen verhaelt int Corrbegrijp des Hemelloops.

TWEE.

## 2nd NOTE.

Note further that we here see the cause of the shifting of time, to wit, why the 1st of March, which now comes in spring, would in the course of time fall in summer, thereafter in autumn, and so on, unless this were prevented sometimes by an omission of days, as was done in the year 1582 by 10 days, for according to the calculation of the length of the year by Ptolemy this runs into one day in 300 years, which, however, is more according to the calculation of the year by others.

## 3rd NOTE.

If anyone were to examine the ephemerides of Stadius further on the same basis as above, he would find errors. Let there, for example, be taken here all the Sun's positions on the 1st of January every four years, as follows below:

| 1554 | $290^{\circ} 36^{\prime}$ | 1582 | $290^{\circ} 39^{\prime}$ |
| :--- | :--- | :--- | :--- |
| 1558 | $290^{\circ} 37^{\prime}$ | 1586 | $290^{\circ} 39^{\prime}$ |
| 1562 | $290^{\circ} 37^{\prime}$ | 1590 | $290^{\circ} 40^{\prime}$ |
| 1566 | $290^{\circ} 36^{\prime}$ | 1594 | $290^{\circ} 40^{\prime}$ |
| 1570 | $290^{\circ} 37^{\prime}$ | 1598 | $291^{\circ} 31^{\prime}$ |
| 1574 | $290^{\circ} 37^{\prime}$ | 1602 | $291^{\circ} 32^{\prime}$ |
| 1578 | $290^{\circ} 38^{\prime}$ | 1606 | $291^{\circ} 7^{\prime}$ |

In the above we see a fair sequence up to the year 1594 (but insufficiently increasing), but thence to the year 1598 there is an inadmissible difference of $51^{\prime}$, and of $25^{\prime}$ from the year 1602 to 1606 . But this is not an error in the above-mentioned general rule, but is evidently due to miscalculation or misprints.

CONCLUSION. We have thus made, by means of empirical ephemerides, calculated ephemerides of the Sun's motion in future times; as required.

Up to this point have been described my intended beginnings of the knowledge of the Sun's motion which is acquired by means of empirical ephemerides, upon which as foundations we might now proceed further with mathematical material. But I will first set forth similar beginnings by means of empirical ephemerides of the other Planets, and thereafter describe the 2nd book, of the mathematical treatment of the Planets in general, according to the intention related in the Summary of the Heavenly Motions.
[The second chapter of the First Book, on the finding of the Moon's motion by means of empirical ephemerides, has not been reproduced]

## DERDE

# ONDERSCHEYT DESEERSTEN <br> bOVCX,VANDEVINding van Sarurnusloop deur ervarings dachtafels. 

## 15 VOORSTEL

Te vetclaren hoemen deur ervarings dachtafels uyt den rouvven merckt den tijt van Saturnus omloop: Mette ghedaente van fijn deyfing en ftilftant: Oock dat hy in cen inront drayt.

Tvoornemen fijnde t'onderfoucken de ghedaente van Saturnusloop deur ervarings dachtafels (in wiens plaets wy de berckende van Stadies gebruycken, om de redenē verclaert int I voorftel) ick let op de derde pilaer hem angaende. Ghenomen dan dat my ten eernen voorvalt den 1 lanuatius vant jaer $1554,0 \mathrm{P}$ welcken dach ick hem vinde onder den 342 tr. 27 (1): Op cen jaer daerna, ic weten den 1 Ianuarius 1 s 5 s, vinde hem gheweeft te hebben onder den 353 tr. s3 (1), t'welck op dat jaer 11 tr. 26(1) ghevoordert is. En fghelijcx vinde ick hem den I Ianuarius opt volghende jaer is $s 6$ ghevoordett te fijn noch in tu. 51 (1). En foo voortgaende tot opt jaer is 8 ; bevinde hemdan op den 1 lanuarius weerom gecome tewefen wat over de plaets daer hy int jaer $15 \$ 4$ begoft, te weten onder den 347 tr. 54 (1), hebbende over dien keer ghedaen by de der. tich jaren. En fgelijex onderfouckende tot ander plaetien, bevinde hem overal ontrent de 30 jaren een keer te doen.

Daer na voorder acht nemende op de ghedaente fijns loops in yder jaer, ick bevinde hem d'ecrimacl te verraffchē, d'andermacl te verlappen, ja fomwijlen ftil te faen, en dat noch meer is ettelickemael te deyfen. En op de faeck nauwer lettende, men bevint het middel dier deyfingen altijt te gebeuren wefendeSaturnus ontrent tegheftant der Son, en hoe hy de Son naerder comt, hoe hy miet voortganck meer verfnelt. Om hier afby voorbeelt te fpreken, int jaer 1 s 69 int begin van Iunius, fiermen hem daghelicx 1 (1) loopẽ, daer na dagelicx 2 (1), daer na noch meer, tottet begin vā September, loopende daer dagelicx 8 (1),en daer ontrent ten fnelfē gewceft hebbende, begint int laetfle desfelven maëts weerom te vertragen dagelicx meer en meer, ja fulcx dat hy eintlick vanden 18 tottē 24 lanuarius 1570 fille faet onder den 202 tr. 20 (1). En daer na begint hy te deyfen, t'welc eygentlick anvangende op dé 21 lanuaius, duert totten ii Iunius, vervanghende 141 dagen, diens helft wefende 70 dagen, foo valt het mid-
delop

# THIRD CHAPTER 

## OF THE FIRST BOOK

of the Finding of Saturn's Motion<br>by Means of Empirical Ephemerides

## 15th PROPOSITION.

To set forth how the time of Saturn's motion is roughly found by means of empirical ephemerides; with the nature of its retrogradation and standstill; also that it moves on an epicycle.

The intention being to investigate the nature of Saturn's motion by means of empirical ephemerides (instead of which we use the calculated ephemerides of Stadius, for the reasons set forth in the 1st proposition), I note the third column relating thereto. Let us therefore assume that I chance first upon 1st January of the year 1554, on which day I find it at $342^{\circ} 27^{\prime}$. One year later, to wit on 1 st January 1555, I find it to have been at $353^{\circ} 53^{\prime}$, which is an advance of $11^{\circ} 26^{\prime}$ in that year. And in the same way I find it on 1st January of the following year 1556 to have advanced by $11^{\circ} 51^{\prime}$ more. And continuing like this up to the year 1584, I find that on 1st January it has come back to a little beyond the place where it started in the year 1554, to wit at $347^{\circ} 54^{\prime}$, having performed this revolution in about thirty years. And when I investigate this similarly in other places, I find that it always performs one revolution in about thirty years.

When thereafter I further attend to the nature of its motion in every year, I find it to move faster at one time, slower at another, nay sometimes to stop and, what is more, to retrograde several times. And when we observe the matter more closely, we find that the middle of these retrogradations always occurs when Saturn is nearly in opposition to the Sun, and the nearer it comes to the Sun, the faster becomes its motion. To give an example thereof: in the year 1569 , at the beginning of June, we see it move $1^{\prime}$ daily, thereafter $2^{\prime}$ daily, thereafter even more, up to the beginning of September, when it moves $8^{\prime}$ daily, and having moved fastest at about that time, it begins to move slower again in the latter part of this month, more and more with every day, even in such a way that at last from .18th to 24th January 1570 it stands still at $202^{\circ} 20^{\prime}$. And thereafter it begins to retrograde, which, starting in reality on 21st January, continues to 11 th June, which makes 141 days, one half of which is 70 days; thus the middle falls on 1st April, and not long from that date, to wit, on 30th March, only 2 days before, Saturn and the Sun were in opposition, so that,

## Satvrnviloops pinding devr,\&c.

del op den 1 April, en niet feer verre van daer, te wetē den 30 Macrte, alleenelick 2 dagen daer te voorē, waft tegeftant van Sarurnus en de Son. Sulcx dat gelijck ghefeyt is, het middel der deyling gebeurt altijt wefende Saturnus ontrent tegheftant der Son. Maer hoe hy de Son naerder comt, hoe hy meer verfnelt; inder voughen dat de fnelfe loop altij! ghebeurtontrent faming, als inde bovefchreven fnelfte loop van September, daer was hy in faming (genomen datmen hem deur ervaring hadde connen fien) op den 25 der felver maent. Men fiet oock dat vap yder tegheftant tot tegheflant, van faming tot faming, van begin derdeyfing tot begin der deyfing, is over al een jaer met ontrent noch een halve maent: Als vande tegheftant opden 17 Maerte 1569 , totten eer!̣tvolgenden tegheftant ghebcurende opden 30 Maerte 1570 , is een jacr met ontrent een halve maent, op welcken tijtoveral een deyfingghefchiet, geduerende als vooren ontrent de 140 daghen, te weten twee of drie daghen meer of min : Wiensghe. daente wy deur de dachtafels verclaren wilden.

Dit bovefchreven gheefivermoeden Saturnus in gheen weeh te loopen als de Son, waer uyt foodanighe deyfing niet volghen en can, maerin een inront: Sulex dat hy onsrent tegheftant der Son altijt is an des felven intonts naeftepunr, alwaer hy om fijn loop int inront meer achterwaert gaende, dan hem den loop vant middelpunt des inronts inden inrontwech voorwaert brengt, foo wort daer uyt de deyfing veroirfaeckt. Maer ontrent faming mette Son ant verttepunt wefende, fal daer foo veel raffeher moeten loopen dan des inionts middelpunt,als fijn voorwaert loopingint inront veroirfaeckt.

Saturnus dan om fulcke oirfaken d'eenmael voorwaert d'ander achterwaert loopende, daer volght uyt datier by foodanige verandering een tijt van ftiltant moet wefen: En weerom verkeert ghefeyt, nadienmendefe voortlooping, ftilflant, en dcyfing fiet, foo merckinıend"oirfacck wacrom datter een inrontgefeytwort. Tbe slvy . Wy hebben dan verclaert hoemendeur ervarings dachrafels uyt den rouwen merckt den tijt van Saturnus omloop, mette ghedaente van Gijn deyfing en filftant : Oock dat hy in een inront draeyt, na den cyโch

## 16 VOORSTEL.

## Te verclaren hoemen deur ervarings dachtafelsmerct Saturnus inronts vvech uytmiddelpuntich te vvefen.

By aldien Saturnus inronts thech middelpuntich waer, daer uyt foude volghen dat hy op alle wee even tijden, d'een voor ontrent fijn tegeftant der Son, d'ander daer na, evegroore fchijnbaer bogen moeft loopen, dat teghen d'ervaring frijit. Om t welek deur een form te verclaren, laet het ront ABC Saturnusinronts wech beteyckenẽ waert meugelick middelpuntich fijnde, te weten roodat fijn middelpunt $D$ des Eecrtcloots middelpunt is, daer na fy op $A$ als middelpunt befchreven het inront $E F$, diens verftepunt $E$, en naeftepunt $F$, voort op $D$ als middelpunt den duyfteraer $G H$,en $G$ fijnfchijnbaer verfepunt van $E$, Daer nalijingheteyckent de twee punten $I, K$, inden inrontwech evewijt van $A$, en de twee punten van $L, M$, int inront evewijt van $F$, voort fy van $D$ deur $L$ tot inden dayfteraer gherrocken de lini $D L N$, fghelijcx van $D$ deur M tot inden duyfteracr de lini D M O. Dit foo wefende, ick fal hier me t'yoornemen verclaren.

Het
as has been said, the middle of the retrogradation always occurs when Saturn is nearly in opposition to the Sun. But the nearer it comes to the Sun, the faster it moves, in such a way that the fastest motion always occurs nearly at conjunction; thus, in the above-mentioned fastest motion of September, it was in conjunction (assuming that we could have seen it by observation) on the 25 th of this month. We also see that from opposition to opposition, from conjunction to conjunction, from the beginning of one retrogradation to the beginning of the next retrogradation, it is always one year with about half a month in addition. Thus from the opposition on 17th March 1569 to the next opposition, occurring on 30th March 1570 , it is one year and about half a month, in which time a retrogradation always occurs, which takes, as before, about 140 days, to wit, two or three days more or less; the nature of which we wished to set forth by means of the ephemerides.

The above makes us suspect that Saturn does not move in an orbit like that of the Sun, from which such retrogradation cannot follow, but on an epicycle, in such a way that when it is nearly in opposition to the Sun, it is always at the perigee of this epicycle; and because its motion on the epicycle is more backwards than the motion of the centre of the epicycle on the deferent takes it forward, the retrogradation is caused by this. But when it is at the apogee, nearly when in conjunction with the Sun, it will have to move so much faster there than the epicycle's centre as is caused by its progress on the epicycle.

Since from these causes Saturn thus moves now forwards, now backwards, it follows therefrom that with such change there must be a time of standstill. And, vice versa, because we see this forward motion, standstill, and retrogradation, we perceive the reason why it is said that there is an epicycle. CONCLUSION. We have thus set forth how the time of Saturn's motion is roughly found by means of empirical ephemerides, with the nature of its retrogradation and standstill; also that it moves on an epicycle; as required.

## 16th PROPOSITION.

To set forth how it is found, by means of empirical ephemerides, that Saturn's deferent is eccentric.

If Saturn's deferent were concentric; it would follow therefrom that in any two equal times, one before it is nearly in opposition to the Sun and the other after this, it must move through equal apparent arcs, which is contrary to experience. In order to set this forth by means of a figure, let the circle $A B C$ designate Saturn's deferent, being - if possible - concentric, to wit, so that its centre $D$ is the centre of the Earth. Thereafter let there be described about $A$ as centre the epicycle $E F$, whose apogee is $E$ and perigee $F$; further about $D$ as centre the ecliptic $G H$, and $G$ the 1) apparent apogee of $E$. Thereafter let there be marked the two points $I, K$, on the deferent at equal distances from $A$, and the two points $L, M$, on the epicycle at equal distances from $F$. Further let there be drawn from $D$ through $L$, up to the ecliptic, the line $D L N$; likewise from $D$ through $M$, up to the ecliptic, the line $D M O$. This being so, I shall herewith set forth my intention.

[^14]

Het inronts mid-
delpunt ecrtgeweeft bebbende an $I$,en alfdan Saturnus an M, en fchijnbaerlick an 0 , foo fy het inronts middelpunt daer na gecommen van Itot A, en op den felven tijt Saturnus van M tot $F$ ant naeftepunt, alwaer hy dan om de voorgaende redenen fijn ral in regheftans der Son: Daer na fy gheleden een ander tijt even mette voorgaende,en fal daeren. tuffichen hei inronts middelpunt moeten gecommen fifn van A tot $K$, een booch even an A I, en Saturnus van F tot I , een booch even an FM , en N fal dan Sa turnus chijijnbáer placis wiefen, foo verre van $\mathbf{G}$, als $\mathbf{O}$ van $\mathbf{G}$, om de evenheyt der houcken G DO, G D N: Sulex dat ghelijck wy verclaren wilden, by aldien Saturnus inronis wech middelpuntich waer, als defe, daer uyt foude volgen dat hy op alle twee even tijden, deen voor rijn regheftant der Son, dander daer na, evegroote Cchijn baer boghen moeft loopen, Maer dat Atrijt teghen d'ervaring, dacrom den inrontwech is voor uytmiddelpuntich te houden: Teghen d'ervaringh te frijden wort aldus betoont : Laet ons tot voobbelt nemen eenighe tegheftant als die gebeurt is int jaer 1569 den 17 Maerte, wefende Saturnus onder den 186 tr. 29 (1): Maer op eenighen ijit daer te vooren, ick neem 7 jaren,te weten den 17 Maerte int jaer $1 \leq 62$, was hy onder den 88 tr. 14 (1), uffché welcke een booch is van 98 tr. is (1):Maer 7 jaren daet na,te weten opdē ${ }_{7}$ Maerte 1576,was hy onder den-271 ir. 44 (1), waer op den booch (ee weten vanden 186 tr. 29 (1) af) doct 85 tr. 15 (1), die 13 tr. verfhilt vande ecrfe booch 98 tr. 1s (1). Tbesivy t. Wy hebben dan verclaert hoemé deur ervarings dachtafels merckt Saturnus inrontswech uytmiddelpuntich te wefen, na deneyfch.

## 17 VOORSTEL.

Deur ervarings dachtafels te vinden de fchijnbaer
temizudii. ${ }^{*}$ duyfteraerlangde van Saturnus inrontyvechs verftepunt, en naeltepunt.

Deur het 16 voortel beimerckt fijnde dat den inrontwech middelpuntich is, daer reftedoen voorder te foucken fijn vertepunts fchijnbaer duyfteraerlangde:Tor defen einde heefimen verdocht, dar gebeurende een tegeftant van Saturnus en de Son, als des inronts middelpunt isin fijn wechs verfepunt of
nacte-

The epicycle's centre first having been in $I$, and then Saturn in $M$, and apparently in $O$, let the epicycle's centre thereafter have come from $I$ to $A$, and in the same time Saturn from $M$ to $F$ at the perigee, where it will then for the above reasons be in opposition to the Sun. Thereafter let another time equal to the preceding have elapsed, then the epicycle's centre must meanwhile have come from $A$ to $K$, an arc equal to $A I$, and Saturn from $F$ to $L$, an arc equal to $F M$, and $N$ must then be Saturn's apparent position, as far from $G$ as $O$ from $G$, because of the equality of the angles $G D O, G D N$; in such a way that, as we wished to set forth, if Saturn's deferent were concentric, as this one, it would follow therefrom that in any two equal times, one before its opposition to the Sun and the other thereafter, it must move through equal apparent arcs. But this is contrary to experience, therefore the deferent is to be assumed to be eccentric. That it is contrary to experience is proved as follows: Let us take as example an opposition such as took place in the year 1569 on 17 th March, when Saturn was at $186^{\circ} 29^{\prime}$. But some time before, for example 7 years, to wit, on 17 th March in the year 1562, it was at $88^{\circ} 14^{\prime}$, between which there is an arc of $98^{\circ} 15^{\prime}$. But 7 years thereafter, to wit, on 17 th March 1576 , it was at $271^{\circ} 44^{\prime}$, so that the arc (to wit: from $186^{\circ} 29^{\prime}$ ) makes $85^{\circ} 15^{\prime}$, which differs $13^{\circ}$ from the first arc of $98^{\circ} 15^{\prime}$.

CONCLUSION. We have thus set forth how it is found, by means of empirical ephemerides, that Saturn's deferent is eccentric; as required.

## 17th PROPOSITION.

To find, by means of empirical ephemerides, the apparent ecliptical longitude of the apogee and perigee of Saturn's deferent.

It having been found from the 16 th proposition that the deferent is eccentric ${ }^{1}$ ), it remained to find further the apparent ecliptical longitude of its apogee. To this end it was imagined that, Saturn and the Sun being in opposition, when the

[^15]saeftepunt, dat hy dan op alle twee even tijdeń, d'eene voor fijn tegheftant, d'ander daer na, evegroote fechijnbaer boghen moet loopen : En weerom verkeert;alfmen inde ervarings dachtafels cen tegheftant fulcx vint, dat hy opalle twee even tijden, d'eene voor die tegheflant, d'ander daer na, evegroote bogen loopt, dat des inronts middelpunt in die tegeftant an fijn wechs verttepunt of naeftepunt moet wefen, waer me de fchijnbaer duyfteraerlangde des fèlyē verftepunts of naeftepunts bekent is.

Macr om van tgene tot hier toe gefeyt is breeder verclaringte doen, foolaet de volghende form ghelijek fijn met die des is voorftels, en de letters vande felve beteyckening, uytghenomen dat defe wech A B Cuytmiddelpuntich is, te weten dat des tertcloots middelpunt $D$, nu nict en fy des inrontwechs middelpunt, maer P: En des inronts middelpunt $A$ is an fijn wechs verftepunt,wefende Saturnus an des inronts naeftepunt $F$ in tegheflant der Son. Dit foo fijnde, ick fie de twee fchijinbaer lcopen $G \mathrm{~N}, \mathrm{G} \mathbf{O}$, opeven tijden noch evegroot te moeten wefen,em de evenheyt der twee houckē G D N, G D O, veroirfaçt deur de evenheyt van F L meiF M. Oock mede dat derghelijcke ghebeuren moer, wefende des in ronts middelpunt met fulcke gedaente an fijn wechs naeftepunt gheteyckent met $\mathbf{Q}$.

Merckt noch dat hier vooren gefeyt is, Saturnus altijt ant intonts naeftepunt te wefen ontrent fijn tegeftant der Son: Maer om hier nu eygenticker te fpre. ken, foo is te wetê dat. hy an fijn inrondts
 naeftepunt niet heel volcommelick en is dan in regheftant wefende des inrontsmiddelpunt niet alleenelic an fijn wechs naeItepunt, maer boven dien noch de Son in haer wechs verftepunt of naeftepunt, want nadienfe inden duyfteraer fchijnbaerlick oneventlic loopt, en Saturnus in fijninront eenvaerdich, foo en can hy op alle tege. ftant der Son niet ant inronts naeftepunt wefen, maer wel inalle tegheftant der mid. delfon, die deur de bepaling eenparich loopt: Fin daerom fullen wy hier na om eyghentlicker te freKen, hem fegghen altijt ant naeftepunt of verftepunt te welen, in fijn tegeftant of faming der middelfon.

Dit foo fijnde, en om nutecommen tottet foucken der fchijnbaer duyftetaerlangde van Saturnus inionwechs veiffepunt of naeffefunt, t 'is kennelick deur de voorgaende redenen, dat ick inde ervarings dachtafelseen fijnder tegefanden der middelfon foodanich moet vinden, dat hy opalle twee even tijden, d'cen
epicycle's centre is at the apogee or perigee of its deferent, it must move through equal apparent arcs in any two equal times, the one before its opposition, the other thereafter. And conversely: if we find in the empirical ephemerides an opposition such that in any two equal times, the one before that opposition, the other thereafter, it moves through equal arcs, the epicycle's centre at that opposition must be at the apogee or perigee of its deferent, with which the apparent ecliptical longitude of this apogee or perigee is known.

But to set forth more fully what has been said up to this point, let the following figure be similar to that of the 16 th ${ }^{1}$ ) proposition, the letters having the same meaning, except that here the deferent $A B C$ is eccentric, to wit, that the centre of the Earth $D$ shall not now be the deferent's centre, but $P$. And the epicycle's centre $A$ is at the apogee of its deferent whilst Saturn is at the epicycle's perigee $F$ in opposition to the Sun. This being so, I see that the two apparent motions $G N, G O$ must still be equal in equal times, because of the equality of the two angles GDN, GDO, caused by the equality of $F L$ and $F M$. Also that it must happen similarly when the epicycle's centre with similar figures is situated at the perigee of its deferent denoted by $Q$.

Note also that it has been said above that Saturn is always at the epicycle's perigee when it is nearly in opposition to the Sun. But to speak more truly, it is to be known that it is not perfectly at its epicycle's perigee except when not only the epicycle's centre is in opposition to the perigee of its deferent, but moreover the Sun is at the apogee or perigee of its orbit; for since in the ecliptic it moves apparently non-uniformly, and Saturn on its epicycle uniformly, it cannot at every opposition to the Sun be at the epicycle's perigee, but it can at every opposition to the Mean Sun, which by the definition moves uniformly. And therefore, to speak more truly, we shall hereinafter say that it is always at the perigee or apogee when it is in opposition to or conjunction with the Mean Sun.

This being so, and to come now to the finding of the apparent ecliptical longitude of the apogee or perigee of Saturn's deferent, it is evident for the above reasons that I must find in the empirical ephemerides one of its oppositions to the mean sun such that in two equal times, the one before and the other
${ }^{1}$ ) For 15 th in the original read 16 th.
d'een daer voor d'ander daer na,evegroote fchijnbaer boghen loopt. Om die te foucken, ick flae het bouck open, en valt my ten eerftē voor, neem ick; het jaer 1669, waer in ick fijn tegeftant der Son bevinde gefchiet te fijn op den 17 Maerre,weferide Saturnus onder den 186 rr: 29 (1) (ris waer dat men in plaets der ware Son foude behooren de middelion te nemen, volghende de voorgaende redenen, maer tis tijts genouch daer me te wercken int hactfe, alfmen fiet datmen deur neming der ware Son na ghenouch by tbegheerde comt) Hier-me verfouck ick hoede bovefch reve twee bogen op even tijden (tot welcke tijden ick om de redenen vant merck des 4 voorffels, verkies 7 jaer,wefende byna het vierendeel eenskers duerende ontrent 30 jaren deur het 14 voorfel) d'een voor, d'ander na tegheflant, mer malcander overcommen, en bevinde hem op 7 jaren daer te vooren (dats vanden 17 Maerte 1562 onder den 88 ir. 14 (1), totten if Maerte $1 \$ 69$ onder den 186 tr. 29 (1) gheloopen te hebben 98 . tr. 1) (1): Maer op 7 jaren daer na (dats vanden 17 Maerte I 569 onder dea 186 tr. 29 (1) totten 17 Maerte 1576 onder den 271 tr. 44 (1)) vinde ick hem geloopen te hebbē alleenelick $8 s$ tr. is (1), twelck veel verfchillende vande eerftebooch 98 tr . 15 (1), te weten 13 tr. foo is tichijnbaer verfte of naeftepunt wiit vande bovefchreven 186 tr. 29 (1), oock van fijn teghepunt den $\sigma$ tr. 29 (1) : Doch een van beyden en can ten hoochfien maer 90 ur van daer fijn, daerom falmen derghelijcke tuifchen fulcke bekende palen meughen onderfoucken op de tegheftanden vande volghende of voorgaende jaren, voor of na het jaer 1569 :En gecommen fijnde, neem ick, opt jaer 1572, fie aldaer tegheftant te ghefchien op den 23 April, wefende Saturnus onder den 222 tr. s1 ©(1), alwaer de rekening gemaecki als boven op 7 jacr voor en na, vinde cintlick noch verfchil der twee boghen van 9 tr. 42 (1) : Daeromonderfouck ick der ghielijcke tot een ander plaets, te weten meer voorwaert, om dat d'eerfte booch te groot was, als by de tegeftani dieder gebeurde int jaer 15760p dé 10 Iunius onder dĕ 268 tr. 20 (1), alwaer de rekening gemaeckr als boven, op 7 jaer voor en na, vinde cintlick genouchfaem evenheyt,te wetē alleenelic verchil vä 4 (1), hier van cleēder acht.

Dit aldus foo na commende mette tegheftant der eyghien Son, ick fouck nu waer op dien tiji de middelfon was, om op haer tegheftant nauwer rekening te maken: Neem tot dien cinde de Sonwechs verfepunt na luyt des 4 voorfels te wefen onder den 94 tr. 24 (1), alwaerde fchijnbaer Son en de middelfon deur de 16 bepaling t'famen commende, en dat op den 16 Iunius, fy crijgen foo veel verfchil als in 6 daghen loops vanden 10 totten 16 Iunius veroirfaeckt wort, welck verfchil ick aldus vinde : De fchijnbaer Son heeft inde dachtafelsop de 6 daghen gheloopen 5 tr. 44 (1), maer de middelfon deur het 3 voorftel $s$ tr. ss (1), die alleenelick 11 (1) verfchillende, en hier van gheender acht fijnde, isk latet by de voorgaende rekening blijven. Diet nauwer begheerde, foude defe 11 (1) trecken vande Sonnens ©chijnbaer duyfteraerlangde 88 tr. 20 (1), welcke fy hadde op den io lunius, ighene datter blijf, te weten 88 tr. 9 (1), is voor plats der middelfón, om daer op te berekenen Saturnus tegheflant die wat vrougher valt als vande ware Son,en om voort de rekeninghen te maken als boven.

Van defe chhijnbaer duyfteraerlangde des verttepunts of naeflepunts, mach voorder prouf ghedaen worden op ander even tijden dàn 7 jaren: Als by voorbeelt,op 10 jaren voor en na den 10 Junius 1576 , vinde ick verfchil alleenclick van $s$ (1) : En op 20 jaren alleenelick van 3 (1), waer uyt ick den bovechehreven 268 tr. 20 (1) houde voor t'begecrde.

Tot hier toeghevonden fijinde onder den $268 \mathrm{tr}, 20$ (1) het vertte of naeftepunt te wefen, daer reft nech te foucken wat elck van beyden is: $O \mathrm{~m}$ daer toe te
com-
after it, it moves through equal apparent arcs. In order to find that, I open the book and I chance first, for example, upon the year 1569, where I find its opposition to the Sun to have occurred on 17th March, when Saturn was at $186^{\circ} 29^{\prime}$ (it is true that instead of the true Sun we ought to take the mean sun, for the above reasons, but it is time enough to operate therewith at the end, when we see that by taking the true Sun we come near enough to what is required). Herewith I examine how the above-mentioned two arcs correspond in equal times (for which times, for the reasons given in the Note to the 4th proposition, I choose 7 years, which is nearly the fourth part of a revolution taking about 30 years by the 14th proposition), the one before and the other after the opposition, and find that in 7 years previously (that is from 17th March 1562 at $88^{\circ} 14^{\prime}$ to 17 th March 1569 at $186^{\circ} 29^{\prime}$ ) it has moved $98^{\circ} 15^{\prime}$. But in 7 years subsequently (that is from 17th March 1569 at $186^{\circ} 29^{\prime}$ to 17 th March 1576 at $271^{\circ} 44^{\prime}$ ) I find it has moved only $85^{\circ} 15^{\prime}$; and since this differs much from the first arc of $98^{\circ} 15^{\prime}$, to wit: $13^{\circ}$, the apparent apogee or perigee is far away from the above-mentioned $186^{\circ} 29^{\prime}$, also from its opposite point, $6^{\circ} 29^{\prime}$. But only one of the two can at most be only $90^{\circ}$ away therefrom; therefore the same thing can be examined between such known limits at the oppositions of the subsequent or preceding years, before or after the year 1569. And when I have come, for example, to the year 1572, I see that opposition then occurred on 23rd April, when Saturn was at $222^{\circ} 51^{\prime}$; if I there make the calculation as above, for 7 years before and after, I at last still find the difference between the two arcs to be $9^{\circ} 42^{\prime}$. Therefore I examine the same thing in another place, to wit, further forward, because the first arc was too large, for example, at the opposition that occurred in the year 1576, on 10th June, at $268^{\circ} 20^{\prime}$; and when the calculation is made there as above, for 7 years before and after, I at last find sufficient equality, to wit, a difference of only $4^{\prime}$, which is insignificant here.

This coming thus so near the opposition to the true Sun, I now find where the Mean Sun was at that time, in order to make a more accurate calculation on its opposition. To this end I take the apogee of the Sun's orbit, according to the 4 th proposition, to be at $94^{\circ} 24^{\prime}$; and since the apparent Sun and the mean sun coincide there by the 16th definition, such on 16th June, they will differ as much as is caused by 6 days' motion, from 10th to 16 th June, which difference I find as follows: In the ephemerides the apparent Sun in 6 days has moved $5^{\circ} 44^{\prime}$, but the Mean Sun by the 3rd proposition $5^{\circ} 55^{\prime}$, and since these values differ only $11^{\prime}$, which is insignificant here, I leave it at the preceding calculation. Who should require it more accurately, would have to subtract these $11^{\prime}$ from the Sun's apparent ecliptical longitude of $88^{\circ} 20^{\prime}$, which it had on 10th June; what remains, namely $88^{\circ} 9^{\prime}$, is the position of the Mean Sun, from which we may calculate Saturn's opposition, which falls slightly earlier than that of the true Sun, and further make the calculations as above.

With regard to this apparent ecliptical longitude of the apogee or perigee, further attempts may be made in equal times other than 7 years. Thus, for example, ten years before and after 10 th June 1576 I find a difference of only $5^{\prime}$, and in 20 years of only $3^{\prime}$; from which I assume the above-mentioned $268^{\circ} 20^{\prime}$ to be the required value.

It having been found thus far that the apogee or perigee is at $268^{\circ} 20^{\prime}$, it remains to be found which of these has this value. To arrive at this, for the sake of a clearer exposition thereof let $A B C$ be Saturn's deferent, its centre $D$, eccentric
commen, laet tot opentlicker verclaring van dië A B C Saturnus inrontswech Gija, dicns middelpunt D, uyımiddelpuntichpunt, of den Eertcloot E, verne pont A, nae-
 ftepunt C,en op Bals mid. delpunt fy be fchreven het inront F G, diens naeftepunt $F$, en middelnacflepunt $G$. Dit foo wefende, t 'blijat dat deur dien A het verftepunt is, foo moetdē middelloop A D B int eerfte halfront AB Coveral groter fijn dan dē fchijinba-
ren AEB. Endeur t'verkeerde van dien is openbaer, datals des inronts middel punsloop of Saturnus middelloop, cp cen geftelden ijit int cerfe halfiont grooter bevonden wort dan de fchijnbaer, foo moctet punt van dacr de telling begint het verflcpunt wefen, maer iverkeerde ghebeurende, alfdan het naeflepunt. Dit foo fijnde, ick fouck indedachafels eenighe trgeftant verte genouch van A of C, dats verre ghenouch vanden 268 tri 20 (1) of haer tegenoverpunt, en comt my te vooren, neem ick, de tegeftantgebeurtint jacr is 84 den is Seprember, wefende Saturnus onder den 2 tr. 44 (1) , op welcke fijn inronts mid. delpunts fchijnbaer loop vanden 268 ir. 20 (1) af, doet 94 tr. 24 (1) voor den houck A E B : Maer desfelven inronts middelpunts eyghenloop op dien tijf,te weten vandé 10 lunius 1576 tot defen $1 s$ September 1 s 84 , geduerende 8 Egip-. fche jaren 99 daghen, doet deur het volghende 17 voorfel 101 tr. 6 (1) voor den houck A D B, welckegrooter fijinde dan A EB 94 tr. 24 (1), foo moet om de voorgaende redenen $A$ dats ender des duyfteraers 268 tr. 20 (1) het verftepunt Gijn, en Conder des duyfteraers 88 it , 20 (1) het naeftepunt.

A ngaende ymant nu mocht fegghen dat de rechte lini die ten tijde der tegeflant freque vanden Eertcloot Edeur SaturnusF, niet nootfakelick des inrouts middelpunt B en ontmoct,om bekende oirfaken, te weten de uytmiddelpunticheden vanden inronts wech en Sonwech, over fulce twijffelende of ibovefchreven befluyt vaft gaet : Hier op wort geantwoort, datmen daeraf volcommen fekerheyt can hebben in defer voughen : T'ghetal des inrontboochs tufrehen Saturnusen i'middelnaeflepunt, even bevondē fijnde mette naeftepunrensbooch dieder ten tijde der tegheflant behoort tewelen, foo moet Saturnus dan openbaerlick ant naeftepunt wefen.
Om'welck t'onderfoucken, ick treck den bovefchreven houck
AD B 10ı 11.6 (3) van 180 tr. blijif den houck ED B
78 tr. 54 (1).
Enden
point, or the Earth $E$, apogee $A$, perigee $C$, and about $B$ as centre let there be described the epicycle $F G$, its perigee $F$ and mean perigee $G$. This being so, it appears that because $A$ is the apogee, the mean motion $A D B$ in the first semicircle $A B C$ must always be larger than the apparent motion $A E B$. And conversely it is evident that if the motion of the epicycle's centre or Saturn's mean motion is found to be greater than the apparent motion in a given time in the first semi-circle, the point from which counting starts must be the apogee, but if the converse happens, then the perigee. This being so, I seek in the ephemerides some opposition far enough away from $A$ or $C$, i.e. far enough away from $268^{\circ} 20^{\prime}$ or its opposite point, and I chance, for example, upon the opposition that occurred in the year 1584, on 15 th September, when Saturn was at $2^{\circ} 44^{\prime}$, where the apparent motion of its epicycle's centre from $268^{\circ} 20^{\prime}$ makes $94^{\circ} 24^{\prime}$ for the angle $A E B$. But the proper motion of this epicycle's centre in that time, to wit, from 10th June 1576 to this 15 th September 1584, taking 8 Egyptian years and 99 days, by the following 17th proposition makes $101^{\circ} 6^{\prime}$ for the angle $A D B$, and because this is greater than $A E B$ ( $94^{\circ} 24^{\prime}$ ), for the above reasons $A$, i.e, at $268^{\circ} 20^{\prime}$ of the ecliptic, must be the apogee, and $C$, at $88^{\circ} 20^{\prime}$ of the ecliptic, the perigee.

If anyone now should say that the straight line which at the time of the opposition passed from the Earth $E$ through Saturn $F$ does not necessarily meet the epicycle's centre $B$, from known causes, to wit, the eccentricities of the deferent and the Sun's orbit, doubting whether the above-mentioned conclusion is quite certain, to this it is replied that we can have perfect certainty about this in the following manner: Since the amount of the epicycle's arc between Saturn and the mean perigee has been found equal to the perigee's arc that ought to be there at the time of opposition, Saturn must evidently be at the perigee.

Nu fegh ickdat by aldien de inrontsbooch vant middelnaeftepunt $G$ tot Saturnus, ten tijde defer tegheftant oock bevonden wierde van 6 tr. 42 (1), dat aldan Saturnus an t'naeftepunt $F$, en vervolghens inde rechte lini E B foude moeten ge. weeft hebben, maer fulcke booch wiert bevonden van str. 27.(1), want Saturnus heeft opde bovefchreven 8 Egipfche jaren 99 daghen gheloopen int inront deur het volghende 18 voorflel 354 tr. 33 (1), welcke ghetrocken van 360 tr . blijfr als boven
$s$ tr. 27 (1).
Die vande 6 tr. 42 (1) alleenelick verfchillen
1tris (1).
Dic naerder overeencoming begheert,foude derghelijcke wercking meugen onderfoucken met een tegeflant voor of na de bovefchreven tot dat hyfe vonde. Als by voorbeelt, fulcx ghedaen mette tegeftandt int jaer 1 ; 83 den 3 Seprember, vinde daer me te luttel 1 tr. 13 (1). Maer mette tegeftandr int jaer 1579 dé is Iulius, viel D E B van 33 tr. ss (1), B D E142tr. 9 (1),en E B D 4 tr. 4 (1), welcke dric t'famen maken 180 tr. 8 (1), dat allcenelick 8 (1) te veel is, en voor ghenouchfaen overcomming mach ghehouden worden. Inder voughen dat A het begheerde rerflepunt blifft als boven onder den 268 tr. 20 (1), na ghenouch overcommende metten 263 Ir. van Rheinoldus in Prutericis tabulis.

Belanghende dat de volcommenheyt foude veresffchen met tegheflant det Middelfon te wercken, fulcx febijnt in defe antrangfiche wijfe der leering onnoodich, te meer dat wy tot fo pauwe onderfoucking veel langdueriger dach. tàfels fouden moeren hebben dan defe. Tbe sil y y. Wy hebben dan deur ervarings dachafels gevonden de fchijnbaer duy fteraerlangde van Saturnusinrontwechs verftepunt en naeftepunt, na den eyfch.

## 18 VOORSTEL.

Deur ervarings dachtafels Saturnus middelloop op een ghegheven tijt te vinden, en daerafeen tafel te befohrijven.

Het vinden des loops vant inronts middelpunt deur de ervarings dachtafels gaet aldus toe : Men fiet dat Sarurnus ontrent de 30 jaren een fehijnbaer keer des duyfteraers doet, daerem fouckımen in welck jaer en dach ontrent 30 jaren (of ontrent ettelicke 30 jaıē als de dachtafels lang genouch duyrē) roor of nadë bovefchrevē 10 Iunius 1576, datontrent dē ıolunius Saturnus onder dē 268 tr. 20 (1) (wefende deur het 16 voorncl des inrontwechs verftepunt) in tegeftant der Son is, en den keer ofkeeren alidan ghefchict, fijn na ghenouch volcommen,om vande uyimiddelpunticheden des inrontwechs en Sonwechs gheen hinderlicke dwaling te crijghen : Voort is den tijt vand'een tegeftant tot d'ander bekent, waer deur mẽ oock vindt den loop eens dachs, en tafelen macat, die gelijck inde Sonloop gefeyt is daer na op langer en langer tijden meer en meer verbetert worden. Maer om van ighene tot hier toe int ghemeen ghefeyt is, nuby

To investigate this, I subtract the above-mentioned angle $A D B$ of $101^{\circ} 6^{\prime}$ from $180^{\circ}$; there remains the angle $E D B$ of
And the angle $A E B$, i.e. also $D E B$, as before makes
$94^{\circ} 24^{\prime}$
$6^{\circ} 42^{\prime}$ $173^{\circ} 18^{\prime}$, and when this is subtracted from $180^{\circ}$, there remains for the angle $D B E$, which is also the value of the perigees' arc $F G$,

Now I say that if the epicycle's arc from the mean perigee $G$ to Saturn at the time of this opposition were also found to be $6^{\circ} 42^{\prime}$, Saturn must then have been at the perigee $F$, and consequently on the straight line $E B$; but this arc was found to be $5^{\circ} 27^{\prime}$, for Saturn has moved, in the above-mentioned 8 Egyptian years and 99 days, by the following 18th proposition, $354^{\circ} 33^{\prime}$ on the epicycle, and if this is subtracted from $360^{\circ}$, there remains, as above,
which differ from $6^{\circ} 42^{\prime}$ only
$1^{\circ} 15^{\prime}$
Who should wish for closer agreement, might make a similar investigation with an opposition before or after the one described above until he found it. Thus, for example, when I do so with the opposition in the year 1583, on 3rd September, I find therewith $1^{\circ} 13^{\prime}$ short. But with the opposition in the year 1579 , on 15 th July, $D E B$ was $33^{\circ} 55^{\prime}, B D E 142^{\circ} 9^{\prime}$, and $E B D 4^{\circ} 4^{\prime}$, which three together make $180^{\circ} 8^{\prime}$, which is only $8^{\prime}$ too much and may be considered sufficient agreement; so that $A$ remains the required apogee, as above, at $268^{\circ} 20^{\prime}$, which agrees substantially with the $268^{\circ}$ of Rheinoldus in Prutenicis tabulis ${ }^{1}$ ).

As to the fact that perfection would require us to operate with opposition to the Mean Sun, this seems unnecessary in this elementary instruction, the more so because for such accurate investigations we should need ephemerides covering much longer periods than the present. CONCLUSION. We have thus found, by means of empirical ephemerides, the apparent ecliptical longitude of the apogee and perigee of Saturn's deferent; as required.

## 18th PROPOSITION.

To find, by means of empirical ephemerides, Saturn's mean motion in a given time, and to describe a table thereof.

The finding of the motion of the epicycle's centre, by means of the empirical ephemerides, takes place as follows. We see that Saturn performs in approximately 30 years one apparent revolution in the ecliptic; therefore we seek what year and day approximately 30 years (or several times 30 years, if the ephemerides cover a long enough period) before or after the above-mentioned 10th June 1576 Saturn is about 10 th June at $268^{\circ} 20^{\prime}$ (which by the 16 th proposition is the deferent's apogee) in opposition to the Sun, and the revolution or revolutions that have then taken place are sufficiently complete not to get any disturbing error due to the eccentricities of the deferent and the Sun's orbit. Further the time from one opposition to the other is known, by means of which we also find the motion of one day and make tables which, as has been said in the Sun's motion, are thereafter improved more and more in longer and longer times. But now to give an example of what has so far been said in general, I seek in the ephemerides

[^16]nuby voorbeelt te fpreken, ick foucke inde dachtafels ontrent 30 jaren (ofon. trent ettellicke 30 jaren als de dachtafels langhe ghenouchduyren) voor of na de bovefchreven tegheftant opden 10 Iunius 1576 , een tegheftant wefende Saturnusten naeften by den 268 tr. 20 (1), wort bevonden op den 4 Iunius 160, onderden 263 tr. 35 (1), t'welck van d'ander 4 tr. 45 (1) verfchilt, maerop foo cleenen boochlken en connen de uyimiddelpunticheden ghcen hinderlick verfchil by brenghen, immers opeen voorbeelifche leering als defe.

Dit foo wefende, ick fie dat Saturnus, en vervolghens fijn inronts middel. punt vanden 10 lunius 1576 , totten 4 lunius 160 , doende 10 ) 86 daghen, geloopen heeft 35 str . is (1), te weten vanden 268 tr .20 (1), totten 263 tr . 35 (1) : Daerom fegh ick, 10586 daghen, gheven $35 s t r .1 s$ (1), wat 1 dach? Comt 2 (1) 0 (2) 49 (3). T'welck luttel fchilt van Copernicus gheftelde middelloop doende 2 (1) 3 (2) 30 (1), daer Ptoleimeus voor nam by de 2 (1) 0 (2) 34 (®). En waer de bovefchreven tegheflandt (die 3 tr. 18 (1) van rechte tegheftande fchilt) naerder rechte tegheftandt gheweelt (naerder foudemenfe connen vinden in dachtafels van langher jaren ghelijckmen in den Wijfentijt had) defe loop eens dachs mocht oock naerder t'gheftelde van Copernicus ghevallen hebben.

Nu dan de loop eens dach wefende als boven, $t$ 'is kennelick heemen dacr me foude connen maken, ghelijck vande Sonloop int 3 voorftel ghedaen is, tafels om daer deur met lichticheyt te vinden Saturnus inronts middelpunss loop, anders gheleyt Saturnus middelloop, op alle ghegheven tijt inde * dact Praxi. ghemeenelick te vooren commende.

Maer anghefien wy Ptolemers tafels voorbecltiche wijfe ghebruycken fulLen, om de redenen van diergelijcke inde Sonloop en Maenloop verclaert, foo falickre fellen als volght:

TAFEL
about 30 years (or about several times 30 years, it the ephemerides cover a long enough period) before or after the above-mentioned opposition on 10th June 1576 an opposition with Saturn being nearest to $268^{\circ} 20^{\prime}$; this is found to be on 4th June 1605 , at $263^{\circ} 35^{\prime}$, which differs $4^{\circ} 45^{\prime}$ from the other, but on such a small arc the eccentricities cannot cause any disturbing difference, especially in instruction by means of an example, such as the present.

This being so, I see that Saturn, and consequently its epicycle's centre, from 10th June 1576 to 4th June 1605, which makes 10,586 days, has moved $355^{\circ} 15^{\prime}$, to wit, from $268^{\circ} 20^{\prime}$ to $263^{\circ} 35^{\prime}$. I therefore say: 10,586 days give $355^{\circ} 15^{\prime}$; what does 1 day give? This gives $2 ; 0,49$ minutes, which differs little from the mean motion given by Copernicus, which is $2 ; 3,36$ minutes, for which Ptolemy took about $2 ; 0,34$ minutes. And if the above-said opposition (which differs $3^{\circ} 18^{\prime}$ from exact opposition) had been nearer to exact opposition (they could be found nearer in ephemerides covering more years, such as people had in the Age of the Sages), this motion of one day might also have been nearer the value given by Copernicus.

The motion of one day thus being as above, it is evident how one might make tables therewith, as has been done for the Sun's motion in the 3rd proposition, by means of which to find easily the motion of Saturn's epicycle's centre, in other words Saturn's mean motion, as it usually appears in practice in any given time.

But since we shall use Ptolemy's tables by way of example, for the reasons set forth for a similar matter in the Sun's motion and the Moon's motion, I will give them as follows.

TAFEL VAN SATVRNVS


MIDDELIOOP.


Tbesivy t. Wy hebbë dan deur ervarings dachtafels Saturnus middelloop op eenghegheven tijt ghevonden, en daer af een tafel befchreven, na den cylch.

## 19 V O ORSTEL.

## Deur ervarings dachtafels Saturnus loop in fijn inront op cen ghegheven tijt te vinden, en daer afeen tafel te befchrijven.

Tghegheven. Laet te vinden fijn Saturnus loop in fijn intondr op een dach.

## MERCKT.

Nadien ick twerck defes voortels befchreven hadde na de ghemeene wijfe, rieckende Saturnus middelloop vande Sonnens middelloop, ghelijck hier on: derblijckenfal, foheeff fijn Vorstelicke Ghenade iot grontlicker kennis der oirfaken (foo wel van d'ander volghende Dwaelders, alwaer der ghelijcke fal ghedaen worden, als van defe) daer by noch begeert en vervought cen werck op Saturnus eyghen gront ghebout,als volght.

## 1 W ERCK.

Hy heeft hier toe inde dachtafels gefocht twee van Saturnus tegeftandé met de Son, lange tijt van malcander ghefchiet, byna en onder cen felve plaets des duyfteracrs, want daer me moeten foo wel fijn keeren int inront als de Sonkeeren volcommen wefen, fonder van eenighe uytmiddelpunticheden hinder te crijghen, en oock onnoodich fijnde rekening te maken mette Middelfon, om bekende reden. D'eerfte van fulcke rwee tegheftanden nam hy dieder viel op den 10 Iunius 1576 , d'ander den 4 Iunius 160 ; tufthen welcke fijn by de 29 jaren, doende 10586 daghen, waer op Saturnus int inront foo veel keeren ghedaen heeft alffer tegheftanden gebeurt fijn,welcke bevonden wierden 28,elcke van 360 tr. maken 10080 tr. Hier me fegghende, 10586 dagengeven 10080 tr. wat I dach ? Comt voor t'begheerde 57 (1) 7.55. weynich verrchillende van Copernicus en Ptolemeus belluyt int volghende.

2 W ERCK.
Vande Sonnens middelloop cens dachs,doende deur het 3 voorftel

$$
\text { de deur het } 17 \text { voorftel }
$$

Otr. 59. 8.17.13.12.31.
Getrocken Saturnus midd
de deur het 17 voortel
Otr. 2. 0.33.31.28.51.
Blijft voor begheerden Saturnusloop in fijninront op cen dach
otr. $57 \cdot 7 \cdot 43 \cdot 41 \cdot 43 \cdot 40^{\circ}$

## TBEWYS.

Anghefien Saturnus altijt ant inronts naeftepunt is in fijn tegheftantder Middelfon deur t'voorgaende, foo moet nootfakelick dien inronifloop even fijn ande middelloopder Son, min foo veel als bedraecht des inronts middelpuntsloop.

CONCLUSION. We have thus found, by means of empirical ephemerides, Saturn's mean motion in a given time, and described a table thereof; as required.

## 19th PROPOSITION.

To find, by means of empirical ephemerides, Saturn's motion on its epicycle in a given time, and to describe a table thereof.

WHAT IS REQUIRED 1). Let Saturn's motion on its epicycle in one day have to be found.

NOTE.
After I had described the procedure of this proposition in the usual manner, subtracting Saturn's mean motion from the Sun's mean motion, as will appear below, for a more thorough knowledge of the causes (both of the other following - Planets, where a similar operation will be carried out, and of this one) His PRINCELY GRACE required in addition and added a method based on data from Saturn's tables alone, as follows.

## 1st METHOD.

To this end he sought in the ephemerides two of Saturn's oppositions to the Sun, which had occurred a long time apart, nearly at the same place of the ecliptic, for therewith its revolutions on the epicycle as well as the Sun's revolutions must be complete, without being disturbed by any eccentricities, and it also being unnecessary to take account of the Mean Sun, for known reasons. For the first of these two oppositions he took the one that fell on 10th June 1576, for the other 4th June 1605 , between which there are nearly 29 years, making 10,586 days, in which Saturn has performed so many revolutions on the epicycle as there have been oppositions, which were found to be 28 , each of $360^{\circ}$, making $10,080^{\circ}$. Saying now: 10,586 days give $10,080^{\circ}$, what does 1 day give? The value required is $57 ; 7,55$ minutes. which differs little from Copernicus' and Ptolemy's results in the following.

2nd METHOD.
When from the Sun's mean motion in one day, making
by the 3 rd proposition
$0^{\circ} ; 59,8,17,13,12,31$
there be subtracted Saturn's mean motion in one day, making by the 18th proposition ${ }^{2}$ ) $0^{\circ} ; 2,0,33,31,28,51$
there remains for Saturn's required motion on its epicycle in one day
$0^{\circ} ; 57,7,43,41,43,40$

## PROOF.

Since Saturn by the above is always at the epicycle's perigee in its opposition to the Mean Sun, this epicyclic motion must necessarily be equal to the mean motion of the Sun, minus the amount of the motion of the epicycle's centre.

1) Evident mistake in the Dutch text. Instead of Tghegheven read Tbegheerde.
${ }^{2}$ ) In the Dutch text, read 18 instead of 17 .

Om hicr af met breeder reden te verclaren, ick fegh aldus: Sco by voorbeele het inronts middelpunt gheen loop en hadde, maer vaft bleve, en dat Saturnus in faming dan evewel altijt in fijn inronts verfepunt waer, t 'is kennelick das Saturnusloop in fijn inront dan even foude moeten fijn andeSonnens middelloop: Maer het inronts middelpunt hecft daerentuffichen een loop gedaen, daerom foo veel die is; foo veel moet Saturnus inroniloop corter dueren dan de middelloop der Son, en vervolghens treckende Saturnus inronts middelpunts loop, vande Sonnens middelloop, de reft is de begheerde loop van Sasurnusin fijninront.

## VERVOLGH.

Deloop cens dachs wefende als boven, t'is kennelick hocmen daer me fal maken, ghelijck vande Sonloop int 3 voorftel ghedaen is, tafelen als de navolghende, om daer me met lichticheyt Saturnus loop in fijn inront te vinden op


Merckt noch datmen tot prouf der voorfchreven werckinghen mach fien foodickwils alfment oirboir verftaet, of het laeft ghevonden ghetal even is mettet ghetal daer me overcommende : Als by voorbeelt van t'gheral des Sonloops eens jaers, ghetrocken t'ghetal van Saturnus inrontloop eens jaers, of die seft overcomt met foodanich ghetal anders ghevonden deur ervaring.

To set this forth more fully, I say as follows: If, for example, the epicycle's centre did not move, but remained fixed, and Saturn in conjunction were yet always in its epicycle's apogee, it is evident that Saturn's motion on its epicycle would then have to be equal to the Sun's mean motion. But the epicycle's centre has meanwhile moved on; therefore, as much as that is, by so much must the motion of Saturn's epicycle be less than the mean motion of the Sun 1), and consequently, when the motion of Saturn's epicycle's centre is subtracted from the Sun's mean motion, the remainder is the required motion of Saturn on its epicycle.

## SEQUEL.

The motion in one day being as above, it is evident how tables such as the following will be made therewith - as was done for the Sun's motion in the 3 rd proposition - by means of which to find easily Saturn's motion on its epicycle as it usually appears in practice in any given time.

Note also that, to test the aforesaid methods, we may ascertain as often as we deem suitable whether the value last found is equal to the value corresponding thereto. Thus, for example, when from the value of the Sun's motion in one year there is subtracted the value of Saturn's motion on its epicycle in one year, whether the remainder corresponds to a similar value found in another manner, by experience.

[^17]TAFEL VAN SATVRNVS LOOP


INTINRONT.

| (1) |  |
| :---: | :---: |
|  |  |
|  |  |
| 310 8 3 15 22 33 20 |  |
| $5 \begin{array}{lllllllllll}297 & 40 & 4 & 4 & 13 & 11 & 40\end{array}$ |  |
|  |  |
| 7272 |  |
|  |  |
|  |  |
|  | 432 14 $29.51{ }^{40} 303600$ |
|  | +50150 |
|  | $468-285$ |
|  |  |
|  |  |
|  |  |
|  |  |
| 177148 |  |
|  |  |
|  |  |
|  |  |
| 72.182 | 630 66 8 8 3 |
|  |  |
|  | 606337 21 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 187 14 55 50 18 0 0 |  |
|  | 799:206\| 34144144 |
|  |  |

## 68 Satvrnviloops Vinding devr \&c.

Tbesly y T. Wy hebben dan deur ervarings dachtafels gevonden Saturnus loop in finn inront op een gheghen tijt, en dacraf een tafel befchreven, na den eyfch.

## MERCKT.

By aldien defe dachtafels van Stadius foo lang duerden, en foo veel Saturnus keeren hadden, datmen daer in mocht vinden twee fijnder tegheftanden mette Son onder cen felve duyfteraerlangde, wy fouden dan hier meughen een voornel befchrijven, gelijck inde Sonloop en Maenloop gedaen is, te weten : Deur ervarings dachtafels te maken berekende dachtafels van Saturnus loop op toecommende tijden : Maer angefien hy daer in alleenelick een volcommen keer ghedaen heeft, fooen wil fulcke vinding hier niet vallen : Doch hoemen deur wifconftige rekeningen vindt van hoe langen tijt de dachtafels fouden moeten befchreven fijn om fulcken felfheyt te crijgen, dat fal elders verclaert worden.

## 20 V O ORSTEL.

## Deur ervarings dachtafels den loop van Saturnusinront vvechs verftepunt te vinden.

Angefien de dachtafels van Stadius (die wy nemen al offe deur ervaringhen bevonden waren, om de redenen verclaert int 1 voorftel) te cort fijn om daer deur bequamelick t'begheerde te vinden, foo falick tot hulp nemen de ervaringhen van Ptolemers, welcke int s hoofiffick fijns II boucx Saturnus inrondt wechs verftepunt bevondē heeft onder des duyfteraers 233 tr. maerint 16 voorftel bevintment onder den 268 tr. 20 (1), T'welck 3 s tr. 20 (I) voorder fijnde, het verflepunt is na defe rekening foo veel verloopen opdien tijt, bedraghende ontrent 1450 jaren, teweten vant jaer 127 tottet jaer defer ervaring 1576 . Fa hier me wort bekent des verftepunis loop op alleghegheven tijt : Als by voorbeelt,om die te hebben opeen jaer, ick fegh 1450 jaren gheven 35 tr. 20 (1), wat I jaer?Comt 1 (1) 28 (2). TbesLV Yt. Wy hebben dan deur ervaringsdachtafels gevonden den loop van Saturnus inront wechs verftepunt, na den eyfch.

## 21 VOORSTEL.

## Deur ervarings dachtafels Saturnus inronts middelpuntsloop in fijn vvech te vinden.

Den loop van Saturnus inrontwechs verftepunt wortopeen
jaer bevonden deur het 18 voorftel van
1(1) 28 (2).
Die ghetrocken van Saturnus middelloop oock opeen jaer, te weten een Egips doende deur het 17 voorfel

12 tr. 13 (1).
Blijft voor begheerde loop des inronts middelpuntsin fijn wech op cen Egips jaer

12 tr. 12 (1).
En is openbaer dat alfoo ghevonden fal worden den loop van alle voorgheftelde tijt:Waeraft'bewijsdeur twerck openbaer is. Tbes LVyt. Wy hebben dan deur ervarings dachtafels Saturnus jaronts middelpunts loop in fijn wech ghevonden, na den eylch.

VIERDE

CONCLUSION. We have thus found, by means of empirical ephemerides, Saturn's motion on its epicycle in a given time, and described a table thereof; as required.

## NOTE.

If these ephemerides of Stadius covered so long a time and contained so many revolutions of Saturn that we might find therein two of its oppositions to the Sun at identical ecliptical longitude, we could here describe a proposition as has been done in the Sun's motion and the Moon's motion, to wit: To make, by means of empirical ephemerides, calculated ephemerides of Saturn's motion in future times. But since it has performed only one complete revolution therein, such finding cannot here take place. But it will be set forth elsewhere how it is found by mathematical calculations what length of time the ephemerides would have to cover in order to obtain such identity.

## 20th PROPOSITION.

To find, by means of empirical ephemerides, the motion of the apogee of Saturn's deferent.

Since the ephemerides of Stadius (which we use as if they had been found by experience, for the reasons set forth in the 1st proposition) cover too short a period to find therewith easily what is required, I will have recourse to the experiences of Ptolemy, who in the 5th chapter of his 11th book has found the apogee of Saturn's deferent at $233^{\circ}$ of the ecliptic; but in the 16 th proposition we find it at $268^{\circ} 20^{\prime}$. This being $35^{\circ} 20^{\prime}$ ahead, according to this calculation the apogee has moved this amount in that time, being about 1,450 years, to wit, from the year 127 to the year of the present observation, 1576. And in this way the motion of the apogee in any given time becomes known. Thus, for example, to have it in one year, I say: 1,450 years give $35^{\circ} 20^{\prime}$, what does one year give? This gives $1^{\prime} 28^{\prime \prime}$. CONCLUSION. We have thus found, by means of empirical ephemerides, the motion of the apogee of Saturn's deferent; as required.

## 21st PROPOSITION.

To find, by means of empirical ephemerides, the motion of the centre of Saturn's epicycle on its deferent.

The motion of the apogee of Saturn's deferent is found, by the 18th proposition, to be in one year
This being subtracted from Saturn's mean motion in one year, to wit, an Egyptian year, making by the 17th proposition $12^{\circ} 13^{\prime}$
there remains for the required motion of the epicycle's centre on its deferent in an Egyptian year

And it is evident that thus the motion in any suggested time can be found, the proof of which is evident from the procedure. CONCLUSION. We have thus found, by means of empirical ephemerides, the motion of the centre of Saturn's epicycle on its deferent; as required.
[Chapters 4 up to and including 7, dealing with Jupiter, Mars, Venus, and Mercury, bave not been reproduced bere]

# ONDERSCHEYT DESEERSTEN 

BOVCX,VANDE VIN-<br>ding des loops der vafte Sterren.

50 V OORSTEL.

## Te verclaren hoemen deur ervarings dachtafels meret de vafte Sterren in haer hemel vaft te vvefen, en den hemel tedrayen op den as des duyfteraers.

Anghefien dit roerfel foo traech is, datmen daer af weynich bercheyts can mercken op den tijt defer dachafaels van Stadius geduerende sz jaren,foofullen wy hicr en int volgende si voorftel tot hulp gebruycken Ptolemeus nagelaten fchrifien vande plaeten der vafte fterren, nemende voorbeelifche wijic al of die met defe 'famen ons ervarings dach tafels maeckten.
Dit foo wefende, angefien de vafte fterren nu in Stadius dachtafels met fulcken verheyt van malcander ghevonden worden als ten tijde van Polemems, na luyt des $s$ hooffticx fijns 9 boucx, en dat die doen in rechte linien ftonden, nu daer in noch fijn, niet teghenflaende r'felve over de 1400 jaren gheleden is, foo befluytmen daer uyt haer vafticheyt.

Maer want haer duyfteraerbreeden de felve blijven, en haer evenaerbreeden met duy teraerlangden veranderen, foo befluytmen den heelen hemel te moeten dracyen op den as des duyfteraers. Als by voorbeelt de *are des Maechts Spiaa virgidiens Zuyderfche duyteraerbreede Ptolemeus ftelt op 2 tr. 10 (1), wort alfoo nü. oock in Stadius dachtafels befchreven : Maer de duy fteraerlangde die Ptolemeus ftelde op 176 tr. 40 (1), is by Stadius van 197 tr. 38 (1) : En haer evenacrbrecde welcke Ptolemeus int 3 hoofitick fijns 7 boucx ftelt op 30 (1) na her Zuyden, die comt, volghende Stadius befchrijving 8 tr. 56 (1) Zuytwaert, want hoewelle in fijn dachafels niet en flaet, foo volght fulcx uyt de bovefchreven duyfteraerlangde en breede deur het 9 wercfluck der Hemelclootfche werckftucken: En want dit roe rfel ghefchiet nat'vervolgh der trappen, foo moetet fijn van Weften na Ooften. Tbeslyyt. Wy hebben dan verclaerthoemen deurervarings dachafels merckt de vafte Sterren in haer hemel vaft te wefen, en den hemel te drayen op den as des duyfteracrs, na den eyfch.
si VOOR-

## EIGHTH CHAPTER

## OF THE FIRST BOOK,

Of the Finding of the Motion of the Fixed Stars ${ }^{1}$ )

## 50th PROPOSITION.

To explain how it is found by means of empirical ephemerides that the fixed Stars are fixed in their heaven and that this heaven rotates on the axis of the ecliptic.

Since this motion is so slow that little information can be obtained about it in the time of these ephemerides of Stadius, which cover 52 years, here and in the subsequent 51 st proposition we will use as aids the writings left by Ptolemy on the positions of the fixed stars, assuming by way of example that those together with these constitute empirical ephemerides to us.

This being so, since now in Stadius' ephemerides the fixed stars are found to be at the same distances from one another as at the time of Ptolemy, according to the 5th chapter of his 7th book, and that those which then were in straight lines now still are, notwithstanding the fact that this was more than 1400 years ago, it is concluded from this that they are fixed.
But because their ecliptical latitudes remain the same and their equatorial latitudes vary with the ecliptical longitudes, it is concluded that the whole heaven must rotate on the axis of the ecliptic. Thus, for example, Spica Virginis, whose Southerly ecliptical latitude Ptolemy 2) puts at $2^{\circ} 10^{\prime}$, is also described thus in Stadius' ephemerides. But the ecliptical longitude, which Ptolemy put at 17640', is $197^{\circ} 38^{\prime}$ in Stadius. And its equatorial latitude, which Ptolemy in the 3rd chapter of his 7th book puts at $30^{\prime}$ to the South, according to Stadius' description comes at $8^{\circ} 56^{\prime}$ to the South, for though it does not occur in his ephemerides, this follows from the above-mentioned ecliptical longitude and latitude by the 9th problem of the problems on Heavenly Spheres. And because this motion takes place in the order of the degrees, it must be from West to East.
CONCLUSION. We have thus explained how it is found by means of empirical ephemerides that the fixed Stars are fixed in their heaven and that this heaven rotates on the axis of the ecliptic; as required. .

[^18]$$
5 \text { I VOORSTEL. }
$$

## Deur ervarings dachtafels te vinden den eyghen loop der vafte Sterren.

Anghefien de Are des Maechts ten tijde van Ptolemeus int jaer 139 was in des duyfteraers 176 tr .40 (1), maer ten tijde van Stadius int jaer $15 S 4$ inden 197 tr. 38 (1), dats 20 tr. 58 (1) voorder, foo heeftre de felve booch geloopen op den tijt tuffehen beyden bedraghende 1415 jaren, daerom fegh ick, 141 jaren gheven 20 tr. 58 (1), wat ico jaren ?Comt itr. 29 (1). En Ighelijex can openbaerlick ghevonden worden den loop op alle ghegheven tijt, waer af t'bewijs openbaer is. T'besLVyT. Wy hebben dan deur ervarings dachtafels ghevonden den eyghen loop der vafte Sterren, na den eyrch.

DES EERSTEN BOVCX EINDE.

## s1st PROPOSITION

To find, by means of empirical ephemerides, the proper motion of the fixed Stars.

Since at the time of Ptolemy in the year 139 Spica Virginis was at $176^{\circ} 40^{\prime}$ of the ecliptic, but at the time of Stadius in the year 1554 at $197^{\circ} 38^{\prime}$, i.e. $20^{\circ} 58^{\prime}$ farther, it has passed over this arc in the time between these two, which is 1415 years. I therefore say: 1415 years give $20^{\circ} 58^{\prime}$; what do 100 years give? This gives $1^{\circ} 29^{\prime}$. And in the same way the motion in any given time can clearly be found, the proof of which is clear. CONCLUSION. We have thus found, by means of empirical ephemerides, the proper motion of the fixed Stars; as required.

END OF THE FIRST BOOK.

# T W E E D E BOVCK DES  D VV A ELDERLOOP <br> DEVR WISCONSTIGHE vverckingghegront opdeoneyghen felling eens vaften <br> Eertcloors 

# SECOND BOOK <br> OF THE HEAVENLY MOTIONS 

OF THE MOTIONS OF THE PLANETS
by Means of Mathematical Operations,
Based on the Untrue Theory ${ }^{1}$ ) of a Fixed Earth

[^19]
## defes tvveeden Boucx.



Net cerste bouck des Hemelloops deur ervaringhen uyt den rounen bemerckt fynde, de Dwaelders in aytmiddelfuntighe ronden en inronden te loopen, met ander omstandighen dies angaen. de, Wiaer me ons ghedacht een gront heeft, am deur bifconstighe Werckinghen veel nauver en fikerder t'onderfoucken of bet oock volcommen rondenfyn, en offe daer in aliÿt cenvaerdicheveras looopen, voort boat reden baer balfmiddellynen en uytmiadelpunticheytlÿnen tot malcander bebben, tot Wiat plaetfon fy intcecommende tüden fign fullen, boven dien omte gheraken tot kennis der oneven daghen, der filstandenen deyfingken, der groothcyt vande verduysterde deelen die son on Maen in baer duysteringhen crïghen, der verbeden daerfe vanden Eertcloot infyn, der grootheden diefe beblen teghen den Eertcloot veritken,met meer ander dierghelÿcke daer an clevende; $\int 00$ fullen by nu tottet tweede bouck comm $\breve{e}_{\text {, }}$ inhoudende der felve bifconflige bierck in. ghen, en dat noch alop de ghemiste ftelling cens viaflein Ecricloots, geig̈ck de befchrÿving van dien Ptolemeus cerf ter hands quam, te weten fona'er dacr in vermengt te Bereen finn verdochre vonden der onbekende roerfels (als de tweede oneventbeyt der Maen, mette derde oneventheden van Saturnus, iupiter, Mars, Vo nus en Mercurius, met /gaders het onbekent breederoerfel der vijf laetste, welcke men int ghemeen der Dwaelders onbekende loop noemt) die ick daer uyt fcheyden fal, en daex na befonderlick befohrÿven, op dat elck alfoo claerlicker fiende watzer deur Ftelling eens vasten Eertcloots ghebreieckt, te bequamelicker na ander beter wonden trachtes mach. En fal hier af feven onderfcheytfels maken.
Het 1 vande bifionstighe uytmiddelpunticheyts handel int ghemeen.
Het tweede vande Sonloop.
Het 3 vande CMaenloop.
Het 4 van Saturnus, Iupiters, © Mars, Venus en CMercurius loop.
Het $s$ van der Dwaelders faminghen, teghenstanden, en duysteringhen.
Het 6 van Ptolemcus verdochte tweede oneventhedē der Maen, en derde oneventbeden van Saturnus, Iupiter, Mars, Venus en CMercurius.
Het 7 van Ptolemeus verdocbte breedeloop der vÿf Dwaelders, Saturnus, Iupiter, LHars, Venus en Meriurius.

## M ERCKT.

Ick noem defe wercking wifconflich, tot onderfcheyt der wercking ghetrocken uyt ervaringhen int eerfte bouck, en hoewelfe dickwils deur rekeningen met tafels in geen heele volcommenheyt der getalen en beftaet, gelijek in volcommen wifconftighe wercking vercyfcht wort, nochtans anghefien daer in iseen voct van oneindelicke naerdering , mettet wifconitich groote ghëmeenfchap hebbende, en de bewijfen oock wifconftich fijnde, foo fchijnet darmenfe om tbovefchreven onderfcheyts wille wifconftich noemen mach.

1 ONDER.

## SUMMARY OF THE SECOND BOOK

As it has been roughly perceived in the first book of the Heavenly Motions by experience that the Planets move in eccentric circles and epicycles, with other circumstances relating thereto, so that our thoughts have a basis on which to examine much more accurately and surely, by means of mathematical operations, whether the circles are perfect circles and whether they always move therein with uniform velocity, further what proportion their semi-diameters and lines of eccentricity have to one another, in what places they will be in future times, and further to acquire knowledge of the unequal days, of the stations and retrogradations, of the magnitude of the eclipsed parts of Sun and Moon during their eclipses, of their distances from the Earth, of their magnitudes as compared with the Earth, with more such related phenomena, we shall now come to the second book, containing their mathematical treatment, such all on the incorrect theory of a fixed Earth, as the description thereof first came into the hands of Ptolemy, to wit, without being mingled with his supposed discoveries of the unknown motions (such as the second inequality of the Moon, with the third inequalities of Saturn, Jupiter, Mars, Venus, and Mercury, as also the unknown motion in latitude of the five last-mentioned planets, which in general is called the unknown motion of the Planets), which I will remove therefrom and describe thereafter separately, so that everybody, thus seeing all the more clearly what defect is involved in the theory of a fixed Earth, may strive the more easily to make other and better discoveries. And I will make thereof seven chapters.
The first of the mathematical treatment of eccentricity in general.
The second of the Sun's motion.
The third of the Moon's motion.
The fourth of the motions of Saturn, Jupiter, Mars, Venus, and Mercury.
The fifth of the Planets' conjunctions, oppositions, and eclipses.
The sixth of Ptolemy's supposed second inequalities of the Moon, and third inequalities of Saturn, Jupiter, Mars, Venus, and Mercury.
The seventh of Ptolemy's devised motion in latitude of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury.

## NOTE.

I call this operation mathematical to distinguish it from the procedure based on experiences, in the first book; although it often operates, through computations with tables, with numbers which are lacking the perfect accuracy required in perfect mathematical operations; nevertheless, since there is in it a basis of infinite approximation, having great similarity to the mathematical, and since the proofs are also mathematical, it seems that because of the above distinction it may be called mathematical.
[For reasons, set forth in the Introduction, the Second Book has not been reproduced, with the exception of the last paragraph only]

## 246 Vande DVysteringhen devr \&c.

feyt is, foude connen verftrecken tot ghemeene reghel van al d'ander, overmidts men mette bekende winft van d'een Dwaelder boven d'ander foo foude wercken, als vooren gedaen is: Sulcx datter niet en gebreeckt dan fekerderkennis van der Dwaelders loop in langde en breede.

## 2 MERCK.

Mijn voornemen was int belchrijven des Cortbegrijps defes 2 boucx als blijckt, hier noch by te voughen een fefte Onderfcheyt van Ptolemeus verdoch. te tweede oneventheden der Maen, en derde oneventheden van Saturnus, Iupieer, Mars, Venus, en Mercurius in langdeloop : Metfgaders een fevende On. derfcheyt van Piolemieus verdochte breedeloop der vijf Dwaelders, Saturnus, Iupiter, Mars, Venus, en Mercurius:Maer nadien ick volghens mijn voornemen, int eerfte en tweede bouck befchreven hadde den Hemelloop met ftelling eens vaften Eertcloots, fonder daer in te vermenghen Ptolemeus vonden der boveichreven onbekende roerfels, die ick befonderlick alleen gheftelt hadde: Sghelijcx oock gedaen hebbende met Copernicus befchrij ving cens roeren. den Eertcloors, die fijn eyghen vonden der felve on bekende roerfels daer oock in vermengde, welcke ick mede daer uyt liet, en alleen befchreef, om daer deur de foucking des onbekenden handels voor yghelickoclaerder en verfaenlicker te maken, en na beter fpiegeling te meugen trachten: Soo ift gebeurt dat tghene ick aldus voor anderẽ bereyt hadde; my felf tot inleyding verftreate, om tot fplegeling te geraken die my beter docht, wantalfoo ick censquam te overfien mijn gefchreven derde bouck na Copernicus wijfe (dat een tijtlang fill gelegen hadde) om dat inden druck te brengen, ick quam tot ander kennis des breede. loops der Dwaelders,Saturnus,Iupiter, Mars, Venus,en Mercurius,fulex dat my docht de felvegheen onbekende roerfels meer en behooren te heeten, en vervolghens oock onnoodich te wefen het voornoemde fevende Onderfcheyt te befchrijven, want alle ramingen der menfchë int foucken der Dwaelders loop. fecr nauwe te willen deurgronden, het fchijnt datmē den tijt beter foude connen befteden met ghewiffe dinghen te leeren. Nu dan angefien de breede loop om de voorgaende reden comen fal int derde bouck met fellingeensroerenden Eertcloots, foo is dit d'oirfaeck waer deur ick het bovefchreven fevende Onderfcheyt hier uyt laet. Angaende het 6 Onderfcheyt, dat heb ick oirboir verftaen inden Anhang des Hemelloops te brengen,om de redenen welcke aldaer van dies fullen verclaert worden.

Noch iste ghedencken, dat foo ymant int voorgaende of volghende defer wifconftige ghedachreniffe, quaem t'ontmoeren woorden of redenen in welcke de bovefchrevẽ roerfels der breede onbekentgenoemt worden, die ick noch tans nufegh bekent te fijn, d'oirfacck daer af te wefen dat het volghende derde bouck t'laettewas, datter gedruckt wiert, hoewel ander ftoffen t'bouck gebonden fijnde daer achter volghen, en datickalsghefegt is , int overfien des felven derden boucx eerft tot breeder kennis gherocht.

## Destmeeden Bovcx

EYNDE.

# FIFTH CHAPTER <br> OF THE SECOND BOOK 

## 63rd PROPOSITION <br> 2nd NOTE

When writing the Summary of this 2nd book, I meant to add - as appears a sixth Chapter on Ptolemy's devised second inequalities of the Moon and third inequalities of Saturn, Jupiter, Mars, Venus, and Mercury in the motion in longitude; as also a seventh Chapter on Ptolemy's imagined motion in latitude of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury. But after, according to my intention, in the first and the second book I had described the Heavenly Motions on the theory of a fixed Earth, without including therein Ptolemy's discoveries of the above-mentioned unknown motions, which I had placed apart, while I had also done similarly with Copernicus' description of a moving Earth, who also included therein his own findings of the said unknown motions, which I also left out and described separately, in order thus to make the search for the unknown phenomena clearer and more intelligible for everyone and to be able to strive after a better theory, it so happened that what I had thus prepared for others, served as a preliminary for myself to arrive at a theory which seemed better to me. For when I went through my third book as written after the manner of Copernicus (which had been laid aside for some time) in order to prepare it for publication, I arrived at other knowledge of the motion in latitude of the Planets Saturn, Jupiter, Mars, Venus, and Mercury, so that it appeared to me that they ought no longer to be called unknown motions, and that consequently it was also unnecessary to describe the aforesaid seventh Chapter, because it seems that we might spend our time better teaching things that are certain rather than wish to fathom exactly all men's estimates in the search after the Planets' motions. Since therefore the motion in latitude for the aforesaid reason is to come in the third book, on the theory of a moving Earth, this is the cause why I here omit the above-mentioned seventh Chapter. As to the 6th Chapter, I thought it appropriate to put this in the Supplement of the Heavenly Motions, for the reasons that will there be given for it.

It is further to be borne in mind that if in the preceding or following parts of these mathematical memoirs anyone should come across words or arguments in which the above-mentioned motions in latitude are called unknown, which nevertheless I now say to be known, the cause of this is that the subsequent third book was the last to be printed, though, after the book was bound, other subjects follow thereafter, and that, as has been said, I arrived at greater knowledge while going through the said third book.

END OF THE SECOND BOOK.

## D E R D E BOVCK DES <br> HEMELLOOPS, <br> vANDE <br> VINDING DER DVVAEL <br> DERLOOPEN, DEVR WIS- <br> conftighe vvercking ghegront opde <br> wefentlicke ftelling des roe- <br> renden Eertcloots,

# THIRD BOOK <br> OF THE HEAVENLY MOTIONS 

OF THE FINDING OF THE MOTIONS OF THE PLANETS

by Means of Mathematical Operations, Based on the True Theory of the Moving Earth

## CORTBEGRYP DE-

SES DERDEN BOVCX.

$M$ de fomme van defen te verclaren, foo faet te ghedencken dat de Dvoaelders tvocederley loop bebben, d'een in lang de, de ander in breede: Angaende de lang deloop, diefal bier vuifonstelick bevivefenvoorden met ffelling eens roerenden Eertcloots t' 'elve befluyt te crijgen, dat fe met felling eensvasten beeft, alleenelick daer in verfobillende, dat t'ghene mette felling eens vasten voor vreemt en met verveondering angkefien voort, deur d'ander fonder voonder is, alsgegront fyinde opt' gene 'ovefentlick inde natuer bestaet. $V$ yt bet voornomde beveïs, te vvetendat deeen en d'ander felling een felve beffuyt voortbrengt, faldefe befcbrïving feer cort valte, voant ick op defe roerende fielling geen nieuvververcstucken maken en fal van tivinden der Hemelloopfche dinghen, maer voor gemeene regel nemen, dat alt'gene ons vande langdeloop inde daet voorvalt te berekenen, gedaen fal voorden deur de voerckstucken gegront op felling eens roasten Eertcloots, en bef chreven inde voorgaende tevee eirffe boucken: Ick fal oock in een befonder voorstelverclaren mün gevoelen, vvaerom ick fulcke voercking gedaen op cen oneygen ftelling, voor bequamer boude dan dre op de eygen vearegegront is. Nade lang deloop falde breedeloop volgen, die ick oock meet d'een end'ander ftelling een felve befluyt voortbrenghende bef chrïven fal.

Dit inboudt int gemeëfoodanich f jinde fal vîf onderf cheytfels bebben. Het eerste van der Dvoaelders Hemelëgedaente, f oveel noodich fchinnt tot verclaring haers loops met felling eens roerenden Eertcloots.Daer na fullen volgen dric onderfcheytfels rvande lang deloop der Dvoaelders met fêling eens roerendë Eertcloots: Te voetenbet toveede vandë Eertcloot: Het derdervande Mä̈: Het vierdevan Saturnus, Iupittr, Mars, Venus, en Mercusrius. Daerna al volgen t'aetste onder/ cheyt des breedeloops met felling eens roerenden Eertcloots.

EER-

## SUMMARY OF THIS THIRD BOOK

To expound all this, it should be borne in mind that the Planets have two kinds of motion, one in longitude and the other in latitude. As regards the motion in longitude, this will here be proved mathematically to lead to the same conclusion on the theory of a moving Earth as on the theory of a fixed Earth, with the only difference that what is considered strange and gives rise to astonishment in the theory of a fixed Earth does not give rise to astonishment in the other theory, because it is based on what actually happens in nature. On account of the aforesaid proof, to wit, that the one as well as the other theory leads to the same conclusion, this description will be very short, for on this theory of a moving Earth I will not make any new problems of the finding of things connected with the Heavenly Motions, but I will make it a general rule that all that we have to compute in practice with regard to the motion in longitude must be done by means of the propositions based on the theory of a fixed Earth and described in the preceding first two books. In a special proposition I will also set forth my opinion why I regard such a procedure based on an untrue theory as more convenient than that which is based on the true theory. The motion in longitude is to be followed by the motion in latitude, which I will also describe as leading to the same conclusion with one theory and with the other.

The contents of this book, which are in general as given above, are divided into five chapters. The first of the figure of the Planets' Heavens, as much as seems necessary to explain their motion on the theory of a moving Earth. This is to be followed by three chapters on the motion in Iongitude of the Planets, on the theory of a moving Earth: to wit, the second of the Earth, the third of the Moon, the fourth of Saturn, Jupiter, Mars, Venus, and Mercury. This is to be followed by the last chapter, of the motion in latitude on the theory of a moving Earth.

E ERSTE

## ONDERSCHEYT

DES DERDEN BOVCX VAN
der Dvvaelders Hemelen gedaente, foo veel noodich fchijnt tot verclaring haers loops met felling eens rocrenden Eetricloots.

## CORTBEGRYP DESES EERSTEN ONDERSCHEYTS.

s 5Adien trvoornemsen is bier te befforÿpen der Divaelders loop met felling eens roerenden Eertcloots, foo fbyïnet oirboir rant rovefen en gedaente des roverelts,als gront daer t'voorgaende op ghebout roport, foo rveel te rverclarenals rony daer af roveteri of civermoeden, en totte kennis des zoorghenomen lopps bebul. pich is: Tot dien cindé fal ickin dit eerste Onderf cheyt fes ruoorstellen befchrüven.

Het eerste roan d'oirden der bemelen ruande 'Dvpaelders, met felling eens roerenden Eertcloots.

Het tropeede roan des Eertcloots roerfel in plaets, en baer feylsteenighe filffandt.

Het derde rvande feylsteenighe fillstant der Dvpaelderoveghen en baer bemelen.

Het rierde ruande plaets descrachts die den Eertcloot en roveghen der Drvaelders in baer feylfteenigbe filstandt houdt.

Het rujfde dattet niet nootfakelicken blijckt de Son middelpunt te ovoefenroandenrvastesterrens hemel, maer met goede reden daer toe reercorenubort.

Het feste ruande ruervoonderinghenfonder rovonder der ghene die een vasten Eertcloot fellen.

## I VOORSTEL.

Te befchrijven d'oirden der hemelen vande Dvvaelders met Atelling eens roerenden Eertcloots.

De Menichen eertijts deur ftelling eens vaften Eertcloots gecommen fijndeiot Atelling van Commigheinronden, waer in der Dwaelders keering in tijt

## FIRST CHAPTER

## OF THE THIRD BOOK

of the Figure of the Planets' Heavens, as Much as Seems Necessary to Expound Their Motion on the Theory of a Moving Earth

## SUMMARY OF THIS FIRST CHAPTER

Since the object is here to describe the Planets' motions on the theory of a moving Earth, it seems appropriate to set forth as much about the nature and figure of the world - being the basis on which the foregoing is built as we know or surmise and is conducive to the knowledge of the motion in view. To this end I will describe six propositions in this first Chapter:

The first of the arrangement of the Heavens of the Planets, on the theory of a moving Earth.

The second of the motion of the Earth in its place and its magnetic rest.
The third of the magnetic rest of the Planets' orbits and their Heavens.
The fourth of the place of the force keeping the Earth and the orbits of the Planets in their magnetic rest.

The fifth that it appears not to be necessary that the Sun should be the centre of the Heaven of the fixed stars, but that it is chosen for this with good reason.

The sixth of the wondering at what is no wonder, of those who assume a fixed Earth.

## 1st PROPOSITION.

To describe the arrangement of the Heavens of the Planets on the theory of a moving Earth.
Whereas formerly, on the theory of a fixed Earth, man came to assume some epicycles on which the revolution of the Planets corresponded exactly in time
effen over quam mettet overfchot des Sonloops boven den loop vart intonts middclpunt in haer wegen, als van Saturnus, lupiteren Mars: Voort ander in'. rond in diens middelpuntens loop effen mette Sonloop overquam, ghelijik int eerfte bouck ghefeyt is, fulcx en docht ander menfchen die defe faken grondelicker begoften t'onderfoucken, alfoo inde natuer niet te beftaen: Overdenckende daer na ofmen die inronden met haer verfierde roerfels niet en foude meugen weeren, ftellende den Eericloot in een rondt te locpen, bevonden dat ja, ghelijck by ettelicke ouden betuycht wort ecrijits fmenfehen ghevoeien van een loopenden Eertcloot gheweeft te hebben, maer de eyghentlicke form en ghedaente van bun befchrijving en is na den onderganck des Wijfentijis ter handt van Prolemeus noch ymannt anders ghecommen, datmen weet, dan met veel ander dinghen verloren bleven. Doch isten laetiten Nicolaus Copernicus verfchenen, welcke de felve felling, of een ander die groote gemeenfchap daer me fchijnt te hebben, weerom int licht gebrocht heeft, welcke ick in dit voorftel befchrijvenfal, en oot dien einde aldus fegghen: Binnen den Hemel der vafte fterren by Copernicus onbeweeghlick gettelt, fijn oirdentlick vervolghendede hemelen van Saturnus, lupiter, en Mars, daer na des Eertcloots opt nataerlick jaer een keer volbrenghende, met noch twee rocrfels in plaets, waer af

de verclaring int 2 Hooftifick ghedaen Gal worden wefende de middellijn defes hemels fonder gevoelelicke reden tegen de halfmiddellijn des Hemels der vafte stersen
to the surplus of the Sun's motion over the motion of the epicycle's centre in their orbits, as of Saturn, Jupiter, and Mars - while further the motion of the centres of other epicycles (Venus, Mercury) corresponded exactly to the Sun's motion, as has been said in the first book - it appeared to other men, who began to inquire into these matters more thoroughly, that this did not exist in nature. Considering thereafter whether those epicycles with their imagined motions could not be eliminated, assuming the Earth to move in a circle, they found that indeed, as is stated by several ancient writers, man formerly held the opinion that the Earth moved; but the true form and appearance of their description did not, after the end of the Age of the Sages, come into the hands of either Ptolemy or anyone else, as far as we know, but they were lost together with many other things. But at last Nicolaus Copernicus appeared, who has brought to light again this theory, or one that seems to resemble it closely, which I shall describe in this proposition, and to this end I say: Inside the Heaven of the fixed stars, assumed by Copernicus to be immovable, there are arranged in due order the Heavens of Saturn, Jupiter, and Mars, thereafter that of the Earth, performing one revolution in the natural year, with two more motions in its place, the exposition of which will be given in the 2nd Chapter, the diameter of this Heaven having no perceptible ratio to the semi-diameter of the Heaven of the fixed
fterren: Rontom den Fertcloot draeyt de Maen in een uytmiddelpuntichront, daer na volghen Venus en Mercurius, loopende in uyımiddelpuntighe ronden om de Son, die als wecrelts middelpunt onbeweeghlick blijft. De loopen der bovefchrevē fes Dwaelders ende des Eertcloots fijn altemael na t'vervolgh der trappen, dat is van Weflenint Ooften.

Om i'bovefchreven deur een form opentlicker te verclaren, laet den tip A de vafttaaende Son beteyckenen, rontom welcke befchreven fijn fes uytmiddelpuntighe ronden: Int eerlle van diengaet Mercuriusan B:Int tweede Venus an C: Int derde den Eertcloot an D, en daerom in een uytmiddelpuntichiront de Maenan E: Int vierde vijfde en fefte volghen oirdentlick Mars, Iupiter, Saturnusghetcyckent F, G, H, altemael fonder inront, I beduyt den Hemel der vafte ferien befchreven opt middelpunt $A$, t'welck als vooren de Son is.

De bovefchreven oirden aldus eenvoudelick int corte ghefeyt fijnde fonder cenich bewijs, foo fullen wy nu daer af wat breeder verclaring doen. De reden waer uyt men merckt Venus en Mercurius binnen den Eericlootwech te loopen, is, datfe nummermeer tot tegheftant der Son en gheraken:Maer Mercusius loop binnen.Venus wech begrepen te wefen, blijckt an fijn cleender afwijckinghen dacer trijnder plaets int eerfte bouck deur ervatingen afghefeyt is.

Belanghende dat ymant twijffelen mocht en fegghen, Venus en Mercurius wegen binnen den Eertcloot te connen wefen, fonder nochtans de Son te vervanghen, dat en mach foo niet fijn, om dat haer meefte verheden vanden Eertcloot veel langher bevonden worden dan des Eertclootwechs halfmiddellijn, na t'inhoudr der rekening die dacr afint volghende ghedaen fal worden. Angaende Saturnus, lupiter en Mars, ghemerckt die tot regheftant der Son geraken, foo moeten haer weghen den Eertclootwech vervanghen, anders waert onmeughelick. De reden waer uyt men merckt Saturnus de verfte te wefen, daer na lupiter, en Mars de naette, can tweederley fijn : Ten eerften dar den Dwaelder der twee die in faming bedeckt wort, de verfte moet fijn, doch dat ghebeurt feer felden, oock fijnder inde werelt te luttel gaflaghers dieder op paffen. Ten anderen dat fulcx deur ftelling eens loopenden Eertcloots(anders dan deur ftelling eens vaften Eert cloots, waer me dit onbekent blijfi) dadelick ghemeten can worden, ghelijckmen opt landt meet welcke fichtbact torre wijtt van ons is, want de verheyt van twee fanden die den Eertcloot tot verfcheyden plactfen haers wechs heeft, verftreckt ons voor driehoucx * gront, hebbende te. Bafis. ghen haer fijden feerghevoelelicke reden, ghelijck daer af rfijnder plaets eyghentlicker ghefeyt fal worden. Angaende de reden waer uyt men befluyt de Maenloop te moeten wefen ghelijck de voorgaende form anwijft, is dufdanich : By aldienféliepeghelijck een van d'ander Dwaciders, dat foude mocten fijn buyten den Eerrclootwech, gbelijck Saturnus, Iupiter en Mars, of daer binnen ghelijck Venus en Mercurius. Buyten en cant niet wefen, om datter alfdan nummermeer Sonduyftering vallen en foude. Binnen en machtoock niet fijn om tweederley reden : Ten eerften date nummermeer ghelijck Venus en Mercurius, in tegheftandt der Son en foude gheraken. Ten anderen datfe foude connen commen achter de Son, fulcx dat al waren dan haer beyder middelpunten en het oogh des fienders, alle drie in een rechte lini, foo en fouder nochtans gheen Sonduyftering wefen, ttrijdende teghen d'ervaring.

De redenen wacrom ghelooft wort de ftelling des loopenden. Eertcloots lijck formich te wefen mettet ghene inde natuere beftaet, en niet de ftelling des vaften Eericloots, fijn dufdanich : Ten eerften datmen daer deur befluyt, ghelijck int volghende breeder blijcken fal, de Dwaelders eenvoudelick te drayen
stars. Round the Earth moves the Moon in an eccentric circle; after this follow Venus and Mercury, moving in eccentric circles round the Sun, which remains immobile, as being the centre of the world. The motions of the above-mentioned six Planets and of the Earth are all in the order of the degrees, i.e. from West to East.

To explain the above more clearly by means of a figure, let the $\operatorname{dot} A$ denote the fixed Sun, about which have been described six eccentric circles. In the first of these moves Mercury at $B$, in the second Venus at $C$, in the third the Earth at $D$, and round this in an eccentric circle the Moon at $E$. In the fourth, fifth, and sixth follow successively Mars, Jupiter, Saturn, drawn at $F, G, H$, all without any epicycle; I denotes the Heaven of the fixed stars, described about the centre $A$, which, as said above, is the Sun.

After the above-mentioned arrangement has thus been simply stated in brief, without any proof, we shall now give a more detailed exposition of it. The reason from which it is perceived that Venus and Mercury move within the Earth's orbit is that they never come in opposition to the Sun. But the fact that Mercury's motion is contained within Venus' orbit becomes apparent from its smaller deviations, which have been referred to in their place in the first book by means of experiences.

As for the case that someone should doubt and say that Venus' and Mercury's orbits may be within that of the Earth, but without containing the Sun, this cannot be so because their greatest distances from the Earth are found to be much greater than the semi-diameter of the Earth's orbit, according to the contents of the computation that is to be made thereof in the following. As to Saturn, Jupiter, and Mars, since they come in opposition to the Sun, their orbits must contain the Earth's orbit, otherwise it would be impossible. The reason from which it is perceived that Saturn is the most distant, then Jupiter, and Mars the nearest may be twofold. Firstly, that that Planet of the two that is covered in conjunction must be the most distant, but this happens very seldom, and there are also too few observers in the world who attend to it. Secondly, that on the theory of a moving Earth (unlike on the theory of a fixed Earth, when this remains unknown) this can be measured in practice, as we measure on the land which visible tower is most distant from us, for the distance of two positions. which the Earth has in different places of its orbit serves us as base of a triangle, whose ratio to the sides is very perceptible, as will be described more truly in its place. As for the reason from which it is concluded that the Moon's motion must be as denoted in the foregoing figure, this is as follows. If it moved like one of the other Planets, this would have to be outside the Earth's orbit, like Saturn, Jupiter, and Mars, or within it, like Venus and Mercury. It cannot be outside, because there would then never occur a Solar Eclipse. It cannot be within either, for two reasons. Firstly, that it would never, like Venus and Mercury, come in opposition to the Sun. Secondly, that it might come behind the Sun, so that, even if the centres of both and the eye of the observer were all three in a straight line, there would yet be no Solar Eclipse, which is contrary to experience.

The reasons why it is believed that the theory of the moving Earth is in accordance with what happens in nature, and not the theory of the fixed Earth, are as follows. Firstly, that it is concluded therefrom, as will become more fully , apparent in the following, that the Planets simply revolve in circles, without

## 252 <br> Der Hemelen ghedaente met

in ronden, fonder felling van inronden met haer verfierde loopen inde felve, welcke daer deur al verlaten worden.

Ten tweeden, angefiē het inde natuer foo veroirdent is, dat de $D$ waeldersdie inde grootft ronden of hemels draeyen, flappelicxt ommeloopen, foo ftrijdet regen defegemeene oirden alfmen den aldergrootten Hemelder vafte fterren fielt alderfnelf te dracyen, te weten alle daghe een keer: Ende is dacrom de natuerlicke reden lijckformigerte gclooven en te ftellen fulck alderfnelite rocrfel het cleenfte rondt toe te commen, te weten t'rond des Ecricloots in fijn placts.

Ten derden, na dient int wefen foo vervought is, dat al de loopẽ der Dwaclders fijn van Weften in Ooften,foo ftrijdet tegen defe gemeene oirden datmen dè loop der vafte fterren verkeerdelick felt van Ooftĕ in Weften, en is daerom de natuerlicke reden lijckformiger te ghelooven en te fellen fulcke loop den Eertcloot toe te commen, oock van Ooften na Weften,gelijck van al d'ander.

Angaende mẽ de fwaerheyt des Eertcloots houdt voor oirfaeck van haer onbewceghlicheyt, men mocht daer op aldus antwoordē: Angefien dē Eertcloot openbaerlick eē Hemels licht is, onffangende vande Son haer claerheyt gelijck de Maen, ten is niet buyten natuerlicke reden, toe te flaen dat de fof defer twee lichten, en oock van al d'ander fterren, deur gelijcke genegentheyt by malcander gehouden worden, te weten ghelijck de foffen daer den Eercloot uyt beftaet,gheneycht fijn na heur middelpunt te ftrecken, en derwaert te vallen foo lange tor darfe niet voorderen connē, en dä geduerlick derwaert druckē, dattet alfoo oock toegaet mette ftoffen daer d'ander voorfhrevĕ lichten uyt beftaen, welcke ghemeene ghenegentheyt om natuerlicke redenen oock nootfakelick rchijnt, want by aldient foo niet en waer, het fandt, water, en ander Eertiche floffen, foudē van malcander fcheyden fonder een clootche form te blijvē,genouchraem als eé fichtbaer hoop afchè die deur de wint int wilde wechvieght,' verfpreyt en onfichtbaer wort : Nu dan de natuerlicke reden willende datmen toelate, foodanighe ghelijcke lichten ghelijcke eyghenfchappen te hebben, en datmen voor feker houdt de fwaricheyt der Dwaelders hemlien gheen onbeweeglickheyt te veroirfaken, men behoort derghelijcke vande fwaricheyt des Fericloots oock te oirdeelen, en fulcx fchijnt oock t'ghevoelen van Copernicus int 9 Hoofiftick Gijns eerflen boucx : Maerom hier af by voorbeelt noch wat claerder te fpreken, ghenomen dat eenighe menfchen verre vanden Eertcloot waren, en fiende die blincken als een Dwaelder tufchen d'ander hemelfche lichten (welcke claerheyt voornamelick fijn moet ter plaets daer t'water vande Son befchenen is) dat ymant van hemlien feyde die ferre boven d'ander wonderlick fiwert te wefen, t 'iskennelick dat dander menfchen (fulcx fonder bewijs ghefeyt wefende, en gheen teycken van meerder fwaricheyt int een lichs dan int ander fiende) dien eenen niet ghelooven en fouden: Ende alfoo en behooren wy die op den Eertcloot fijn, hem noch al de ghene die hier alfoo fonder bewijs fpreken, oock niet te ghelooven.
Belangende t'ghene Ptolemeus teghen de felling eens roerenden Eertcloots voorwent, te weten by aldien fy draeyde dat torren en gheftichien fouden omvallen, van weghen de gheweldighe ftrijcking diefe ieghen de locht fouden doen : Voort dat yet oppringhende, niet ter felve placisneer en foude vallen, maer foo verte van daer als den Eericloot daerentuffchen verloopen waer : Ai diten mach niet beftaen uyyt oirfaeck dat na fulck gheftelde de felve ongevallen fouden moeten volgen met felling eens vaften Eertcloots, want nadiè mē hier neemt dat de locht of den hemel die dē Eertcloot vervangt, niet en draeyt metten Eercloot, maer d'een alleen fonder d'ander, foo fal de locht om den vaften Eert-
the assumption of epicycles with their imagined motions therein, which are thus all eliminated.

Secondly, since it is so arranged in nature that the Planets revolving in the largest circles or heavens revolve slowest, it is contrary to this general arrangement if the greatest Heaven of all, that of the fixed stars, is assumed to move fastest of all, to wit, every day one revolution. And therefore it is more in accordance with natural reason to believe and to assume that this fastest motion of all is to be assigned to the smallest circle, to wit, the circle of the Earth in its place.

Thirdly, since matters are so arranged that all the motions of the Planets are from West to East, it is contrary to this general arrangement that the motion of the fixed stars should inversely be assumed to be from East to West, and therefore it is more in accordance with natural reason to believe and to assume that this motion is to be assigned to the Earth, also from West to East 1), like all the others.

If the heaviness of the Earth is held to be the cause of its immobility, to this the following answer may be given: Since the Earth is evidently a Heavenly luminary, receiving from the Sun its light, like the Moon, it is not beyond natural reason to admit that the matter of these two luminaries, and also of all the other stars, is kept together by a similar affinity, to wit, as the substances of which the Earth consists tend towards its centre and to fall in that direction until they cannot get any further and then continually press in that direction; and that it also happens thus with the substances of which the other aforesaid luminaries consist, which general affinity also seems necessary for natural reasons; for if it were not so, the sand, water, and other Earthy substances would fall apart without the spherical form being preserved, somewhat like a visible heap of ashes which flies away at random on the wind, is dispersed, and becomes invisible. Natural reason therefore requiring it to be admitted that such similar luminaries have similar properties, and it being considered certain that the heaviness of the Planets does not cause their immobility, it should also be judged similarly of the heaviness of the Earth, and this also seems to be the opinion of Copernicus in the 9th Chapter of his first book. But to speak a little more clearly about this by means of an example: let us assume that some people were far from the Earth, and saw it shine like a Planet among the other heavenly luminaries (which brightness must be mainly in the places where the water is lit up by the Sun), and that one among them should say that this star was singularly heavy, more so than the others, it is evident that the other people (since this was said without any proof and they saw no sign of greater heaviness in one luminary than in another) would not believe that one man. And in the same way, we who are on the Earth ought not to believe him nor all those who here thus speak without any proof.

As to what Ptolemy 2) advances against the theory of a moving Earth, to wit, that if it moved, towers and buildings would collapse, on account of their enormous friction against the air; further, that something which leaps up would not fall down in the same place, but so far thence as the Earth had meanwhile moved all this cannot be so, because on this supposition the same accidents would have to happen on the theory of a fixed Earth; for since it is here assumed that the

[^20]Eurtcloot vlieghende even foo Aijf teghen de geftichten friijcken, als den loorenden Eertcloot teghen de ftiltaende locht, want ghenomen dat een ftock overeinde ghefteken fy in een loopende rivier, en een ander ftock deur een ftilfaende water over cinde voortghedronghen worde, foo ras als t'water vande rivier loopt, t'is toe te laten dattet water teghen d'een en d'ander nock eveftijf fal drucken: Enalfoo foudet oock openbaerlick toegaen mette locht teghen de gheftichten, of de gheflichten teghen de locht. Vyt het ghene voorfeyt is foude volghen, dat yet opeen vaften Eertcloot opfpringhende, niet ter felves plaets weerom neer en foude vallen, maer foo verre van daer als hem de locht dacrentuffchen wech dronghe. Doch filcx niet ghebeurende, foo itt nootfakelick dat de lochicloot en den Eertcloot van hem vervanghen, l'Gamen een cloot maken, die mette felling eens vaften Eertclootsint gheheel ftil ftact, of mette ftelling cens draeyenden Eertcloots int gheheel draeyt: En wijder die fulcke vereeningdes cloots uyt aerde en locht, feggen foo te wefen alfmen van een vaften Eercloot fpreect, maer foo niet tefijn als t'verfchil van cen loopende is, met hemlien die alfoo haer felven tegenfpreken, foudet ander fiacer vallen te overcommen. T'b es ly y t. Wy hebben dan befchreven dooirden der hemelen vande Dwaeldees met ftelling eens roerende Eericloots, na dẽ eyfch.

## 2 VOORSTEL

## Te verclaren des Eertcloots roerfel in plaets, en haer feylfteenighe ftilftandt.

Benevens den loop des Eertcloors van plaets tot plaets in haer wech, doenide alle jarceen keer uyt Wetten na Ooften, daer int 1 voarftel afghefeytis; foo heefiler noch twee in plaets: D'een loop is den daghelickfchen keer op haer as van Weften in Ooften, macr om dit roerfel in plaets by voorbeelt wat breeder te verclaren, men mocht fegghen dattet is ghelijck een draeyenden lijpfteen in een varende fchip, welcke deur t'fchip een roerfel ontfange van plaets tot plaets, maer heur draeying op den as blijf daerentuffchen int fchip op een felve plaets, en alfoo metten Eertcloot nieuwelini. D'ander loop (na dé fin van Copernicus int II Hoofi@ick fijns I boucx) is dufdanich : Te wijle den Eertcloor haer jaerlickfchen keer doet van Weften na Ooften daer int it Hoofiftick af ghefeyr is, foodoetfe daerentuffchen op de felve tijt teghen den voorfchreven loop een keer in placts van Ooften na Weften, fulcx dat hier deur den as gheduerlick na een felven oirt ftreckt. Maer om dit roerfelen frecking vanden as ghèduetlick na cen felven oirt, te verclaren mette bequaemfle gelijickenis die my nu te vooien comt, ick fegh aldus: Ghenomen dat ymant opt middelpunt des ront papiers van een feecompas flack een ftroyken, fireckende evewijdich metten as des Eertcloots, dat feccompas ftaende in een fchip, varende neem ick in een ronde gracht van een Slot of Schaus, tis kennelick dattet felve fchipeen keer ghedaen hebbende van plaets tot plaets na d'een fijde, foo fal daerentuffenen t'compas in fijn plaets oock eens ghekeert fijn na d'ander fijde, dats ieghen den kecr vant fchip, en fulcken ghedeelte eens keers t'felve fchip ghedaen heeft na d'cen fijde, foodanich ghedeelte fal oock het feecompas ghedaen hebben na de ander fijde, blijvende het bovefchreven ftroyken gheduerlick evewijdich metten as des Eertcloots: En alfoo falmen derghelijcke oock verftaen vanden loop des Eertcloots in haer wech, welcke te wijle fy daer een keer doet, foodraeytue een keer in haer plaets ieghen den voorgaenden keer, en blijvende den as altijt

X 3 naeen
air or the heaven that contains the Earth does not move with the Earth, but the one alone without the other, the air flying about the fixed Earth will press just as closely against the buildings as the moving Earth against the stationary air; for if we assume that a stick be put up vertically in a flowing river, and another stick be drawn vertically through stagnant water as fast as the water of the river flows, it must be admitted that the water will press equally against one stick and the other. And the same would evidently happen with the air against the buildings or the buildings against the air. From what has been said before it would follow that something leaping up on a fixed Earth would not fall down again in the same place, but so far thence as the air drew it away meanwhile. But since this does not happen, it is necessary that the sphere of air and the Earth contained by it together form one sphere which on the theory of a fixed Earth stands still in its entirety or on the theory of a rotating Earth rotates in its entirety. And further, as for those who say that this composition of the sphere of earth and air is thus when a fixed Earth is spoken of, but not when there is the difference that it moves, it would be difficult for others to agree with those who thus contradict themselves. CONCLUSION. We have thus described the arrangement of the Heavens of the Planets on the theory of a moving Earth; as required.

## 2nd PROPOSITION.

To expound the motion of the Earth in its place, and its magnetic rest.
In addition to the motion of the Earth from place to place in its orbit, performing every year one revolution from West to East, as has been described in the 1st proposition, it has two more motions in its place: one motion is the daily rotation on its axis from West to East, but to explain this motion in rrs place somewhat more fully by means of an example, it might be said to be like a turning grindstone in a vessel sailing, which from the ship receives a motion from place to place, but its rotation on the axis meanwhile remains in the ship in the same place; and the same is the case with the Earth. The other motion (according to Copernicus in the 11th Chapter of his 1st book) is as follows: While the Earth performs its annual revolution from West to East, which has been described in the 1st Chapter, in the same time it meanwhile performs, against the aforesaid motion, a rotation in its place from East to West, in such a way that the axis constantly tends in the same direction. But to explain this motion and constant tendency of the axis in the same direction by means of the most convenient comparison that now occurs to me, I say as follows; if a man were to put in the centre of the round paper of a mariner's compass a straw parallel to the axis of the Earth, this compass standing in a ship sailing, I assume. in a circular moat of a Castle or Entrenchment, it is evident that when this ship has made one turning from place to place towards one side, in the mean time the compass in its place will also have made one turning towards the other side, i.e. against the turning of the ship; and such part of a turning as the ship shall have made towards one side, the same part the compass will also have made towards the other side, the aforesaid straw constantly remaining parallel to the axis of the Earth. And it must be similarly understood also with regard to the motion of the Earth in its orbit: while it performs one revolution, it rotates once in its place against the former revolution, the axis always tending in the same direction. This is, I think,
na een felven oirt freckende. Dit meyn ick te wefen den rechtē fin vant roerfel des Eertcloots deur Copernicus befchreven, en mer ern figuere verclaertint it Hoofffick fijns eerften boucx. Maer want dit roerfel van hem aldus een. voudelick ghefeyt wort fonder eenighe natuerlicke reden of bewijs, foo heeft my defe ftelling langhen tijt int ghedacht ghequolien, overmidts alle Hemelfche roerfels diemen everas verfiert en op malcander doet paffen, ghelijckmen de rayers van een uyrwerck doet over cen commen, my niet en bevallen, als niet fchijnende inde natuer te beftaen : Nochtans moeft dit roerfel foo roeghelatén fijn, om al d'ander natuerlicke overeencomminghen die uyt ftelling des roerenden Eertcloots volghen een feker gront te gheven : Doch is daer na int
licht ghecommen het bouck vanden grooten * Eertclootfchen feylfteen, befchreven deur Guilielmus Gilbertes, waer in de natuerlicke oirfaeck defes roerfels, mijns bedunckens ghetroffen en gheopenbaert is, waer af ick hier de fomme int corte ftellen fal: Men bevint inden Eertcloot foogroote menichte van feylfteen, en ander foffen met feylfeenfche cracht (als yfergheberchien die overal (eer menichvuldich fijn, en altemael dien aert hebbē) datfe als een grooten feylfteen in heur de eyghenfchappen heeft diemen vint inde cleene clootkens van feyltteen gemaeckt, want fulck een met ccrck clootiche wiffe foo befet wefende, dattet int water hangt gelijck dē Eertcloot inde locht, alfdan en fal den noorffchen afpunt niet alleen na t'Noorden wijfen, gelijckt mette beftreken feylnaeldé toegaet, maer den hecien as ftelt heur evewijdich met des Eertcloors as, te weten den Noorderfchen afpunt des fteens na t' Noordè , den Zay. derichen na ${ }^{1}$ Zuyden : Voort foomen opt feylfeenclootken ftelt feylnaelde. kens, ghelijck ghemeenelick inde dragelicke Sonwijferkens fijn, men bevinte daer op fulcke rijlinghen, afwijckinghen, beweginghen, en eyghenfchappen te hebben, als op den grooten Eertcloot. Noch heeft defegroote gemeenichap gheleert d’oirfaeck vande ongeregelde wijckinghen der feylnaelde vant Noorden, daer veel menfchen al verwonderende hun gedachten dus langhe me becommert hebben, want alfmen neemt een cloot van feylfieen met putten daer in, en datmen een feylnaeldeken ftele niet boven t'middel des puts daert rechte Noortwijfing hebben can, maer by de kant na t'Ooften, het fal Ooftelicken, maer gheftelt fijnde by de cant na Weften, fal Weftelicken, nu want den Fertcloot oock fulcken feylteencloot is met diepe putee der zeen, in wiens beweghende water de bovefchreven feyifteenfohen aerr niet fijn en can, foo bevintmen wel rechte Noortwijfing ontrent het middel der groote zeen, als in de Oceane tuffchen America en Eurcpa,maer op de ooftlijde na Europa commende de naelde ooftelickt, en weftwaert na America fy weftelickt : De felie reden is oock voor groote uytfekende punten van Landen, als Cabo de Buna Efperanca en meer ander, waer af den Schrijver inde laette Hoofifticken fijns vierden boucx verfcheyden voorbeelden felt.

Nu dan den Eeticloot in heur hebbende defen feylfteenfchen aert,foo moetet bovefchreven roerfel (ie weten eens jaerlickfchē keers in plaets ran Ooften na Weften, fulcx dat den as gheduerlick naeen felven oirt freckt) alfoo nootfakelick wefen.

Tot hier toe is defe feylfteenigen aert des Eertcloots genoemt een draeyen. de roerfel, om mijn voornemen beter te verclaren, maer achinemende op t'gene ick voorder fegghen wil, vinde bequamer dat te heeten feylfeenighe ftilftandt,om defe reden : Ick heb hier vooren ghefeyt dat hemelfche roerfels die. men everas verfiert, en op malcander doet'paffen, my niet en gevallen, als niet fchijnende inde natuer te beftaen, nochtans; mocht ymant fegghen, fulcx nu te blijc-
the correct meaning of the motion of the Earth described by Copernicus and explained by means of a drawing in the 11th Chapter of his first book. But since this motion is thus simply described by him, without any natural argument or proof, this supposition long troubled me in my mind, since the notion that all the Heavenly motions are imagined equally fast and made to fit into one another, as the wheels of a timepiece are made to fit together, does not satisfy me, as not seeming to happen in nature. Nevertheless this motion had to be admitted in order to give a sure basis for all the other natural correspondences that follow from the theory of a moving Earth. But thereafter there was published the book about the great terrestrial magnet, described by Guilelmus Gilbertus ${ }^{1}$ ), in which the natural cause of this motion in my opinion is hit off and revealed, which I will here summarize as follows. In the Earth there is found such a large amount of loadstone and other substances with magnetic force (such as mountains containing iron, which are of frequent occurrence everywhere and all have that property) that, like a big loadstone, it has in itself the properties that are found in small spheres made of loadstone: for if such a small sphere is covered with cork in the form of a sphere, so that it hangs in the water like the Earth in the air, not only will the northerly pole point towards the North, as happens with magnetized needles, but the whole of the axis takes up a position parallel to the axis of the Earth, to wit, the Northerly pole of the stone pointing towards the North, the Southerly towards the South. Further, if on the sphere of loadstone we put magnetic needles, as they are generally present in portable Sun-dials, they are there found to have the same elevations, deviations, movements, and properties as on the big Earth. This great similarity has also taught the cause of the irregular deflections of magnetic needles from the North, about which people have wondered and puzzled so long. For if we take a sphere of loadstone with pits therein and we put a magnetic needle, not over the centre of the pit, where it can point straight towards the North, but sideways towards the East, it will deviate towards the East, but if it is put sideways towards the West, it will deviate towards the West. Now since the Earth is also such a sphere of loadstone with deep pits, namely, the seas, in whose moving water the above-mentioned magnetic character cannot be present, straight Northward pointing indeed is found about the middle of the great seas, such as in the Ocean between America and Europe, but when we get to the East, towards Europe, the needle deviates towards the East, and when we get to the West, towards America, it deviates towards the West. The same reason also holds for large protruding points of land, such as Cabo de Bona Esperança, and others, of which the Author gives several examples in the last Chapters of his fourth book 2).

The Earth therefore having this magnetic character, the motion described above (to wit, that of an annual rotation in its place from East to West, such that the axis constantly tends in the same direction) must be necessary.

Up to this point this magnetic character of the Earth has been called a rotary motion, in order to set forth my intention the better, but with a view to what I further intend to say, I find it more suitable to call it magnetic rest, for the following reason. Above I have said that the notion that heavenly motions are

[^21]te blijcken met des Eertcloors bovefchreven foodanige twee even roerfels. Ick antwoorde hier op datmen dit twee even roerfels noemen mach die op malcander paffen, om, als voorfeyt is, de voorgheftelde faeck bequamelicker me te verclaren, maer om eyghenticker te fpreken foo foudement beter des Eertcloos feylfteenighe filiftant heeten, fulcx darfe heur de keering haers wechs niet an en trecku: Als by voorbeelt, de caffe daer een feylnaelde in flaet, een keer omghedraeyt fijnde na de rechterfijde, datmen foude feggen de feylnaelde daerentuffchen een keer gedaen te hebben na de nijnckeifijde, ten waer niet foo eyghentlick ghefprokien als te fegghen date fill faet, fonder heur de keering der caffe an te treckē : En alfoo oock metten Eetcloot in haer wech:Sulcx dat igene ick tot hier toe genoemt hebbe des Eertcloots $\frac{\text { wweede }}{}$ loop in placts, dat heet ick na het inhoudt vant opfchurf defes voorftels reylfeenige ftilftant, als wefende een woort dar ghenouch fchijnt uyt te beelden de manier van ftilflant diedér int voorgaende ghemeent is, en int volghende ghemerckt fal worden. Mercke noch dat alfmen defe feylfteenighe ntilftandt roerfel noemde, foo foudet een roerfel Gijn ieghen riervolgh der trappen, t 'welkk deurfich felfs beflaende ick niet en fie in eenighe hemelen te ghebeuren.
Tbesivyt. Wy hetbben dan verclacti des Eertcloots roerfel in plaets,en haer feylfeenighe filiftant, na den eyfch.

## 3 VOORSTEL.

## Te verclaren de feylfteenighe ftilftant der Dvvaelders vveghen en haer hemelen.

Defe eyghenfchap van feyldeenighe fillfandt enis niet alleen inden Eertcloot als vooren, maer oock (dienende icen tot breeder bevefting vant ander) in haer wech, als opentlick blijckt deur t'verfepunt des felfien, t'welck om dë loop van Mars hemels wille daer den Eertcloor af vervangen is, en in gediegen wort, te twee jaren een keesfoude moeten doen, dat nochtans niet en ghebeurt foode ervaring Irert, deur welcke men bevint datter veel jaren verioopen eert I tr. voordert, en is bycans al off till ftonde, waer uyrmen befluyten mach niet alleen den Eertcloot, maer oock haer heclen wech den feylfteenfchen aert te hebben: la dattet om derghelijcke reden alfoo toegaet met elcken wech van d'ander Dwaelders, diens verftepunten geen roerfeléen crijgen vande hemelen hacr omvangende, fo merckelicxt blijckt in Mercurius wech, diens verfepunt uyt oirfaeck van Venus wechs keering feer fnellick foude moeten ommedraeyen, te 22 s daghen een keer doende, en noch foo veel raficher als dan veroirfaeckt wierde deur al d'ander Dwaelders hemelen die daer boven d'een d'ander begrijpen, al t'welck niet en ghcbeurt, want Mercurius wechs verftepunt foo nappen voorrganck heefi als al d'ander.

Noch iste weten defen aert der feylfeenighe ftilftandr niet alleen te fijn in der Dwaelders platte weghen als boven, maer oock inde heelc hemelfche clooren daerfe inghedreghen worden, fulce dat haer affen (gelijgk vooren int tweede voorftel vanden Eericloots as ghefeyt is)geduerlick na een felven oirt ftrecken, want fooder die feylfeenighe fillfandt niet en waer, de twee appunten des Hemelcloors die den Eertcloor draecht, en fouden niet opeen felve plaets blijven, maer te twee jaren fulcken rondt moetē befchrijvē, als deur Maenswechs afwijcking vanden duyfteraer veroirfaeckt wierde:Of anders ghefeyt,den Eertclooten foudeniet gheduerlick fonder breede blijven int plat datmen voor
imagined equally fast and made to fit into one another does not satisfy me, as not seeming to happen in nature; yet someone might say that this now is evident from the above-mentioned two equal motions of the Earth. To this I reply that we may call them two equal motions which fit together, in order - as has been said before - to set torth the object in view more properly therewith; but to speak more truly it would be better to call it the magnetic rest of the Earth, meaning that it does not take account of the revolution in its orbit. For example, if, the box in which a magnetic needle is contained having performed one revolution to the right, it should be said that the magnetic needle had meanwhile performed a revolution to the left, this would not be as true a statement as saying that it stands still without taking account of the revolution of the box. It is the same with the Earth in its orbit, so that what I have hitherto called the second motion of the Earth in its place, according to the wording of the heading of this proposition I call magnetic rest, this being a word that seems to denote sufficiently the kind of rest that is meant in the foregoing and is to be noted in the following. Note also that if this magnetic rest were called motion, it would be a motion contrary to the order of the degrees, which as existing in itself I do not see happening in any heavens.

CONCLUSION. We have thus expounded the motion of the Earth in its place and its magnetic rest; as required.

## 3rd PROPOSITION.

To expound the magnetic rest of the Planets' orbits and their heavens.
This property of magnetic rest resides not only in the Earth, as said above, but also (the one serving to confirm the other more fully) in its orbit, as is evident from the apogee of the latter, which - because of the motion of Mars' heaven, within which the Earth is contained and carried - would have to perform one revolution in two years, which nevertheless does not happen, as experience teaches, by which it is found that many years elapse before there is a progress of $1^{\circ}$; and it is almost as if it stood still; from which it may be concluded that not only the Earth, but also its whole orbit has a magnetic character, nay, that for similar reasons the same holds for any orbit of the other Planets, whose farthest points do not acquire a motion from the heavens containing them, as is most apparent in Mercury's orbit, whose farthest point on account of Venus' orbital revolution would have to revolve very fast, performing one revolution in 225 days, and even so much more fast as would be caused by the heavens of all the other Planets which are above and contain one another - all of which does not happen, for the farthest point of Mercury's orbit has just as slow a progress as all the others.

It should also be known that this character of magnetic rest resides not only in the plane orbits of the Planets, as said above, but also in the entire heavenly spheres in which they are carried, such that their axes (as has been said above in the second proposition of the Earth) constantly tend in the same direction. For if this magnetic rest were not present, the two poles of the Heavenly Sphere carrying the Earth would not remain in the same place, but in two years would have to describe a circle such as would be caused by the deviation of Mars' ${ }^{1}$ ) orbit from the ecliptic. Or in other words, the Earth would not constantly remain

[^22]dayfteraer houdt, maer fomwijlen daer af foo groote afwijckinghen hebben als Marswech vanden duyfteraer heeft. Ende fulex als hier ghefeyt is vanden Hemelfcloot die den Eertcloot draecht, falmé oock verftaen op de Hemcleloo. ten van al d'ander Dwaelders, onder welcke defe feylfcenighe filftandt inde Manens hemel feer merckelick is, overmidts het verftepunt hem dé jaerlickfehen keer die den hemel int volgen of leyden des Eertcloots niet an en treckt. Oock is te gedencken dat inde breedeloop vande onderfte Dwaelders fulcken ongheregheltheyt foude moeten wefen als veroirfaeckt wierde uyt de mengheling van al de verfcheyden afwijckinghen der Dwaclderweghen die boven hemlien fijn: Altwelck niet ghebeurende (ghelijek grondelicker fal blijeken deur de volghende befchrijving vande eenvoudighe oirden diefe in brecdeloop houden) foo valter uyt te befluyten, defen ghemeenen aert der feylfeenighe ftilfandt niet alleen te wefen in der Dwaelders weghen, maer oock geheelick in haer Hemelclooten.

Merckt noch dit : Alfmen mette befchtijving der Dwaelders Hemelen fulcken oirden wilde volghen als Copernicus int in Hoofftick fijns_cerften boucx mette beíchrijving des Eertcloors ghedaen heeft, welcke hier verhaelt wiert in het 2 voorftel, men foude moeten aldus fegghen:Te wijle lupiters hemel heut dertichjafige keer doet van Weften na Ooften diefe van Sarurnus hemel ontfangt, foo doerfe daerentuffichen op de felve tijt teghen den voorfchreven loop een keer in plaets van Ooften na Weften, fulcx dat hier deur den as geducrlick na een felven oirt ftreckt. Maer my dunckt om de voorgaende redenen verfaenlickeren natuerlicker, dit in plaets van foodanich roerfel te noemen feylfteenighe filftandt, te meer dat opt roerfel van doonderte Dwaelders als neem ick van Mercurius, meer foude moeten gefeyt fijn dan van Venus loop, ghemerckt het foude moeten wefen de fomme der loopen van al de Dwaelders dieder boven fijn.

Noch moet ick feggen datick over een tijt van defen handel onbefloten ge. dachten hadde, houdende ter cender fijde voor ghemeene reghel, dat alle be. grepen die wech henen moet daer hem fijn begrijpende draecht, waer uyt volghen foudedat elck Dwaelder een roerfel moent hebben ghemengt uytalde roerfels der Dwaelders die boven hem fijn: Ter ander fijde fach ick metter daet t'verkeerde ghebeuren: Dit dede my dencken off foude meughen fijn darde Dwaelders niet en waren in Hemelen ghehecht, maer deur de locht vloghen ghelijck de voghelen om een torre,fonder het roerfel van d'een, ant roerfel van d'ander eenige beweeghnis te veroirfaken, waer tegen ander redenen my weer. om anders deden vermoeden : Maer gecommen fijnde ter kennis vande voor. gaende eyghenfchap die ick feylfteenighe ftilftandt noem, die twijffelachtighe ghedachten namen daer me een einde. T'bestvy t . Wy hebben dan verclaert de feylfteenighe ftilflandt der Dwaelders weghen en haer Hemelen, na den cyich.

## 4 VOORSTEL.

Te feggen vande plaets der crachten die den Eertcloot, vveghen, en Hemelen der Dvvaelders in haer feylfteenighe ftilftandt houden.

De crachten die den Eertcloot, weghen, en Hemelsder Dwaelders in haer feylfteenighe filitandt houden (welcke crachten men by verftaenlicke gelije-
with latitude zero in the plane that is taken for the ecliptic, but would sometimes have as great deviations therefrom as Mars' orbit has from the ecliptic. And the same that has here been said of the Heavenly Sphere carrying the Earth is also to be understood for the Heavenly Spheres of all the other Planets, among which this magnetic rest is very considerable in the Moon's heaven, since the apogee does not take account of the annual revolution which the heaven performs ${ }^{1}$ ) in following or leading the Earth. It should also be remembered that in the motion in latitude of the lowermost Planets there would have to be such irregularity as would be caused by the combination of all the different deviations of the Planets' orbits that are above them. Since all this does not happen (as will become more fully apparent from the following description of the simple order they keep in their motion in latitude), it may be concluded therefrom that this general character of magnetic rest resides not only in the Planets' orbits, but also altogether in their Heavenly Spheres.

Note also the following. If in the description of the Planets' Heavens we wished to follow the same order as Copernicus has done in the 11th Chapter of his first book with the description of the Earth, which has here been related in the 2nd proposition, we should have to say as follows: While Jupiter's Heaven performs its thirty years' revolution from West to East, which it receives from Saturn's Heaven, it performs meanwhile in the same time, contrary to the aforesaid motion, a rotation in its place from East to West, so that the axis thus tends constantly in the same direction. But for the above reasons it seems to me more intelligible and more natural to call this, instead of such a motion, magnetic rest; the more so because with regard to the motion of the lowermost Planets, such as, for example, Mercury, more would have to be said than on Venus' motion, because it would have to be the sum total of the motions of all the Planets that are above it.

I also have to say that for some time I was undecided in my mind about this matter, holding it on the one hand a general rule that all bodies contained by other bodies must take the course in which their containing bodies carry them, from which it would follow that every Planet must have a motion consisting of a combination of all the motions of the Planets that are above it. On the other hand, in practice I saw the reverse happening. This caused me to think whether it could be possible that the Planets were not attached to Heavens, but were flying through the air like birds about a tower, without the motion of the one causing any change in the motion of the other; but other reasons again made me think differently. But when I had gained knowledge of the foregoing property, which I call magnetic rest, my doubts were resolved. CONCLUSION. We have thus expounded the magnetic rest of the Planets' orbits and their Heavens; as required.

## 4th PROPOSITION.

To speak of the place of the forces which keep the Earth, the orbits and the Heavens of the Planets in their magnetic rest.

The forces which keep the Earth, the orbits and the Heavens of the Planets in their magnetic rest (which forces, by an intelligible comparison, might be

[^23]kenis yders feylfteen mocht nocmen) f(thijnen altemael, uytghenomen vande Maenwech, te moeten welen buyten de Hemelen der Dwaelders. Om van twelck by voorbeelt te fpreken, foo ymant een feylteen (als treckende cracht der feylnaelde) leyde inde caffe daer een feylnaelde op de pinne in ruft, de felve caffe ghekeert wefende, foo en foudede naelde niet gheduerlick na een felven oirt wiffen, maer altijt na den Seylfteen gheneycht fijn, om dat de treckende cracht felf me draeyt : Ende alfoo oock by aldien de treckende crachten die den Eercloot en haer heelen Hemel in die ftent houden, waren binnen haer caffe, dats Mars Hemel, en daer in me voortghedregen wierden, des Eertcloorwechs verttepunt foude den loop van Marswech crijghen te twee laren eens ommeloopende. Doch want fulcx niet en ghebeurt, foo ift daer voor te houden dat die treckende cracht in Mars Hemel niet en is, noch om derghelijcke redenen in den Hemel van eenighe van d'ander Dwaelders: Maer anghefien haer verftepunt foo veel men deur ervaring bemerckt, altijt ftreckt oa cen felve plaets tuffchen de vafte fterren, volghende den tragen loop der felve, foo machment daer voor houden die treckende cracht inde caffe of Hemel der vafte fterren te wefen, en dit nier alleen vandē Eertcloor en haer Hemel, maer oock vande Hemelen van al d'ander Dwaelders, uytghenomen fooghefeyt is de Maen, diens wechs vertepunt ontrent de negen jaren eens ommeloopende deur het 9 voorftel des I boucx, haer treckende cracht foude in een ander caffe of leeger hemel moeten draeyen, en dat foot fchijnt tuffehen Mars en lupiter. Maer te wijle ick an defe ftof ghecommen ben, fal daer af met cene noch dit fegghen : Alfoo ick bevonden hadde de Maenwechs eyghentlicke verftepunts loop niet te wefen van 6(1) 41 (2) fdaechs nat'vervolgh der trappen, gelijckmen deur felling eens vatten Eertcloots befluyt, maer als uyt felling eens roerenden Eertcloots volght van 52 (1) 27 (2) fdaechs teghen t'vervoigh der trappen, ghelijck t'Gjnder plaets bewefen fal worden, foo gaft my vreemt de eyghentlicke ftelling des rocrenden Eertcloots mete brenghen, yet ghevonden te worden dat teghen t'vervolgh der trappen liep: Maer overdenckende daer na dat haer treckende crachtin eenighen anderen hemel ontrent de neghen jaren als ghefeyt iseen keer dede na t'vervolgh der trappen, foo docht my dat hier niet teghen de regel en ginck, maer eyghentick alles van Weften na Ooften te loopen, en fulck fchijnfel fijn bekende oirfaken te hebben; Derghelijcke oock vermoedende vande duyfteringfae loop die niet fdaechs 3 (1) 11 (2) volghens de ftelling eens vaften Eertcloors, maer eyghentlick als uyt felling eens roerenden Eertcloots volght farechs itr. 2.19. tegen $t^{\prime}$ vervolgh der trappen, wiens treckende crachs : fchijnt ghedreghen te fijnin een hoogher tragher hemel dan de voorgaende, doende ontrent de 18 jaren een keer na t'vervolgh der trappen.

Tbesivyt. Wyhebben dan ghefeyt vande plaets der crachten die den Eertcloot, weghen, en Hemelen der Dwaelders in haer feylfteenige filltandr houden, na den eyich.

## 5VOORSTEL

## Te verclaren dattet niet nootfakelick en blijckt deSon middelpunt te vvefen vanden vaftefterrens hemel, maer met goede reden daer toe vercoren vvort.

Ghelijck int Eertclootfchrift oirboir is op den Eertcloot eenich halfmiddachront te verkiefen, dat by al de ghene die vande felve ftof handelenint ghemeen
called the loadstone of each) all seem to have to be outside the Heavens of the Planets, with the exception of the Moon's orbit. To give an example of this, if someone laid a magnet (as attractive force of the magnetic needle) in the box in which a magnetic needle rests on the pin, then, if the box were turned, the needle would not constantly tend in the same direction, but would always incline towards the magnet, because the attractive force itself takes part in the revolution. And in the same way, if the attractive forces which keep the Earth and its entire Heaven in that position were within its box, i.e. Mars' Heaven, and were carried along in it, the apogee of the Earth's orbit would receive the motion of Mars' orbit, revolving once in two years. But because this does not happen, it is to be concluded that this attractive force does not reside in Mars' Heaven, nor for similar reasons in the Heaven of any of the other Planets. But since its apogee, as far as is noted by experience, always tends in the same direction among the fixed stars, following the slow motion of the latter, it may be assumed that this attractive force resides in the box or Heaven of the fixed stars, such not only for the Earth and its Heaven, but also for the Heavens of all the other Planets, except, as has been said, for the Moon; since the apogee of its orbit revolves once in about nine years, by the 9th proposition of the 1st book, its attractive force would have to revolve in another box or lower Heaven, such apparently between Mars and Jupiter. But now that I have arrived at this subject, I will at the same time also say the following about it. As I had found the true apogee's motion of the Moon's orbit not to be $6 \mathbf{6} 41^{\prime \prime}$ a day, in the order of the degrees, as is concluded from the theory of a fixed Earth, but, as follows from the theory of a moving Earth, $52^{\prime} 27^{\prime \prime}$ a day, against the order of the degrees, as will be proved in its place, it seemed strange to me that the true theory of the moving Earth should involve that something was found that moved against the order of the degrees. But reflecting thereafter that its attractive force in any other heaven, as has been said, would perform one revolution in about nine years according to the order of the degrees, it seemed to me that this was not contrary to the rule, but that in reality everything moved from West to East, and that this apparent state of affairs has its known causes. And I suspected the same for the motion of the line of nodes, which is not $3^{\prime} 11^{\prime \prime}$ a day, as according to the theory of a fixed Earth, but in reality, as follows from the theory of a moving Earth, $1^{\circ} 2^{\prime} 19^{\prime \prime}$ a day, against the order of the degrees, its attractive force seeming to reside in a higher, slower Heaven than the preceding, performing one revolution in about 18 years according to the order of the degrees 1 ).

CONCLUSION. We have thus spoken of the place of the forces which keep the Earth, the orbits and the Heavens of the Planets in their magnetic rest; as required.

## 5th PROPOSITION.

To expound that it appears not to be necessary that the Sun should be the centre of the Heaven of the fixed stars, but that it is chosen for this with good reason.

Just as it is expedient in Geography to choose on the Earth some half-meridian which is generally looked upon as the starting point by all those who deal with the
${ }^{1}$ ) This statement is wrong, though it is not a clerical or a printer's error.

## 258 <br> Der Hemelen ghedaente met

meen voor begin gehouden wort, daer eyghentlicker af ghefeyt is inde 4 bepaling vant : bouck des Eertclootfchrifts, alfoo if int Hemelloopfchrift oirboir inde werelt eenich punt te verkiefen, dat al de gene die hemlien inde felvellof oeffenen voor haer middelpunt annemen: Hier toe wort met ftelling eens vaften Eertcloots billichlick den Eertcloot vercoren, want alfmen belluyt den hemel der vafte fterren op haer middelpunt te draeyen, foo moet den Eertcloot daer an fijin, of anders en foude d'cen helft des ghefteerenden hemels niet boven den fichteinder noch d'ander helft daer onder fijn, ftrijdende teghen d'ervating,ghelijck Peolemess dat verclaert int s Hoofiftick fijns i boucx.

Angaende des werelts middelpunt met felling eens roerenden Eertcloots, daer wort billichlick de Son toe ghenomen, om datfe ghenouchfaem het middelpunt is vande ronden befchreven deur de verfepunten der Dwacldersweghen, maer i'middelpunt vanden hemel der vaftefterren te wefen machmen vermoeden, dan men cant, foo ick meen, niet volcommelick bewijfen. Laet tot verclaring van dien A B C D den ghefternden hemel betegckenen, diens

middelpunt $\mathbf{E}$, waer deur ghetrocken is de middellijn B ED, en A C recht. houckich op B D, fniende de felve in $F$ buyten t'middelpunt $E$, en op $F$ als middelpunt fy befchreven den Eertcloot weeh G H IK. Dit foo fijnde tis kennelick dat hoewel de booch A B C cleender is dan CDA, nochtans anghefien het rondt GH I K altijt tot die plaets blijft, en her rondt A B C D ftil flaet, foo fchijnt d'een en d'ander booch uyt des Fertclootwechs middelpunt Fghefien, altijt cen halfrontte wefen, ghelijck $A B$ of den houck $A F B$ altijt een vierendeel fchijnt: T'felve heeft hem oock alfooghefien uyt den Eertcloot tot yder plaets des omtrecx $G$ HI K om dat de heele middellijn H K gheen ghevoelicke reden en heeft teghen de halfmiddellijn B E ofteghen BH: Men mocht oock aldus fegghen; nadien den heelen Eertcloots hemel verleken by den hemel der vafte fterren, maer en is als een punt, foo en connen wy niet bewijfen de Son meer middelpunt des vaftefteriens hemel te wefen als het verfepunt des Eert.
same subject matter, as is described more properly in the 4th definition of the 1st book of Geography, so it is expedient in Astronomy to choose in the world some point which all those who pursue this subject take for its centre. For this, on the theory of a fixed Earth, the Earth is justly chosen, for if it is decided that the Heaven of the fixed stars rotates about its centre, the Earth must be there; otherwise one half of the starry Heaven would not be above the horizon, nor the other half below it, which is contrary to experience, as Ptolemy sets it forth in the 5th Chapter of his 1st book.

As to the world's centre on the theory of a moving Earth, for that the Sun is justly taken, because it is sufficiently near the centre of the circles described through the apogees of the Planets' orbits; but that it is the centre of the Heaven of the fixed stars can be surmised, but in my opinion it cannot be fully proved. By way of explanation let $A B C D$ denote the starry Heaven, whose centre be $E$, through which is drawn the diameter $B E D$, and $A C$ at right angles to $B D$, intersecting the latter in $F$ outside the centre $E$; and about $F$ as centre let there be described the Earth's orbit GHIK. This being so, it is evident that, though the arc $A B C$ is smaller than $C D A$, yet since the circle GHIK always remains in that place and the circle $A B C D$ stands still, one arc as well as the other, seen from the centre of the Earth's orbit $F$, seems always to be a semi-circle, just as $A B$ or the angle $A F B$ always seems to be a quarter circle. The same is also the case, when seen from the Earth in any place on the circumference GHIK, because the entire diameter $H K$ has no perceptible ratio to the semi-diameter $B E$ or to $B H$. We might also say as follows: Since the entire Heaven of the Earth is but as a point in comparison with the Heaven of the fixed stars, we cannot prove that the Sun rather than the apogee of the Earth's orbit or any other point contained therein is the centre of the heaven of the fixed stars. Nay, it
clootwechs, of eenich ander punt daer in begrepen: Ia men macht daer voor houden, dat felf Saturnus hemel verleken by den hemel der valle fterren maer en is als een punt,om defe reden:Haer halfmiddellijn is ontrent de negen mael foo lanck als des Eertcloot hemels halfmiddelliin, ghelijek int voorfel defes 3 boucx blijcken fal: Hier uyt volghs dat de vafte fterren ghefien uyt Saturnus wech, éen vercheenficht ofie voor of achtring crijghen, negen mael foogroot als. hemlien verfcheenficht uyt den Eertclootwach ghefien, dats neghen macl cen onbemerckelicke fake, welcke oock of onbemerckelick is; of immers feer cleen moet Gjn : Nu dan Saturnus hemel als middelpunt fchijnende des hemels der fterren, foo fal elck punt in Saturnus hemel begrepen, meughen ghenomen worden voor middelpunt des vaftefterrens hemel, fonder uyimiddelpunticheyt te connen bemerckt worden, en vervolghens foo en fehijnet niet bewiifelick de Son meer haer eygentlick middelpunt te wefen dan t'verftepunt van Saturnus wech, of eenich ander in fijn hemel begrepen.

Angaende Copernicus int 10 Hoofttick fijns a boucx vracght, wie in defe rchoontte kercke die lampe in een ander beter plaets foude fellen dan int middel, van daer fijt over al t'amen mach lichten ? t'fijn wel beweeghlicke natuerlicke redenen, maer op gheen Mcetconftich bewijs ghegront. Soo veel iffer af, by aldienmen eenich ander puut dan de Son, ick neem des Eericlootwechs middelpunt, wilde houden voor werelts middelpunt, ftellende de Son daer rontom te draeyen, met een halfmiddellijn even an des Eertclootwechs uytmiddelpunticheyilijn, men foude daer op een befchrijving des Hemelloops connen doen fonder dwaling, maer de Son voor werelts middelpuntte nemen valt gherievigher, foo wel om bequamelick te leeren de overeencomminghen der ftellinghen eens vaften en roerenden Eertcloors, daer hier na afghefehreven fal worden, als om meer ander ontmoetende faken die aldus lichter en verftaenlicker $\mathfrak{d j n}$. T'b E'S L VY T. Wy hebbēdan verclaert datter niet nootGakelicken blijckt de Son middelpunt te wefen vanden vaftefterrẹns hemel, maer met goede reden daer toe vercoren wort, aa den eyfch,

## 6 VOORSTEL

## Te fegghen vande vervvonderinghen fonder voonder derghenedie een vaften Eertcloot ftellen.

Ettelicke der gene die Ptolemeres befchrijving der Dwaelderloopen met een vaften Eertcloot verftaen, en voor recht houden, verwonderen hun in fommighe eyghenfchappen diefer in mercken: Ten eerften datSaturnus, Iupiter en Mars in tegheftant der Son altijt ten naeften by den Eertcloot commen, maer in faming ten verften. Ten tweeden dat haer loop int inront altijt effen overcomt metrer overfchot des Sonloops boven den loop van haer inronts middelpunten. Ten derden dat Venius en Mercurius t'verkeerde ghebeurt; want haer loop int inront en heeft mette Son fulcke overcomming niet, maer den loop van haer inronts middelpunt iffer even me: Dit houden fy voor een teycken van befonderheyt des weerdichtten Dwaeiders de Son, na wiens röerfeld'an". ; der als na een Koninck opficht nemen en haer loop ver voughen : Doch men macht houden voor ghedwaelde* fieghelinghen; volghende uyt ghemifte Theorgig. ftelling eens vaften Eertcloots. Maer want dit groote ghelijckheyt heeft met luyden die het fcheepvaren onghewoon fijnde, ghemeenlick het roerfel vàn haer fchip ander fchepen toefchrijven, als wanneer fy die teghencommen en beneen
may be assumed that even Saturn's Heaven, in comparison with the Heaven of the fixed stars, is but as a point, for the following reason. Its semi-diameter is about nine times the length of the semi-diameter of the Earth's Heaven, as will appear in the [13th] 1) proposition of this book. From this it follows that the fixed stars, seen from Saturn's orbit, receive a parallax or advance-or-lag nine times greater than their parallax when seen from the Earth's orbit, that is nine times an imperceptible amount, which is also either imperceptible or at any rate must be very small. If therefore Saturn's Heaven appears as centre of the Heaven of the fixed.stars, any point contained in Saturn's Heaven can be taken for centre of the Heaven of the fixed stars, without eccentricity being perceptible, and consequently it does not seem possible to prove that the Sun is its true centre rather than the apogee of Saturn's orbit, or any other point contained in its Heaven.

As to the fact that Copernicus asks in the 10th Chapter of his 1st book who would in this beautiful church place that lamp in any other, better place than in the middle, from where it can illuminate everything: these are moving, natural reasons indeed, but not based on a geometrical proof. So much is true that if one wished to take any point other than the Sun, for example the centre of the Earth's orbit, for the centre of the world, assuming the Sun to revolve about it, with a semi-diameter equal to the line of eccentricity of the Earth's orbit, one might base on this a description of the Heavenly Motions without any error; but it is more convenient to take the Sun for the centre of the world, both in order to learn properly the correspondences of the theories of a fixed and a moving Earth, which are to be described hereinafter, and on account of other matters that may arise, which are easier and more intelligible in this way. CONCLUSION. We have thus expounded that it appears not to be necessary that the Sun should be the centre of the Heaven of the fixed stars, but that it is chosen for this with good reason; as required.

## 6th PROPOSITION.

To speak of the wondering at what is no wonder, of those who assume a fixed Earth.

Some of those who understand Ptolemy's description of the Planetary Motions based on a fixed Earth and consider it correct, are astonished at some properties they perceive therein. Firstly, that Saturn, Jupiter, and Mars, when in opposition to the Sun, always come nearest to the Earth, but when in conjunction, farthest from it. Secondly, that their motion on the epicycle always corresponds exactly to the surplus of the Sun's motion over the motion of the centres of their epicycles. Thirdly, that with Venus and Mercury the converse takes place, for their motion on the epicycle has no such correspondence to the Sun's motion, but the motion of the centre of their epicycle is equal to it. They take this for a sign of the special character of the worthiest Planet, the Sun, from whose motion the others take their guidance as from a King and move accordingly. But these may be considered erroneous speculations, resulting from the incorrect theory of a fixed Earth. But since this is greatly similar to people who, not being used to sailing, generally ascribe the motion of their ship to other ships, - such as,

[^24]beneen boort ligghen, fonder water of landt refien, fegghen, hoe ras vaert dat fehip buyten i'onfe. Of hun fchip een keer doende, legghen t'ander dar miffchicn fill light rontom het haer te draeyen, foo fal ick dit als voorbeclt ghebruycken tot verclaring defer flof.

Laet defe feven punten A, B, C, D, E, F, G, feven fchepen in zee beteyckenen waer af $A$ den $A d m i r a e l ~ f i j n d e ~ f i l l ~ l i g h t: ~ M a e r ~ t i f h i p ~ D ~ v a e r t ~ g h e d u e r-~-~$ lick in een rondt, daer de drie fchepen $A, B, C$, binnen fijn, en de drie $E, F, G$, buytē. Dit foo fijnde, en ymant in het
 fchip D wefende, meynt na de bovefchrevenghemeene wijfe dattet fille light, en d'ander al rondrom hem ongheregheld dracyen, En volghende fulck getelde neemracht opde ghedaente des loops, en feght met een verwonderen aldus: Wat een vreemde faeck ift, dat telckemael als een der driefchepen $\mathrm{E}, \mathrm{F}, \mathrm{G}$, comt in een rechte lini van hemover ons totten Admirael $A$, foo is dan elck van dien onsalitijt ten naeften: En ten verften, wefende in de felve rechte lini over d'ander fijde vanden Admirael, hoe onghere. ghelt oock hun gheduerighe vaert is: Hier uyt bcfluyt hy elck dier drie fchepen noch te draeyen in een cleender rondt, daer deur fy naerderen en afwijcken, hem verwonderende waerom fulcken keer in tijt feker overcomming heefi metten keer vanden Admirael : Sghelijcx vooreen vreemdicheyt houdende waerom de twee fchepen CB,oock een reghel houden metten Admirael, doch verkecrt vande voorgaende, te weten dat den keer des groote ronts diefédoen om t'fchip D draeyende, in tijt effen overcomt met cen keer des Admiracls, feght voort dat fulcx is een teycken van eerbieding die den Admirael van d'ander fchepen anghedaen wort.

Dit foo fijnde, ghenomen nudat een ervaren Schipper wetende hoet mette facck gheftelt is, tegen fulck een aldus feyde : Ghy breeckt $u$ hooft met voor wonder te houden daer geen wonder en is, want ons fchip t'welck ghy meent nilte legghen, vaert gheduerlick rondtom de drie fchepen A, B, C, waer uyt nootakelick volght, dat foodickwils wy fijn tuffehen den Admirael A en een der drie E, F, G, foo moet ons dan elck van dien ten naeflen fijn, en ten verfen als A tuffchen ons en cen van hemlien is : Inder voughen dat die fchepen niet en varen in ronden, met foodanighen verfierden loop, die hun doet naerderen en afwijkken, noch oock de twee fchepen $B$, $C$, in fulcke ronden, effen overcommende metten loop van A, foo ghy meent: Maer men mochiet voor onnatuerlick houden dat t'ghene voor de onervarenen alfoo ichijnt, eyghentlick niet andersen wacr.
Ende even eens foude cen ervaren Hemelmeter tot een onervaren meughen fegghen : Ghy breeckt $u$ hooft met voor wondet te houden daer gheen wonder en is, want ons weerelticht dats den Eertcloot die ghy meent fil te ligghen, draeyt gheduerlick rondiom de drie Dwaelders, Son, Venus, Mercurius, waer uyt nootfakelick volght dat foo dickwilswy fijn tuffichen de Son en
when they meet them while lying below deck without seeing water or land, they say: how fast that ship outside ours sails, or, if their ship makes a turning, say that the other, which perhaps lies still, moves round theirs - I will use this as an example to illustrate this subject matter.

Let these seven points $A, B, C, D, E, F, G$ denote seven ships at sea, of which $A$, being the Admiral, lies still. But the ship $D$ continually sails in a circle, within which are the three ships $A, B, C$, while the three $E, F, G$ are on the outside. This being so, a man being in the ship $D$ is of opinion, according to the above, that it lies still and all the others move irregularly about it. And according to this supposition he observes the nature of the motion and, wondering, says as follows: How strange it is that whenever one of the three ships $E, F, G$ comes in a straight line from it via us to the Admiral $A$, each of them is always nearest to us; and farthest, when it is in this straight line to the other side of the Admiral, however irregular their continual sailing may be! From this he concludes that each of those three ships also moves in a smaller circle, in consequence of which they approach and withdraw, wondering why this turning has an exact correspondence in time to the turning of the Admiral. Likewise, considering it strange why the two ships $C, B$ also have a connection with the Admiral, but contrary to the foregoing, to wit, that the motion of the large circle they perform in moving round the ship $D$ corresponds exactly in time to one turning of the Admiral, he says further that this is a sign of homage paid to the Admiral by the other ships.

This being so, let us assume that a skilled Skipper, knowing what is the matter, said to such a person as follows. You rack your brains in wondering where there is no wonder, for our ship, which you think is lying still, is continually sailing round the three ships $A, B, C$, from which it follows necessarily that whenever we are between the Admiral $A$ and one of the three $E, F, G$, each of those must be nearest to us, and farthest from us when $A$ is between us and one of them; so that those ships do not sail in circles, with such an imagined motion as makes them approach and withdraw, nor do the two ships $B, C$ sail in such circles, corresponding exactly to the motion of $A$, as you think. But it might be considered unnatural that what seems thus to the inexperienced should not in reality be otherwise.

And in the same way an experienced Astronomer might say to an inexperienced one: You rack your brains in wondering where there is no wonder, for our luminary, i.e. the Earth, which you think lies still, travels continually round the three Planets Sun, Venus, Mercury, from which it follows necessarily that whenever we are between the Sun and one of the three: Saturn, Jupiter, Mars,

## een roerende Eertcioot.

eender drie Saturnus, Iupiter, Mars, foo moet ons dan elck van dien ten nacften Gjn, en teq verften als de Son tuffchen ons en een van hemlien is: Inder voughen dat die drie $D$ waelders niet en dracyen in ronden met foodanighen verfierden loop die hun doet naerderen en afwijcken, noch oock de twee Venusen Mercurius in fulcke ronden, effen overcommende mette Sonloop foo ghy meent, macr men mochtet voor onnatuerlick houden dat ighene voor donervaernen foo fchijnt niet cyghentickandersen waer.

Noch iffer by veelen een verwonderen vande feltfaem hafpeling des breedeloops der Dwaelders Saturnus, Iupiter, Mars, Venus, en Mercurius, ghegront op ftelling eens vaften Eertcloots: Maer volghens de felling eensroerenden Eertcloots, fooen iffer gheen wonder, dan fijn eenvoudelicke weghen afwijckende vanden duyfteraer, ghelijck de Maenwech, waer uyt rekeninghen der breede volghen met kennis der oiraken, als tifinder plaets blijcken fal.

Tbeslyyt. Wy hebben danghefeyt vande verwonderinghen fonder wonder der ghene die een vaften Eertcloot fellen.

Dit eerfte Onderfcheyt van der Dwaelders Hemelen ghedaente ten einde fijnde, ick fal nu totet befchrijven des loops commen, en eerft vande langdeloop.
each of them must be nearest to us, and farthest from us when the Sun is between us and one of them; so that those three Planets do not move in circles with such an imagined motion as makes them approach and withdraw, nor do the two, Venus and Mercury, move in such circles, corresponding exactly to the Sun's motion, as you think. But it might be considered unnatural that what seems thus to the inexperienced should not in reality be otherwise.

Many people also wonder at the curious jumbling of the motion in latitude of the Planets Saturn, Jupiter, Mars, Venus, and Mercury, based on the theory of a fixed Earth. But according to the theory of a moving Earth there is nothing astonishing, but they are simple orbits deviating from the ecliptic, like the Moon's orbit, from which follow computations of the latitudes with knowledge of the causes, as will appear in its place.

CONCLUSION. We have thus spoken of the wondering at what is no wonder, of those who assume a fixed Earth.

This first Chapter of the figure of the Planets' Heavens being at an end, I am now coming to the description of their motion, and first of their motion in longitude.

TWEEDE
ONDERSCHEYT

## DES DERDEN BOVCX VAN des Eertcloots loop en de Sonnens fchijnbaer roerfel.

## CORTBEGRYP DESES TWEEDEN ONDERSCHEYTS.



Het troveede, revefende in doirden bet 8, dat de Sorn mat felling ceass roerendes Eertcloots, de felpe Cobïnbaer duyferaerlangde, rverbeyt rvapnden Eertcloot, en ruoorofadbtring ossffangt, diefeleeff met felling censroaSten Eertcloots.

Het derde, rovefende in doirden bet i, dat des Eertcloorvertos paeftepunt onder defelbe duyfferaerlang de is, daer de Sarnpechs reveftepurt met pellimg eens ruasten Eertcloots onder is.

Het rvierde, $t^{\prime}$ rvelck in divirden is bet todat revefende de Son met fiel. ling eens ruafien Eertcloots in baer ropechs reverfepunt of cerfe balfront, den Eertcloot mete baer roerendefecling oock in baer rovechs roorftepuent of eerste balfrost is, en fulcken laygde en ruoorfachtring de Son in baer rupech beeft, dergbelijcke langde enrooorofachrring oock den Eertcloat inde bare te bebben.

## I BEPALING.

Wefendede Songhenomen vaft te ftaen als vveerelts middelpunt, en den Eertcloot daer rontom tedraeyen, in cen rondt en met een roerfel even ant rondt en roerfel datmen de Son met ftelling eens vaften Eertclootstoefchrijft : Sulcx heet ftelling eens roerenden Eertcloots.

# OF THE MOTION IN LONGITUDE SECOND CHAPTER 

OF THE THIRD BOOK<br>Of the Motion of the Earth and the Sun's Apparent Motion

## SUMMARY OF THIS SECOND CHAPTER

After four definitions there are to follow four propositions: The first, which in the sequence is the 7th, of the motion of the Earth in its orbit.

The second, which in the sequence is the 8th, that on the theory of a moving Earth the Sun acquires the same apparent ecliptical longitude, distance from the Earth, and advance-or-lag which it has on the theory of a fixed Earth.

The third, which in the sequence is the 9th, that the nearest point (perihelion) of the Earth's orbit is at the same ecliptical longitude where the farthest point (apogee) of the Sun's orbit is on the theory of a fixed Earth.

The fourth, which in the sequence is the 10th, that when, on the theory of a fixed Earth, the Sun is at the farthest point (apogee) of its orbit or its first semi-circle, the Earth, when assumed to be moving, is also at the farthest point (aphelion) of its orbit or its first semi-circle, and that such longitude 1) and advance-or-lag as the Sun has in its orbit, the same longitude and advance-or-lag the Earth also has in its orbit.

## 1st DEFINITION.

When it is assumed that the Sun is fixed as the world's centre and that the Earth moves round it, in a circle and with a motion equal to the circle and the motion ascribed to the Sun on the theory of a fixed Earth, this is called the theory of a moving Earth.

[^25]
## 2 BEPALING.

Wefende de Maen gheftelt tedraeyen rontom den roerendē Eertcloot,gelijckmēfe anderfins neemt te draeyen rontom een vaften: Sulcx heet Maenloop met felling eens roerenden Eertcloots.

3 BEPALING.

Werendegeftelt den Eertcloot te loopen in een vvech even ant inronde van Saturnus,Iupiter of Mars, en de felve Dvvaelders niet in haer inrondt als met ftelling eens vaften Eertcloots, maer ter plaets van des inronts middelpunt: Sulcx heet haer loop met ftelling eens roerenden Eertcloots.

4 BEPALING.

Wefendegeftelt den Eertcloot te loopen in een vvech even an den inrontvvech van Venus of Mercurius, en de felve Dvvaelders in haer inrondt binnen den Eertclootvvech : Sulcx heet haer loop met ftellingeens roerenden Eertcloots.

7 VOORSTEL.

Tebefchrijvenden loop des Eertcloots in haer vvech op een ghegheven tijt.

De boucken des Hemelloops Ptolemeus ter handt ghecommen, betuyghen dat de Ouden voor hem een ghebruyck hadden, inde befchrijving van yder Dwaelder te beginnen met fijn daghelickfche loop, of anders ghefeyt met fijn loop op een bekenden tijt deur ervaring bevonden, welcke wijfe in reden ghegront fchijnende, ick falfe in dit derde bouck met felling eens roerenden Eertcloots foo navolghen, ghelijck ick int eerfte mette ftelling eens vaften gedaen heb. Het is dan te weten dat yder Dwaelder een ander wefentlicke loop heeft dan men hem deur de ftelling eens vaften Eertcloots toefchrijft : T'ghenedaer af vanden Eertcloot te fegghen valt, tis dat hy in hem heeft den wefentlicken loop diemen in d'ander ftelling de Son-wefchrijft, welcke int 3 voorftel des 1 boucx berekent is faechs op 59 (1) 8.17.13.12. 3 i.en int natuerlick jaer cen keer te doen. T'be sivy t. Wy hebben dan befchreven den loóp des Eertcloors in haer wech op een ghegheven tijt, na den eyfch.

Z 2 VER-

## 2nd DEFINITION.

When the Moon is assumed to move round the moving Earth, as it is otherwise taken to move round a fixed Earth, this is called motion of the Moon on the theory of a moving Earth.

## 3rd DEFINITION.

When it is assumed that the Earth moves in an orbit equal to the epicycle of Saturn, Jupiter or Mars, and the said Planets do not move on their epicycles, as on the theory of a fixed Earth, but are at the place of the epicycle's centre, this is called their motion on the theory of a moving Earth.

## 4th DEFINITION.

When it is assumed that the Earth moves in an orbit equal to the deferent of Venus or Mercury, and the said Planets move on their epicycles within the Earth's orbit, this is called their motion on the theory of a moving Earth.

## 7th PROPOSITION.

To describe the motion of the Earth in its orbit in a given time.
The books on the Heavenly Motions that came into Ptolemy's hands declare that the Ancients before him were accustomed to begin in the description of each Planet with its daily motion, in other words: with its motion in a given time found by experience, which method, seeming to be based on good reasons, I will follow in this third book on the theory of a moving Earth, as I have done in the first on the theory of a fixed Earth. It should be known that each planet has a true motion different from the one ascribed to it on the theory of a fixed Earth. What can be said in this respect of the Earth is that it has in it the true motion which is ascribed to the Sun on the other theory, which in the 3rd proposition of the 1 st book has been computed to move $59 ; 8,17,13,12,31$ minutes a day and to perform one revolution in the natural year. CONCLUSION. We have thus described the motion of the Earth in its orbit in a given time; as required.

## VERTOCCH. 8 VOORSTEL.

De Son ontfangt met ftelling eens roerenden Eertcloots, de felve fchijnbaer duy fteraerlangde, verheyt vanden Eertcloot, en voorofach tring, diefe heeftmet ftelling cens vaften Eertcloots.

T'ghegheven. Laet voor eerfeftelling ghenomen worden t'punt A een vaften Eertcloot te beteyckenen, van A tot B fy de Sonwechs uytmiddelpunticheytijn, doende na Ptolemerse rekening fulcke 417, alffer de halfmiddellijn die BC fy 10000 doet, mette felve BC fy op B als middelpunt befchreven de Sonwech C D E, wacr in C A voortgetrocken tot $E$, foo is E inacftepunt, C t'verftepunt, waer anick voor t'eerfte neem de Son te wefen, welcke van daer ghecommen fy tot $D$.

Laet voor tweede ftelling ghenomen worden den Eertcloot A te loopen, en de Son C valt te ftaē: Tot
 defen einde teycken ick in C A t'punt F, alfoo dat de uytmiddelpunticheyulijn C Fevê fyan $A B$, en befchrijf op $F$ als middelpunt, mette halfmiddellijn F A, die evē moet fijn mette halfmiddellijn BC,het ront A G Hals Eertclootwech, diens naeftepunt $H$, verftepunt $A$, waer in ick neem dē Ecricloot van A gecommente fijn tot $\mathbf{G}$, fulcr datde booch $\mathbf{A} G$ even is met de booch C D : Laet daer na ghetrocken worden de fes rechtelinien A $D, G C, C D$, GA,B D,FG.
T'begeerde.Wy moeten bewijfen dat de valte Son an $C$, geGien uyt den loopen. den Eericloot an G, de felve rchijpbaer duyfteraerlangde en verheyt heeft der loopende Son an D, gefien uyt den vafen Eercloot an $A$.

Tbewy s. Ten eerften fegh ick dat wefendede Son an C, en den Eertclootan A, t'fy datmen neemt den Eertcloot A vaft teftaen, en de Son Cloopende, of den Eertcloot A loopende, en de Son C vaft, dat gheeft openbaerlick int punt des tijis datie alfoo clck an des anders verfepunt fijn een felve fchijnbaer plaets, en verheyt der Son vanden Eertcloot : Maer om te bewijfen dat fulcx overal ghefchiet, ick fegh aldus: Anghefien de booch A Geven en ghe. lijck is mette booch $C D, f 00$ is den * evebeenighen driehouck $B C D$, even en ghelijek metten evebeenigen $F A G$, en daerom den houck $B C D$, even mettē houck F A G, dats oock A C D met C A G, waer deur de twee even rechie linien D C, A G evewijdeghe fijn, en de twee rechte $A D_{2} G C$ daer tuffichen ghetroc-

THEOREM.
8th PROPOSITION.
On the theory of a moving Earth the Sun acquires the same apparent ecliptical longitude, distance from the Earth, and advance-or-lag which it has on the theory of a fixed Earth.

SUPPOSITION. Let it be assumed first that the point $A$ denotes a fixed Earth; let the line from $A$ to $B$ be the line of eccentricity of the Sun's orbit, which according to Ptolemy's computation makes 417 if the semi-diameter, which shall be $B C$, makes 10,000 . With this $B C$ let there be described about $B$ as centre the Sun's orbit CDE, in which, if $C A$ is produced to $E, E$ is the perigee, $C$ the apogee, at which I first take the Sun to be, which shall have travelled thence to $D$.

Let it be assumed secondly that the Earth $A$ moves and the Sun $C$ is fixed. To this end I mark on $C A$ the point $F$ so that the line of eccentricity $C F$ be equal to $A B$, and I describe about $F$ as centre, with the semi-diameter $F A$, which must be equal to the semi-diameter $B C$, the circle $A G H$ as the Earth's orbit, its perihelion being $H$, its aphelion $A$, in which I take the Earth to have travelled from $A$ to $G$, so that the arc $A G$ is equal to the arc $C D$. Thereafter let there be drawn the six straight lines $A D, G C, C D, G A, B D, F G$.

WHAT IS REQUIRED. We have to prove that the fixed Sun at $C$, seen from the moving Earth at $G$, has the same apparent ecliptical longitude and distance as the moving Sun at $D$, seen from the fixed Earth at $A$.
PROOF. Firstly I say that when the Sun is at $C$ and the Earth at $A$, whether the Earth $A$ is taken to be fixed and the Sun $C$ moving or the Earth $A$ moving and the Sun $C$ fixed, this gives evidently as regards time that thus each is at the other's farthest point at the same apparent place and distance of the Sun from the Earth. But to prove that this happens always, I say as follows: Since the arc $A G$ is equal and similar to the arc $C D$, the isosceles triangle $B C D$ is equal and similar to the isosceles triangle $F A G$, and therefore the angle $B C D$ is equal to the angle $F A G$, i.e. also $A C D$ to $C A G$, in consequence of which the two equal straight lines $D C, A G$ are parallel, and the two straight lines $A D, G C$ drawn between
ghertocken moeten oock even en evewijdeghe wefen : Maer A D evewidege fijude met G C, foo moer de valte Son C ghefien uyt den loopenden Eertcloot an G, op de felve plaets fchijnen der loopende Son an Dghcfien uyt dein valtein Eertcloot an A, om dat A G noch oock de heele middellijin des Eertclootwechs gheen ghevoelelicke reden en heeft totte halfmiddellijn des vafte fterrecloots. Oock if openbaer de verheyt GC even te fijn mette verheyt A D, ghemerckt hertwee evewijdeghe fijn tufchen de twee evewijdege D C, AG. Angaende het derde punt, te weten dat de voorofachtring van d'eenen d'ander felling de felve is, blijckt aldus: De roerende Son an D wort uyt den vaflen Eertcloot A, foo vecl in den duyftreer fchijnbaerlick meer achterwaert ghefien dan de middelfon (dic anghewefen is mette lini welcke vande Sonwechs middelpunt B deur D na den duyfteraer ftreckt) als den houck A D B bedraecht: Maer foo vecl wort de vafte Son uyt den roerenden Eericloot G oock inden duyfteraer fchijnbaerlick meer achterwaert ghefien dan de Middelfon (die anghewefen is mette lini welcke vanden Eericloot G deur des Eert. clootwechs middelpunt F na denduyfteraer freckt) om dat A D cvewijdege is met GC, en B D met GF, en vervolghens den houck A D B even metten houck C GF, waer deur de voorofachuring, t'welck hier achtring valt, van d'eē en d'ander felling de felve is. T'b e slvy t. De Son dan ontfange met flelling eens roerenden Eertcloots, de felve fchijnbacr duyftcraerlangde, verheyt vanden Eertcloot, en voorofachuring, diefe heeft met felling eens vatten Eertcloots, t'welck wy bewijfen mochen.

## 9 VOORSTEL.

Des Eertclootvvechs naeftepunt onder de felve duyfteraerlangde te veefen daer des Sonvvechs verftepunt met ftelling eens vaften Eertcloots onder is.

T'GHEGHEVEN. Laet de form des 8 voortels andermael voor t'ghege. ven ghenomen worden, alwaer blijckt H naeftepunt des Eertclootwechs onder de felve duyfteraerlangde te wefen, daer de Sonwechs verftepunt $C$ met ftelling eens valten Eertcloots onder is, want ghetrocken van C ('welck is de Son als weerelts middelpunt met felling eens roerenden Eertcloots) een rechte lini deur haer naeftepunt $H$, fy wijft inden duyfteraert'felve punt der langde die anghewefen wort mette rechte lini ghetrocken van $A$ (r'welck is den Eertcloot als weerelts middelpunt met felling eens vaften Eercloots) deur $C$ verftepunt des Sonwechs. T'b ESLVYT. Des Eertclootwechs naeftepunt dan is onder de felve duytteraerlangde daer des Sonwechs verfepunt mat felling eens vaften Fertcloots onder is, t'welck wy bewijen moeften.

## VERTOOCH. 10 VOORSTEL.

Wefende de Son met ftelling eens vaften Eertcloots in haers vvechs verftepunt, of eerfte halfrondt, den Eertcloot is met haer roerende ftelling oock in haer vvechs verftepunt, of eerfte halfront, en fulcken langde en voor-
$Z_{3}$ ofach
them must also be equal and parallel. But when $A D$ is parallel to $G C$, the fixed Sun $C$, seen from the moving Earth at $G$, must appear to be in the same place as the moving Sun at $D$, seen from the fixed Earth at $A$, because neither $A G$ nor the entire diameter of the Earth's orbit has any perceptible ratio to the semidiameter of the sphere of the fixed stars. It is also evident that the distance GC is equal to the distance $A D$, since they are two parallel lines between the two parallel lines $D C, A G$. As to the third point, to wit, that the advance-or-lag is the same for one theory and for the other, this becomes apparent as follows: The moving Sun at $D$ is seen from the fixed Earth $A$ as much apparently more backwards in the ecliptic than the mean sun (which is denoted by the line which extends from the centre of the Sun's orbit $B$ through $D$ to the ecliptic) as is the amount of the angle $A D B$. But this amount also the fixed Sun is seen from the moving Earth $G$ apparently more backwards in the ecliptic than the Mean Sun (which is denoted by the line which extends from the Earth $G$ through the centre of the Earth's orbit $F$ to the ecliptic) because $A D$ is parallel to $G C$, and $B D$ to $G F$, and consequently the angle $A D B$ is equal to the angle $C G F$, in consequence of which the advance-or-lag, which is lag in this case, is the same for one theory and for the other. CONCLUSION. The Sun therefore on the theory of a moving Earth acquires the same apparent ecliptical longitude, distance from the Earth, and advance-or-lag which it has on the theory of a fixed Earth; which we had to prove.

## 9th PROPOSITION.

That the perihelion of the Earth's orbit is at the same ecliptical longitude where the apogee of the Sun's orbit is on the theory of a fixed Earth.

SUPPOSITION. Let the figure of the 8th proposition be taken once more for the supposition, where it appears that $H$, the perihelion of the Earth's orbit, is at the same ecliptical longitude where the apogee of the Sun's orbit $C$ is on the theory of a fixed Earth; for when from $C$ (which is the Sun as the world's centre on the theory of a moving Earth) a straight line is drawn through its perihelion $H$, it indicates in the ecliptic the same point of longitude that is indicated by the straight line drawn from $A$ (which is the Earth as the world's centre on the theory of a fixed Earth) through $C$, the apogee of the Sun's orbit. CONCLUSION. The perihelion of the Earth's orbit is therefore at the same ecliptical longitude where the apogee of the Sun's orbit is on the theory of a fixed Earth; which we had to prove.

## THEOREM.

10th PROPOSITION.
When the Sun, on the theory of a fixed Earth, is at the apogee of its orbit, or its first semi-circle, the Earth, when assumed to be moving, is also at the farthest point (aphelion) of its orbit, or its first semi-circle, and such longitude

## 266 Eertclootloops vindingen \&c. ofachtring de Son in haer vvech heeft, dergelijeke langde en voorofachtring heeft oock den Eertcloot inde hare.

Laet de form des 8 voorftels andermael voor t'ghegheven verftrecken, waer me ick aldus fegh : Wefende de Son met thelling eens vaften Eertcloors in haer wechs C D E verftepunt $C$, $t$ is openbaer dat den Eertcloot dan met haer roesende flelling oock is in haer wechs $A G H$ verflepunt $A$.

Maer wefende de Son met flelling eens vaften Eertcloots in haer wechs C D Eeerfte halfrondt C D Ean D, t'is openbaer dat den Eertcloot dań met haer roerende ftelling oock is in haer wechs A G Hecrtte halfront A G H.

Voort fukken langde de Son an D heeft in haer wech C DE, te weten de booch C D, derghelijcke langde heeft oock den Eertcloot an $G$ in hacr wech $A G H$, te weten den booch $A G$, want die even is met $C$ D deur t'ghefelde.

Ien laetfen fulcken achtring A DBde Son D, hecfit in haer wrehCD E, degghelijcke achtring heeft oock den Eertcloot $G$, in haer wech $A G H$, want den houck der achtring $A D B$, is even metten houck C GF.

T'besly y t. Wefende dan de Son met Aelling eens vaften Eertcloots in haer wechs verfepunt, of eerfte halfront, den Eertcloot is met haer roetende ftelling oock in haer weehs verftepunt of eerfte halfront, en fulcken langde en voorofachtring de Son in haer weeh heeft, derghelijeke langde en voorofachtring heeft oock den Eertcloot inde hare, t'welck wy bewijfen moeften.

## VERVOLGH.

Anghefien den Eertcloor mette roerende ftelling altijt tot fulcken plaets haers wechs is, als de Son met ttelling eens vaften Eertcloots inde hare, foo volght daer uyt dat tot fulcke drie plaetfen alfmen de Son in haer wech neemt te wefen om daer deur de uytmiddelpunticheyt te berekenen, tot fulcke drie plaeten moct oock den Eertcloot wefentlick fijn, fulcx datmen met haer loopende ftelling foude moghen berekenen de felve uytmiddelpunticheyt, meifgaders de effening der daghen, en alles watter int tweede bouck deur flelling eens vaften Eertcloots berekent wort, maer fich in fulcke rekeninghen een vatten Eericloot int ghedacht te prenten valt gherievigher, om de redenen die thaerder plaets breoder verclaent fullea worden.
and advance-or-lag as the Sun has in its orbit, the same longitude and advance-orlag the Earth also has in its orbit.

Let the figure of the 8th proposition serve once more for the supposition, so that I say as follows. When the Sun, on the theory of a fixed Earth, is at the farthest point (apogee) $C$ of its orbit CDE, it is evident that the Earth, when assumed to be moving, is also at the farthest point (aphelion) $A$ of its orbit $A G H$.

But when the Sun, on the theory of a fixed Earth, is in the first semi-circle $C D E$ of its orbit $C D E$ at $D$, it is evident that the Earth, when assumed to be moving, is also in the first semi-circle $A G H$ of its orbit $A G H$.

Further, such longitude as the Sun has at $D$ in its orbit $C D E$, to wit, the arc $C D$, the same longitude the Earth also has at $G$ in its orbit $A G H$, to wit, the arc $A G$, because this is equal to $C D$ by the supposition.

Lastly, such lag $A D B$ as the Sun $D$ has in its orbit. $C D E$, the same lag the Earth $G$ also has in its orbit $A G H$, because the angle of the lag $A D B$ is equal to the angle CGF.

CONCLUSION. When the Sun therefore, on the theory of a fixed Earth, is at the apogee of its orbit, or its first semi-circle, the Earth, when assumed to be moving, is at the aphelion of its orbit, or its first semi-circle, and such longitude and advance-or-lag as the Sun has in its orbit, the same longitude and advance-orlag the Earth also has in its orbit; which we had to prove.

## SEQUEL.

Since the Earth, when assumed to be moving, is always in the same place of its orbit as the Sun in its orbit on the theory of a fixed Earth, it follows therefrom that in such three places as the Sun is taken to be in its orbit in order to compute the eccentricity therefrom, in the same three places the Earth also must be in reality, so that when it is assumed to be moving, this eccentricity might be computed, as well as the equation of time, and all that is computed in the second book on the theory of a fixed Earth; but it is more convenient in such computations to impress on one's mind a fixed Earth, for the reasons to be set forth in their place.

# DERDE <br> ONDERSCHEYT 

des derden bovcxvan de Manens langdeloop met ftel-
ling eens roerenden
Eertcloots.

## CORTBEGRYP DESES derden onderscheyts.


(It derde Onderfcheyt fal toveervoorstellen bebben:T'cerste. vopefende in d'oir den bet in, om op een ghegheven tüt den loop des SMaenvpechs rverStepunts en der duystering/netervinden, deur ovifonstighe rovercking ghegront op felling eens roerenden Eertcloots.

Het ivreede, rovefende in d'oirden bet $I_{2}$, dat de ©Maen met felling eens ruerenden Eertcloots de feloe fobÿrbaer duysteraerlangde en rverbeyt rvanden Eertcloat ontfangt, diefe heeft met felling eens roasten Eertcloots.

## II VOORSTEL.

Te vinden op een gegeven tijt den loop van des Maenvvechs verftepüt, en der duyfteringfne, deur vvifconftige vvercking gegront op felling eens rocrendē Eertcloots.

## I Voorbeelt vant'vinden des Maenviechs verstepunts middelloop.

T'ghegheven. Het is dentijt eens dachs. T'begheerde. Men wildaer op ghevonden hebben des Maenwechs verttepunts middellocp in fchijnbaer duyfteraerlangde, ghegront op feling eens rocrenden Eertcloots.

> T' W ERCK.

Des Eertcloots middelloop doet deur het 3 voorftel des 1 boucx (welverftaende dat de getalē des Sonloops aldaer befchrevē hicr om bekende reden voor Eertcloots middelloop ghenomen worden) fdaechs ott. 99 . 8.17.13.12.31.
Daer af ghetrocken de middelloop der voordering die. men des Maenwechs verftepunt met felling eens vaften Eertcloots bevist te voorderen in fehijnbaer duyfteracrlangde op I dach, bedraghende deur het II voorfel des 1 boucx

## THIRD CHAPTER

## OF THE THIRD BOOK

## Of the Moon's Motion in Longitude

 on the Theory of a Moving Earth
## SUMMARY OF THIS THIRD CHAPTER

This third Chapter is to contain two propositions: the first, which in the sequence is the 11 th, to find in a given time the motion of the apogee of the Moon's orbit and of the nodes, by mathematical operations based on the theory of a moving Earth.

The second, which in the sequence is the 12th, that on the theory of a moving Earth the Moon acquires the same apparent ecliptical longitude and distance from the Earth that it has on the theory of a fixed Earth.

11th PROPOSITION.
To find in a given time the motion of the apogee of the Moon's orbit and of the nodes, by mathematical operations based on the theory of a moving Earth.

1st Example, of the Finding of the Mean Motion of the
Apogee of the Moon's Orbit.
SUPPOSITION. Let the time be one day. WHAT IS REQUIRED. It is required to find in this time the mean motion of the apogee of the Moon's orbit in apparent ecliptical longitude, based on the theory of a moving Earth.

## PROCEDURE.

By the 3 rd proposition of the 1 st book the mean motion of the Earth (it being understood that for known reasons the figures of the Sun's motion there described are taken for the mean motion of the Earth) in one day is

When from this is subtracted the mean amount of the advance which the apogee of the Moon's orbit is found to make, on the theory of a fixed Earth, in apparent ecliptical longitude in 1 day, which by the 11th proposition of the 1st book is

```
\(0^{\circ} ; 59,8,17,13,12,31\)
```

$0^{\circ} ; 6,41,2,15,38,31$

Blijft des Maentwechs verAtepunts begheerde middel-
loop teghen t'vervolgh der trappen op een dach otr.52.27.14.57.34. 8. Tot hier toe is voorbeelt ghegheven opden loopeens dachs, waer deur men fekerder fien can t'groot verfchil defes eyghen loops, teghen den oncygen met ftelling eens vafen Fertcloots, dan deur langhe tijden daer heele ronden in commen diemen verlaet : Maer want de boochskens eens dachs feer cleen fijn, fulex dattet volghende bewijs daer deur foo claer niet vallen en foude als op meerder, foo fal ick tot dien einde andermacl nemen den tijt van go daghen. Hier op doet den Eertcloots middelloop deur het 3 voorftel des 1 boucx

88 ir. 42.
Daer af getrocken de middellcop der voordering dicmen des Maenwechs verfepunt met felling eens vaften Eertcloorsbevint te voorderen in fchijnbaer duyfteraerlangde op 90 daghen, bedraghende deur het in voorttel des a boucx

10 tr. 2.
Blifif des Maenwechs verftepunts begeerde middelloop tegen t'ver-
volgh der trappen op 90 daghen
78 tr. 4 c.
Bereytsel Vant'bewys. Om van dit bewijs watint ghemeente fegghen eer ick totte befonder verclaring comme, foo is voor al kennelick dat des Maenwechs verftepunts loop die wy fchijnbacrlickinden duyfterace mercken, ghemengt is van haer eygen mette ghene diefe vanden loopdes Eertclools ontfangt, welcke om tot rechte fiegeling tegeraken nootfakelick moeten on. derfcheyden fijn, ghelijcktint wefen tocgaet, want by aldienmen fonder dacr opacht te nemen, des Maenwechs verfepunt met een roerenden Eertcloot fdaechs voordering gave van 6 (1) 41 (2), fulcke teyckening en rekening en foudemete fake niet overcencommen. Dit verftaen fijnde foo lact ABC den

Eertcloowech beteyckenẽ , diēs mid. delpunt D, de Son $E$, en deur de twee punten D, E, ghetrocken fijnde de rechte lini A D EC, fobeteyckent A het vertepunt, an het welck ick ten eerne neem dẽ Eericloot te wefen, daer na D'A voort getrocke fijnde tot F,ick tcyckē inde lini A F het punt G, befchiijf daer op als middelpunt het rondt FH bedicdēde dē Maenwech, diens yerflepunt ick neem te welen $F$, daer nafy den Eertcloot op de boverchreven 90 dagen gecommen van $A$ iot $B$, waer 0 p haer middelloop doet deur twerck 88 tr. 42 (1) voor den houck A D B : Ick reck daer na de lini B I evewijdege met D A, cñ B K alfoo dat den houck I B K doc de

There remains for the required mean motion of the apogee of the Moon's orbit, against the order of the degrees, in one day
$0^{\circ} ; 52,27,14,57,34,8$
Hitherto an example has been given of the motion of one day, from which the great difference between the true motion and the untrue motion on the theory of a fixed Earth can be seen with greater certainty than from long times, in which there are whole circles; which are discarded. But since the arcs of one day are very small, such that the following proof would not be as clear as for a longer time, for this purpose I will take next the time of 90 days.
In this time, by the 3rd proposition of the 1st book, the mean motion of the Earth is
From this is subtracted the mean amount of the advance which the apogee of the Moon's orbit is found to make on the theory of a fixed Earth in apparent ecliptical longitude in 90 days, which by the 11th proposition of the 1st book is
There remains for the required mean motion of the apogee of the Moon's orbit, against the order of the degrees, in 90 days

PRELIMINARY TO THE PROOF. To make a general statement about this proof before I come to the particular explanation, it is especially evident that the motion of the apogee of the Moon's orbit, which we apparently observe in the ecliptic, is a combination of its own motion with that which it receives from the motion of the Earth, which must necessarily be separated to reach a right theory, as happens in reality; for if, without heeding this, one should give the advance in one day of the apogee of the Moon's orbit, on the theory of a moving Earth, as $6^{\prime} 41^{\prime \prime}$, neither the figure nor the computation would be in agreement with the true state of affairs. This being understood, let $A B C$ denote the Earth's orbit, its centre being $D$, the Sun $E$; then, the straight line $A D E C$ being drawn through the two points $D$ and $E, A$ denotes the apogee, where I first assume the Earth to be. Thereafter, $D A$ being produced to $F$, I mark on the line $A F$ the point $G$ and describe about this as centre the circle $F H$, which denotes the Moon's orbit, whose apogee I assume to be $F$. Thereafter let the Earth have moved in the above-mentioned 90 days from $A$ to $B$, in which its mean motion, according to the procedure, is $88^{\circ} 42^{\prime}$ for the angle $A D B$. Thereafter I draw the line $B I$ parallel to $D A$, and $B K$ so that the angle $I B K$ is the
doe de voordering diemen de middelloop van des Maenwechs vertepunt op de 90 daghen bevint ghevoordert te fijn in fchijnbaer duyttetacrlangde, bedraghende deur ${ }^{\prime}$ 'werck 10 tr. 2 (1): Ick ftel daer na in BK $t^{\prime}$ punt $L$, fulcex dat B L fyde uytmiddelpunticheytijn, en befchrijfop Lals middelpunt de Maenwech K $M$, diens verflepunt $K$, en naeftepunt $M$, treck oock $D$ b voorwaert tot inden omtreckan N. T' B E Y Y s. By aldien het verftepunt als F gheen eyghen rocricl ghehadt en hadde, t'foude, den Eerricloot ghecommen wefende an B, dan fijn inde voortghetrocken $\mathbf{D}$ Bdeur $\mathbf{N}$, maer het is van daer achterwaert ghecommen tot $K$,als hebbende tot die plactsonder den duyfteracr bevonden gheweeft deur t'werck, daerom moeten wy bewijfen den houck N BK te doen de bovefchreven 78 tr, 40 (1), i welck aldus toegaet: Anghefien BI evewijdege is mer $D A$; fulcx datmen van $B$ deur $I$ t'elve punt des duyfteraers fiet, datmen uyt $D$ deur $A$ fach, foo moer den houck I B N even fijn metten houck A D B, en doen alsdie 81 tr. 42 (1), dacraf gherrocken den houck K BI doende deur twerck 10tr. 2 (1), blijft voor den houck N B K 78 Ir. 40 (1): Dacrom op de 90 daghen in welcke den Eertcloot ghecommen is van A to B na ivervolgh der trappen, heefi het verftepunt in fijn eyghen roerfel geloopen tegen t'vervoigh der trappen den houck $\mathbf{N B K}$, doende gelijck wy bewijfen moeñe 78 tr. 40 (1).

## 2 Voorbeelt van t'vinden des duystering fnees loop.

Tghegheven. Hetis den tijt eens dachs. T'begheerde. Men wil daer opgevonden hebben des duyfteringfnees middelloop in fchijnbaer duyfleraerlangde, ghegront op ftelling eens roerenden Eercloots.

## T' W ERCK.

Des Eertcloots middelloop doet deur het 3 voorftel des 1 boucx fdaechs
otr.59. 8.17.13.12.31.
Daer toe vergaert de middelloop der achtring diemen de duyfteringfne met felling eens vaften Eertcloots bevint te verachteren in fchijnbaer dayferacrlangde 0 p 1 dach, bedraghende deur het 11 voorfel des $I$ boucx otr. 3.10.41.15.26. 7.
Comt de duyfteringfnees begheerde middelloop tegen ivervolgh der trappen op een dach

Itr. 2.18.58.28. $\mathrm{3}^{8.38 .}$
Waer af $t$ bewijs deur $t$ 'voorgaende bewijs des i voorbeels als daer groote ghelijckheyt me hebbende kennelick ghenouch is. T'b e S L vy T. Wy hebben dan ghevonden op een gegeven tijt den loop van des Maenwechs vertepunt, en der duyfteringfne, deur wifconflighe wercking ghegront op felling eens roerenden eertcloots, na den eyfch.

## VERVOLGH.

Anghefien deur het 31 voorftel des 2 boucx bekent is des Maenwechs verflepunts fchijnbaer duyfteraerlangde op den anvangtijt, fooift openbaer hoemen die fal vinden op alle ghegeven tijt, want totte placts des anvangtijts, vervoughtden eyghen loop van daer af totten ghegheven tijt na de leering defes voorftels, en daer toe noch ghedaen den Eerteloots loop op den felven tijt, men heeft het beghecrde. Enfghelijcx is oock te vertaen mette duyfteringfne.
advance which the mean motion of the apogee of the Moon's orbit is found to make in 90 days, in apparent ecliptical longitude, which according to the procedure amounts to $10^{\circ} 2^{\prime}$. I then take in $B K$ the point $L$ such that $B L$ be the line of eccentricity and I describe about $L$ as centre the Moon's orbit $K M$, whose apogee is $K$ and whose perigee is $M$, and I also produce $D B$ to the circumference, to $N$. PROOF. If the apogee $(F)$ had not had any motion of its own, it would when the Earth had arrived at $B$ - be in $D B$ produced through $N$, but it has moved backwards from there to $K$, for in that place in the ecliptic it was found according to the procedure; we therefore have to prove that the angle $N B K$ makes the aforesaid $78^{\circ} 40^{\prime}$, which is done as follows. Since $B I$ is parallel to $D A$, so that from $B$ through $I$ the same point of the ecliptic is seen that was seen from $D$ through $A$, the angle $I B N$ must be equal to the angle $A D B$ and like the latter must make $81^{\circ} 42^{\prime}$. When from this is subtracted the angle $K B I$, which according to the procedure makes $10^{\circ} 2^{\prime}$, there remains for the angle $N B K$. $78^{\circ} 40^{\prime}$. Thus, in the 90 days during which the Earth has moved from $A$ to $B$ in the order of the degrees the apogee in its own motion against the order of the degrees has moved the angle $N B K$, which makes $78^{\circ} 40^{\prime}$, as we had to prove.

2nd Example, of the Finding of the Motion of the Nodes.
SUPPOSITION. Let the time be one day. WHAT IS REQUIRED. It is required to find in this time the mean motion of the nodes in apparent ecliptical longitude, based on the theory of a moving Earth.

## PROCEDURE.

By the 3rd proposition of the 1st book the mean motion of the Earth in one day is
$0^{\circ} ; 59,8,17,13,12,31$
To this is added the mean amount of the lag which the nodes are found to lag in apparent ecliptical longitude in one day, on the theory of a fixed Earth, which, by the 11 th proposition of the 1 st book, is $0^{\circ} ; 3,10,41,15,26,7$
The required mean motion of the nodes, against the order of the degrees, in one day becomes
$1^{\circ} ; 2,18,58,28,38,38$
The proof of which is evident enough from the foregoing proof of the 1st example, as being greatly similar thereto. CONCLUSION. We have thus found the motion of the apogee of the Moon's orbit and of the nodes in a given time, by mathematical operations, based on the theory of a moving Earth; as required.

## SEQUEL.

Since from the 31st proposition of the 2 nd book the apparent ecliptical longitude of the apogee of the Moon's orbit is known at the initial moment, it is clear how it is to be found at any given time, for when to the position of the initial moment we add its own motion from there to the given time, according to the present proposition, and to this we further add the motion of the Earth in the said time, we have found what was required. And the same is also to be understood for the nodes.

De Maen ontfangt met ftelling eens roerenden Eertcloots, de felve fchijnbaer duyfteraerlangde en verheyt vanden Eertcloot diefe heeft met ftelling eens vaften Eertcloots.
T'ghegheven. Laetvoor cerfe felling ghenomen worden tpunt A een vaften Eertcloot te beteyckenen, van A tot B fy de Sonwechs uytmiddel.


## THEOREM.

12th PROPOSITION.
On the theory of a moving Earth the Moon acquires the same apparent ecliptical longitude and distance from the Earth which it has on the theory of a fixed Earth.

SUPPOSITION. For the latter theory ${ }^{1}$ ), let the point $A$ be assumed to denote a fixed Earth, let the distance from $A$ to $B$ be the line of eccentricity of the Sun's orbit, and with the semi-diameter $B C$ let there be described about $B$ as

[^26]punticheytlijn,en mette halfmiddellijn B C fy op $B$ als middelpunt befchreven de Sonwech C D E, waer in C A voortgetrocken tot $E$, foo is $E$ inaeftepunt, Cr'veritepunt, daer na fy tuffchē den vaften Eertcloot A en Bgeftelt het punt Fals Maenwechs middelpunt, en daer op mettc halfmiddellijn $F G$ befchreven den Maenwech $G H$, fniende $A$ E in $H$ als naeftepunt, en $A C$ in $G$ als verfepunt, an t'welck ick voor begin neem de Maen te wefen. Op een tijt lanck daer na fy de Maenwechs middelpunt gecommen van $F$ totI, waer op ick mette halfmiddellijn IK, even an FG, beichrijf de Maenwech K L, diens verftepunt $K$, fulex dat op den bovefehreven tijtdes Maenwechs verftepunt gecommen is van $G$ tot $K$, en daerentuffehen is de Maen van het verftepunt ghecommen foo verre als van $K$ tot $M$ (met foo veel heele ronden daer toeallt wefen mocht, diemen hier om bekende redenen verlaet) daer na ghetrocken A M, foo fal de Maen uyt Agefien fchijnbaerlick foo verre fijn van $C$, wefende onder des duylteraers 65 tr. 30 (1), als den houck CA M mebrengt.

Defeteyckening des Maenwechs met ftelling eens vaften Eertcloots aldus ghedaen fijnde, wy fullen totte teyckening van de ander ftelling commen. Tot defen einde ftel ick in $\mathbf{C}$ A t'punt N , alfoo dat de uytmiddelpunticheytlijn CN even fy an AB, en befchrijf op $N$ als middelpunt mette halfmiddelijn N A die even moet fijn mette halfmiddellijn BC het rondt A O P als Eertclootwech, diens naeftepunt $P$, verftepunt $A$, waer in ick neem den Eertcloot A mette Maenwech daer rontom ghecommen te fijntot $\mathbf{O}$, gheloopen hebbende den booch A O, of houck A NO. By aldien nu des Maenwechs verflepunt gheen eyghen roerfel ghehadt en hadde te wijle den Eertcloot ghecommen is van $A$ tot $O$, maer aliijt ghebleven hadde tuffchen den Eertcloot en t'punt $N$, t'is kennelick dattet foude wefen inde lini $O N$ an t'punt $Q$, foo verre van $O$ als van $A$ tot $G$ : Maer het heeft deur het 11 voorttel deles 3 boucx cen roerfel teghen t'vervolgh der trappen even an den Fertclootloop A N O, foo veel min als fijn fehijnbaer voordering inden duyfteraer bedraecht, dats den houck GAK, daerom treck ick de lini OR even en evewijdeghe met A G, en foude des Maenwechs verftepunt moeten fijn an R, gheloopen hebbende teghen t'vervolgh der trappen den houck QOR, waerder niet noch af te trecken een houck even ande fehijnbaer voordering G A K, daerom treck ick de lini OS even an A G, en alfoo dat den houck R O Seven fy metten houck G F K, teycken daer in t'punt $T$, foo dat OT even fy met $A F$, en befchrijfop Tals middelpunt,mette halfmiddellijn TS, den Maenwech S V R, diens verftepunt S: Maer want op den bovefchteven gheftelden tijt de Maen met ftelling eens vaften Eertcloots, ghecommen is vant'verftepunt $K$ tot $M$, foo ftel ick inde Maenwech S V R t'punt V, foo dat de booch S V of houck STV, even is metten houck KIM, en fel de Maen te wefen an t'pnnt V. Dit foo fijnde, ick fegh de Maen $V$ uyt den roerenden Eertcloot O, ghefièn te worden onder de felve fchijnbaér duyfteraerlangde daer de Maen an $\mathbf{M}$ onder ghefien wort uyt den vaften Eertcloot $A$, en dat de verheyt $O V$ even is mette verheyr $A M$, om defe reden. T'b $E$ WY s. Anghefien O R evewijdeghe is met $A G$, en den houck $R O S$ even metten houck $G A K$, foo moet O S evewijdeghe fijn met AK. Voort anghefien den houck STV, even is metten houck KIM, foo is de lini TV evewijdeghe met I M, boven dien foo heeft den driehouck TOV twee fijden TO,TV,even en eves wijdeghe met des driehoucx I A M twee fijden I A, A M, waer deur haer derde fijden O V, A M oock even en evewijdeghe fijn, en daerom wort de Maen an V uyt den roerenden Eertcloot $O$, ghefien onder de felve fchijnbaer duyfte-
centre the Sun's orbit $C D E$, in which, when $C A$ is produced to $E, E$ is the perigee, $C$ the apogee. Thereafter let there be marked between the fixed Earth $A$ and $B$ the point $F$ for the centre of the Moon's orbit, and about this, with the semi-diameter $F G$, let there be described the Moon's orbit $G H$, intersecting $A E$ in $H$ for the perigee and $A C$ in $G$ for the apogee, at which I assume the Moon to be, to begin with. At a time long after, let the centre of the Moon's orbit have moved from $F$ to $I$, about which with the semi-diameter $I K$, equal to $F G$, I describe the Moon's orbit $K L$, whose apogee is $K$, so that in the above-mentioned time the apogee of the Moon's orbit has moved from $G$ to $K$, and meanwhile the Moon has moved from the apogee as far as from $K$ to $M$ (with as many whole circles as may be, which are here discarded for known reasons). When thereafter $A M$ is drawn, the Moon, as seen from $A$, will apparently be as far from $C$, which is at $65^{\circ} 30^{\prime}$ of the ecliptic, as the angle $C A M$ implies.

This drawing of the Moon's orbit on the theory of a fixed Earth thus having been made, we shall proceed to draw the situation on the other theory. To this end I mark in $C A$ the point $N$ such that the line of eccentricity $C N$ be equal to $A B$, and I describe about $N$ as centre, with the semi-diameter $N A$ (which is to be equal to the semi-diameter $B C$ ), the circle $A O P$ for the Earth's orbit, whose perihelion is $P$ and whose aphelion is $A$, in which I assume the Earth $A$ with the Moon's orbit around it to have arrived at $O$, having moved the arc $A O$ or the angle $A N O$. If the apogee of the Moon's orbit had had no motion of its own while the Earth moved from $A$ to $O$, but had always remained between the Earth and the point $N$, it is evident that it would be in the line $O N$ at the point $Q$, as far from $O$ as from $A$ to $G$. But according to the 11th proposition of this 3 rd book it has a motion against the order of the degrees, equal to the motion of the Earth $A N O$, as much less as its apparent advance in the ecliptic amounts to, i.e. the angle $G A K$. I therefore draw the line $O R$ equal and parallel to $A G$; then the apogee of the Moon's orbit would have to be at $R$, having moved, against the order of the degrees, the angle $Q O R$, if it were not that an angle equal to the apparent advance $G A K$ has to be subtracted from it. I therefore draw the line $O S$ equal to $A G$ and such that the angle $R O S$ be equal to the angle $G A K^{1}$ ), mark therein the point $T$ such that $O T$ be equal to $A F$, and describe about $T$ as centre, with the semi-diameter TS, the Moon's orbit SVR, whose apogee is $S$. But because in the above-mentioned time the Moon has moved from the apogee $K$ to $M$ on the theory of a fixed Earth, I mark in the Moon's orbit SVR the point $V$ such that the arc $S V$ or the angle $S T V$ is equal to the angle $K I M$, and assume the Moon to be at.the point $V$. This being so, I say that the Moon $V$ is seen from the moving Earth $O$ at the same apparent ecliptical longitude at which the Moon at $M$ is seen from the fixed Earth $A$, and that the distance $O V$ is equal to the distance $A M$ for this reason. PROOF. Since $O R$ is parallel to $A G$ and the angle $R O S$ is equal to the angle $G A K, O S$ must be parallel to $A K$. Further, since the angle STV is equal to the angle KIM, the line TV is parallel to $I M$. Moreover the triangle $T O V$ has two sides ( $T O, T V$ ) equal and parallel to the two sides $I A, I M{ }^{2}$ ) of the triangle $I A M$, in consequence of which their third sides $O V, A M$ are also equal and parallel, and therefore the Moon at $V$ is seen from the moving Earth $O$ at the same apparent ecliptical longitude at

[^27]272 MAENLOOPS VINDINGMET\&C.
raerlangde daer de Maen an $M$ onder gefien wort uyt den vaiten Eertcloot A , en de verheyt $O V$ is even mette verheyt AM. T'beslvyt. De maen dan ontfangt met felling eens roerenden Eertcloots de felve fchijnbaer duyftesaerlangdeen verheyt vanden Eertcloot diefe heeft met felling eens vaften Eertcloots, t'welck wy bewijfen moeften.

## VERVOLGH.

Tiskennelick, datmen om op een ghegheven tijt te vinden de Manens fchijnbaer duy feraerlangde gegront op ftelling eens roerenden Eertcloors, fal fouckendes Maenwechs verfepunts fchijnbaer duyfteracrlangde na de manier vant vervolgh des in voorftels, en daer na de reft ghelijck met felling eens vaften Eertcloots, maer t'eenemael te rekenen op de felling eens vaften Ferte cloots valt gherievigher, om de redenen die thaerder plaets breeder verclaert fullen worden.
which the Moon at $M$ is seen from the fixed Earth $A$, and the distance $O V$ is equal to the distance $A M$. CONCLUSION. On the theory of a moving Earth the Moon thus acquires the same apparent ecliptical longitude and distance from the Earth that it has on the theory of a fixed Earth; which we had to prove.

## SEQUEL.

It is evident that in order to find at a given time the Moon's apparent ecliptical longitude, based on the theory of a moving Earth, we have to find the apparent ecliptical longitude of the apogee of the Moon's orbit in the manner of the sequel to the 11th proposition, and thereafter the rest in the same way as on the theory of a fixed Earth, but it is more convenient to make the computation at once on the theory of a fixed Earth, for the reasons to be explained more fully in the proper place.

# ONDERSCHEYT 

DESDERDEN BOVCX VAN<br>Saturnus, Iupiters, Mars, Venus<br>eu Mercurius langdeloop met<br>felling eens roerenden Eertcloots.

## CORTBEGRYPDESES <br> VIERDEN ONDERSCHEYTS.

NaterItrvierde Onderfcheyt falfepenreoorstellen hebben.

Het eerfe rovefende in d'oirden bet 13 , om tervirdé de balfa middellïnen der uveghen, de uytmiddelpunticheytlïnen, tret meefte en minste rverbeden rvan de Dovaelders, in fulcke dee-
len alfer des Eertclootvpechs balfmiddellijn roooo doet, deur rovifonslighe roverckingghegront op felling eens roerenden Eertcloots.

Het toreederavefende in d'oirden bet i4, rvan den loop der drie borvenste Dpdaelders Saturnus, Iupiter en ©Mars in baer roveghen op een ghegeven tÿt, met felling pens roerenden Eertcloots.

Het derde rupefende in d'oirden bet is, dat de drie bovenfe Dvoaelders Saturnus, Iupiter en $\mathcal{D M a r s}$, met felling eens roerenden Eertcloots de felDe fchÿnbaer duysteraerlangde en verheyt ruarden Eertcloot ontfanghen, diefe bebben met felling eens raaiten Eertcloots.

Het rierde rovefende in d'oirden bet 16 , varnden loop der topee onderste DrpaeldersVenus en SMercurius in baer rapighen op een gheghenern tït, met felling eens roerenden Eertcloots.

Het ruyfde rovefende in doirdë bet 17 , dat de topee onderfe Drvaelders Venus en Mercurius met felling eens roerenden Eertcloots, de fetve fchünbaer duysteraerlangde en verbeyt vanden Eertcloot ontfanghen diefebebben met felling eens raasten Eertcloots.

Het fefferopefende in doirden bet rs, inhoudende verclaring der reden rovaerom ick inde 8.I2. Is. en I7 voorstellen, bevoefen bebbe de Devaelders deur felling eens roerenden Eertcloots bevonden te ruvorden totte felve fcbünbaer plaetfen en rverbeden rvan malcander, diemen fe met felling eens ruaSten Eertcloots bevint, mette omStandighen roan dien.

Het fevende rovefende in d'oirden bet 19, inboudende rverclaring op
$A(\quad$ ovelcke

# FOURTH CHAPTER 

OF THE THIRD BOOK

Of Saturn's, Jupiter's, Mars', Venus', and<br>Mercury's Motion in Longitude, on the<br>Theory of a Moving Earth

## SUMMARY OF THIS FOURTH CHAPTER

This fourth Chapter is to contain seven propositions.
The first, which in the sequence is the 13 th, to find the semi-diameters of the orbits, the lines of eccentricity, with the greatest and least distances of the Planets, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by means of mathematical operations based on the theory of a moving Earth.

The second, which in the sequence is the 14 th , of the motion of the three upper Planets Saturn, Jupiter, and Mars in their orbits at a given time, on the theory of a moving Earth.

The third, which in the sequence is the 15 th, that the three upper Planets Saturn, Jupiter, and Mars on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth.

The fourth, which in the sequence is the 16 th, of the motion of the two lower Planets Venus and Mercury in their orbits in a given time, on the theory of a moving Earth.

The fifth, which in the sequence is the 17th, that the two lower Planets Venus and Mercury on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth.

The sixth, which in the sequence is the 18th, containing an explanation of the reason why in the 8 th, 12 th, 15 th, and 17 th propositions I have proved that on the theory of a moving Earth the Planets are found at the same apparent places and mutual distances that they are found on the theory of a fixed Earth, with the circumstances relating thereto.

The seventh, which in the sequence is the 19th, containing an exposition on which theory - to wit, the untrue theory of a fixed Earth or the true one of a moving Earth - it seems most suitable to make the computations of the motion in longitude of the Planets.

# 274 Sat.IVp.Mars, VEN.ENMERC.VINDING rvelckeftelling, terveten de oneygben met een wasten. Eertcloot, of de eygben met een roerende, oirboirft Scbïnt de rekeninghen te makenroande langdeloop der Droaelders. 

## 13 VOORSTEL.

Te vinden de halfmiddellijnen der vveghen, de uytmiddelpunticheytlijnen, met meefte en minfte verheden vande Dvvaelders, in fulcke deelen alffer des Eertclootvvechs halfmiddellijn 1 cooo doet, deur vvifconttighe vvercking gegront op ftelling eens roerenden Eertcloots.

Mija voornemen is hier te ghebruycken de ghetalen by Ptolemeus ghevon. den, want hoe wel de verftepunten federt feer verloopen fijn, en dat voorbeelden des teghenwoordighen tijts oirboirder fouden moghen wefen om te fien de overeenciomminghen defer floten mette dadelicke ervatinghen, nochtans ghemerckt in Ptolemeus befchrijving ghevonden worden veel bequame voorbeelden, foo wel des breedeloops als langdeloops van al de Dwaelders, om daer uyrte beveltighen de voorttellen ghegront op ftelling eens roerenden Eertcloors, foo heb ick die vercoren voor ander.

Om dan totte faeck te commen, r ' is te anmercken dat de ftelders eens valten Eertcloors, niet werende dat der drie bovenfte Dwaelders fchijnbaer in ronden daerfe in fchifnen te loopen, fijn in plaets des Eertclootwechs, en darfe daerom mette felve evegroot behooten te wefen, foo en hebbenfe haer halfmiddellijnen gheen felve gheral ghegheven, ghelijck fy fouden meughen doen die fulcx bekent is. Maer want hier uyt volght dat de ghetalen der halfmiddellijnen van weghen en uytmiddelpunticheyulijnen vericheydener Dwaelders, niet everedelick en fijn mette wefentlicke langden, ghelijck nochtans de fake vereyicht
Inftramenta om bequamelick te wercken met ftelling eens roerenden Eertcloots, en* Hemelloopstuych der Dwaclders te meughen teyckenen diens deelen everedelick fijn met haer overeencommende deelen des wherelts, foofal ick opallen een ghemeene maet fellen, te weten des Eertclootwechs halfmiddelijnin 1000 ghedeelt, welcke met reden daer toe vercoren wort, om datfe in de rekeningen van elck der ander Dwaelders comt, en dat haer ghetal van $100 c o$ lichticheye int werck veroirfaeckt.

## S A M IN G

der balfmiddellijnen en uytmiddelpunticheytlijnen door Ptolemeus ghevonden en befchreven op felling eens ruasten Eertcloots.

Sonwechs halfmiddellijn
Sonwechsuytmiddelpunticheytlijn
Macnwechs halfmiddeilijn
Maenwechs uyımiddelpunticheytlijn (die Ptolemeus inronts halfiniddellijn noemde)

60 deel. 2 deel 30 (1). 60 decl.

Anderfins heeft Ptolemeus int 13 voorflel fijns $s$ boucx, in plaets van die twee ghetalen 60 deel en s deel 14 (1), ghenomen twee inde felve reden, te weten 59 deel en $s$ deel ro(1), wefen-

## 13th PROPOSITION.

To find the semi-diameters of the orbits, the lines of eccentricity, with the greatest and least distances of the Planets, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by means of mathematical operations based on the theory of a moving Earth.

My intention is here to use the values found in Ptolemy, for though the apogees have shifted a good deal since then and examples of the present time might be more suitable to see the correspondences of these results with practical experience, nevertheless, seeing that in Ptolemy's description many suitable examples are found both of the motion in latitude and of the motion in longitude of all the Planets, with which to confirm the propositions based on the theory of a moving Earth, I have chosen them in preference to others.

To come to the matter, it is to be noted that those who assume a fixed Earth, not knowing that the apparent epicycles of the three upper Planets, in which they seem to move, have come instead of the Earth's orbit, and that they ought therefore to be of the same magnitude as the latter, have not given their semi-diameters the same value, as those to whom this is known might do. But since it follows from this that the values of the semi-diameters of the orbits and the lines of eccentricity of different Planets are not proportional to the actual lengths, as nevertheless is required for a convenient treatment on the theory of a moving Earth and for making it possible to draw astronomical instruments of the Planets ${ }^{1}$ ), whose parts are proportional to the corresponding parts of the world, I shall set a common measure for all, to wit, the semi-diameter of the Earth's orbit divided into 10,000 , which is chosen for it with good reason because it occurs in the computations of each of the other Planets and because its value of 10,000 facilitates the procedure.

## COMPILATION

of the Semi-diameters and Lines of Eccentricity Found and Described by Ptolemy on the Theory of a Fixed Earth.

Semi-diameter of the Sun's orbit<br><br>Line of eccentricity of the Sun's orbit $2^{\mathrm{P}} 30^{\circ}$<br>Semi-diameter of the Moon's orbit<br>$60^{\text {D }}$<br>Line of eccentricity of the Moon's orbit (which Ptolemy called<br>epicycle's semi-diameter)

[^28]

On the other hand, in the 13 th proposition of his 5th book, Ptolemy took, instead of those two values of $60^{\mathrm{p}}$ and $5^{\mathrm{D}} 14^{\prime}$, two values in the same ratio, to wit, $59^{\mathrm{D}}$ and $5^{\mathrm{D}} 10^{\prime}$, the units being the semi-diameter of the Earth, of which the semi-diameter of the Sun's orbit has 1,210 .

Semi-diameter of Saturn's deferent
Semi-diameter of Saturn's epicycle
$60^{p}$
$6^{\mathrm{D}} 30^{\prime}$
Saturn's line of eccentricity
Semi-diameter of Jupiter's deferent
Semi-diameter of Jupiter's epicycle
Jupiter's line of eccentricity
Semi-diameter of Mars' deferent
Semi-diameter of Mars' epicycle
Mars' line of eccentricity
Semi-diameter of Venus' deferent
Semi-diameter of Venus' epicycle
Venus' line of eccentricity
Semi-diameter of Mercury's deferent
Semi-diameter of Mercury's epicycle
Mercury's line of eccentricity
In order to convert these values, found on the theory of a fixed Earth, into values on the theory of a moving Earth, the semi-diameter of whose orbit makes 10,000 , as has been said above, I shall begin with the Earth, and since the semi-diameter of its orbit is the same as that otherwise ascribed to the Sun's orbit, it is according to the above Compilation to its line of eccentricity in the ratio of $60^{\mathrm{D}}$ to $2^{\mathrm{D}} 30^{\prime}$; but to have it in such parts as the semi-diameter of the Earth's orbit has 10,000 , I say:
$60^{\mathrm{P}}$ give $2^{\mathrm{P}} 30^{\prime}$; what does 10,000 give? It makes 417 , so that if the semi-diameter of the Earth's orbit makes
the line of eccentricity makes
And since Ptolemy in the 4th Chapter of his 3rd book puts the apogee of the Sun's orbit at $65^{\circ} 30^{\prime}$ of the ecliptic, which is now replaced by the perihelion of the moving Earth's orbit, by the 9th proposition of this 3rd book, the aphelion of the latter now falls in the ecliptic at

As regards the semi-diameter of the Moon's orbit, since this is to the semi-diameter of the Earth's orbit in the ratio of 1,210 to 59 , according to the above Compilation, I say: 1,210 gives 59 ; what does 10,000 give? It gives for the semi-diameter of the Moon's orbit
$3^{\mathrm{p}} 25^{\prime}$
$60^{\text {D }}$
$11^{\mathrm{P}} 30^{\text {。 }}$
$2^{D} 45^{\prime}$
$60^{D}$
$.39^{\mathrm{D}} 30^{\prime}$
$6^{\text {p }}$
$60^{\text {D }}$
$43^{\circ} 10^{\circ}$
$1^{\mathrm{p}} 15^{\prime}$
$60^{\text {D }}$
$21^{\text {P }} 26^{\prime}$
$5^{\text {D }} 41^{\prime}$

## 276 Sat.Ivp.Mars, Veneen Merc.vinding

Om tehebben Saturnus wechs halfmiddeliijn, ick fegh Saturnusinronts halfmiddellijn 6 deel 30 (1), gheeff dijn inrontwechs halfmiddellijn 60 deel deur de voorgaende SA M ING , wat 10000? comt voor Saturnuswechs halfmiddellijn
Om te hebben Saturnusuymiddelpunticheytlijn, ick fegh fijn inronts halfmiddellijn $\sigma$ deed 30 (1), geeff fign uyimiddelpunticheytlijn 3 deel $2 \boldsymbol{s}$ (1) deur de voorgaende S A M IN G, wat $100 c 0$ comont Saturnus uytmiddelpunticheytlijn

52s6.
Om te hebbē Saturnus meefte en minfte verhedē, ick fal op dat alles claerder fy teyckenẽ twee formé, d'eerfte met felling eens vaften Eericloots, d'ander ecns roerenden. Laet $A$ BSaturnusinrontwech fijn diēs middelpunt $C$, en de halfmiddellijn C A doet 92308 achtte in dooirde, $D$ is den vaften Eertcloot, $C$ D de uytmiddelpunticheytlijn doende $52 g 6$ negende in doirden, $A$ desinrontwechs verftepunt, B naeftepunt, voort y op A als middelpunt be. chreven het inront E F , diens halfmiddellijn A E doet 1000 deurt'gheftelde, eñ des inronts verftepunt is $F$, naeftepunt $E$, daer na fy op B als middelpunt befchrevē her intont $G$ Heven an $E F$, diens naeftepunt $G$. Dit fo fijnde, en om nu te li:bben de meefle verheyt $D$ F,foo vergaerick tot C A 2308 achtfte in d'oirden, de uytmiddelpunticheyllijn DC 5256 neghende in doirden, mette halfmiddellijn A F rocoo, comt t'amen voor de meefte verheyt DF 107564. Endeonite hebbē de minfte verheyt $D$ G, ick.treck DC 5256 met G B 10000 t'famen 15256 , van C B $^{\prime}$


22308, en blifft voor de minfte. verheyt $D$ G 77052. Macrom nu te fiéfulckeovereencoming met een roerende Eertcloot, laet het ront IK fijn Saturnus wech , diens middelpunt $\mathrm{I}, \mathrm{en}$ halfmiddelijijn IL evé an C $A$ doet als die 92308 , en t'middelpunt des Eertclootwechs fy $M$, uytmiddelpunticheytlijn $L M$ doende als C D sis6, Saturnuswechs verftepunt fy 1 , maeftepunt $K$, voort fy op M als middelpuns befchreven dẽ Eerclootwech NO, dies halfmiddellijn M N
cven

In order to have the line of eccentricity of the Moon's orbit, I say: semi-diameter of the Moon's orbit $59^{\mathrm{D}}$ gives line of eccentricity $5^{\mathrm{D}} 10^{\prime}$ according to the above Compilation; what does the semi-diameter of the Moon's orbit 488 give, the fourth in the list? The line of eccentricity of the Moon's orbit becomes

When this is added to the semi-diameter of the Moon's orbit 488 (the fourth in the list), the greatest distance of the Earth from the Moon becomes

And when 43 (the fifth in the list) is subtracted from the semi-. diameter of the Moon's orbit 488 (the fourth in the list), the least distance is

Since the apparent ecliptical longitude of the apogee of the Moon's orbit varies widely in a short time, this is not required to be discussed here.

In order to have the semi-diameter of Saturn's orbit, I say: the semidiameter of Saturn's epicycle $6^{\mathrm{P}} 30^{\prime}$ gives the semi-diameter of its deferent $60^{\mathrm{D}}$ according to the above Compilation; what does 10,000 give? The semi-diameter of Saturn's orbit becomes

In order to have Saturn's line of eccentricity, I say: the semi-diameter of its epicycle $6^{\mathrm{P}} 30^{\prime}$ gives its line of eccentricity $3^{\mathrm{D}} 25^{\prime}$ according to the above Compilation; what does 10,000 give? Saturn's line of eccentricity becomes

In order to have Saturn's greatest and least distances, I will - to make everything clearer - draw two figures, the first on the theory of a fixed Earth, the other on that of a moving Earth. Let $A B$ be Saturn's deferent, whose centre be $C$, and the semi-diameter $C A$ makes 92,308 (the eighth in the list), $D$ is the fixed Earth, $C D$ the line of eccentricity making 5,256 (the ninth in the list), $A$ the deferent's apogee, $B$ its perigee; further let there be described about $A$ as centre the epicycle $E F$; whose semi-diameter $A E$ makes 10,000 by the supposition, then the epicycle's apogee is $F$, its perigee $E$; thereafter let there be described about $B$ as centre the epicycle $G H$ equal to $E F$, whose perigee is $G$. This being so, and in order to have the greatest distance $D F$, I add to $C A$ 92,308 (the eighth in the list) the line of eccentricity $D C 5,256$ (the ninth in the list), with the semi-diameter $A F 10,000$; this makes together 107,564 for the greatest distance DF. And in order to have the least distance $D G$, I subtract $D C 5,256$ with $G B 10,000$, together making 15,256, from $C B$ 92,308; then there is left for the least distance $D G$

But in order to see now such correspondence with a moving Earth, let the circle $I K$ be Saturn's orbit, whose centre be $L$ and whose semidiameter IL equal to CA, like the latter, makes 92,308, and let the centre of the Earth's orbit be $M$, its line of eccentricity $L M$ making (like $C D$ ) 5,256 ; let the apogee of Saturn's orbit be $I$, its perigee $K$; further let there be described about $M$ as centre the Earth's orbit NO,
Meteentoerenden Eertcloot.277even fijnde met $A$ E doet als die 10000. Dit foo wefende de mee-fte verheyt OI, moet even fijn mette bovefchreven DF, en deminfte $O$ K even mette bovefchreven minfte D G, want tot I L92308, vergaert L M 5256 met M C icoo0, comt voor O I (ghe.lijck boven quam voor $D$ F als Saturnus meefte verheyt
Ende L M 5256 met MO io000 t'famen 15256 ghetrocken van LK 92308 , blijft voor OK (ghelijck boven quam voor D G) als Saturnus minfte verheyt
Ende Saturnuswechs verftepunt was ten tijde van Ptolemeies foo hy feght int $s$ Hoofitick Gins 1 I boucx onder des duyfteraers
En ghedaen fijnde derghelijcke rekeninghen met Iupiter en Mars; men bevint d'uytcomft als volght
Tupiters wechs halfmiddellijn
Iupiters uytmiddelpunticheytijn
lupiters meefte verheyt
Iupiters minfte verheyt.
lupiters wechs verftepunt was ten tijde van Ptolemeus foo hy feght int I Hoofiftick fijns in boucx onder des duyfteraers
Marswechs halfmiddellijn
Mars uytmiddelpunticheytlijn
Mars meefte verbeyt
Mars minfte verheyt
Mrrswechs verftepunt wasten tijde van Ptolemeus foo hy fegt int 7 Hoofuttick fijus 10 boucx onder des duyfteraers
115 tr. 30.
Om te hebbē Venuswechs halfmiddellijn met ftelling eens roerenden Eertcloots, foo is voor al te weten dat haer wech met felling cens valten Eertcloots even ghenomen fijnde metten Eertclootwech 10000 ,foo doet haer inronts halfmiddellijn da fulcke 7194, want fegghende Venus inrontwechs halfmiddellijn $\sigma 0$ deel, geeft haer inronts halfmiddellijn 43 deel 10 (1) deur de voorgaende SAMING, wat 10000 ? comt voor haer inronts halfmiddellijn als vooren 7194 . Maer t'gene men met ftelling eens vaften Eertcloots noemt Venusinrontwech, is met ftelling eens roerenden Eertcloors voor des felfden roerenden Eertclootswech: Ende het ghene men met felling eens vaften Eetcloots noemt Venus inront, is met ftelling eens roerenden Eertcloots voor Venus wech, daerom Venus wechs halfmiddellijn met ftelling eens rocrenden Eertcloots doet
Om te hebben Venus uytmiddelpunticheytlijn, ick fegh haer inrontwechs halfmiddellijn 60 deel, gheeft haer uymiddelpuntic. heytlijn I deel is (1) deur de voorgaende S A M I N G, wat 10000? comt Venusuytmiddelpunticheytijin
Om te hebben Venus meette en minfte verheden, ick fal op dat alles claerder fy, teyckenen twee formen, d'eerfte met ftelling eens vaften Eertcloots, d'ander eens roerenden. Laet A B Venusinrontwech fijn, diens middel punt C , en de halfmiddellijn CA doet 1 cocodeur t'geftelde, $D$ is den vaften Eertcloot, $C D$ deuytmiddelpunticheytlijn doende 208 vierentwintichfte in d'oirde, A des inrontwechs verftepunt, B naeftepunt, voort fy op $A$ als middelpunt befchreven het inrondt EF, diens halfmiddellijn A. E doet
whose semi-diameter $M N$, being equal to $A E$, like the latter makes 10,000 . This being so, the greatest distance $O I$ must be equal to the above-mentioned $D F$, and the least $O K$ equal to the above-mentioned least distance $D G$, for if to $I L 92,308$ is added $L M 5,256$ with MO 10,000, this makes for $O I$ (as was found above for $D F$ ), as Saturn's greatest distance,

And if $L M 5,256$ with MO 10,000 , making together 15,256 , is subtracted from $L K$ 92,308, there is left for $O K$ (as was found above for $D G$ ), as Saturn's least distance,

And the apogee of Saturn's orbit was at the time of Ptolemy, as he says in the 5th Chapter of his 11th book, in the ecliptic at

And when similar computations are made with Jupiter and Mars, the result is found as follows:
Semi-diameter of Jupiter's orbit
Jupiter's line of eccentricity
Jupiter's greatest distance
Jupiter's least distance
2,391
64,565
The apogee of Jupiter's orbit was at the time of Ptolemy, as he says in the 1st Chapter of his 11th book, in the ecliptic at
Semi-diameter of Mars' orbit
$161^{\circ}$
Mars' line of eccentricity
Mars' greatest distance
1,519
Mars' least distance
The apogee of Mars' orbit was at the time of Ptolemy, as he says-in the 7th Chapter of his 10th book, in the ecliptic at

In order to have the semi-diameter of Venus' orbit on the theory of a moving Earth, it is to be noted first of all that if its orbit on the theory of a fixed Earth is taken equal to the Earth's orbit 10,000 , the semidiameter of its epicycle makes 7,194 , for if I say: the semi-diameter of
Venus' deferent $60^{\circ}$ gives its epicycle's semi-diameter $43^{\circ} 10^{\prime}$ according to the above Compilation, what does 10,000 give? Its epicycle's semidiameter becomes, as above, 7,194 . But what on the theory of a fixed Earth is called Venus' deferent, on the theory of a moving Earth is the orbit of this moving Earth. And what on the theory of a fixed Earth is called Venus' epicycle, on the theory of a moving Earth is Venus' orbit; therefore the semi-diameter of Venus' orbit on the theory of a moving Earth makes

In order to have Venus' line of eccentricity, I say: its deferent's semi-diameter $60^{\mathrm{p}}$ gives its line of eccentricity $1^{\mathrm{p}} 15^{\prime}$ according to the above Compilation; what does 10,000 give? Venus' line of eccentricity becomes

In order to have Venus' greatest and least distances, I will - in order to make everything clearer - draw two figures, the first on the theory of a fixed Earth, the second on that of a moving Earth. Let $A B$ be Venus' deferent, whose centre is $C$, and the semi-diameter makes 10,000 by the supposition, $D$ is the fixed Earth, $C D$ the line of eccentricity, which makes 208 (the twenty-fourth in the list), $A$ the

7194 drieentwintichfte in de
 oirden, en des inronts verftepunt is $F$, naeftepunt $E$,daer na fy op Bals middelpút befchrevē het jinront GH evēan EF, diês naeftepunt $G$ : Dit fo fijnde,en om nu te hebbéde meefte verheyt $D F$, fo vergaer ick tot CA 10000, de uytmiddelpunticheylijn DC 208 vierētwintichfte ind'oirden, mette halfmiddellijn AF7194drieentwintich fle in d'oirdē,comt t'famẽ voor de meefte verheyt DF 17402: Ende on te hebbe de minfle verhcyt D G, ick treck DC 208 met GB 7194 t'amen $7502, \operatorname{van~C~B~10000,~}$ en blijft voor de minfte verheyt D G 2598.
Maer om nu te fien fulcke overeenconıming met cē rocrendē Eertcloot, lact het ront 1 K fijn Saturnus wech, diens middelpunt $L$, en de halfmiddellijn I Levé an A Fdoet als die 9 194, en t'middelpunt des Eerclootwechs fy $M$, uytmiddelpunticheylijin LM, doende als CD 208, Venuswechs verfepunt van $M$ fy I, naeftepunt $K$, voort fy op M als middelpunt be-
 fchreven den Eerclootwech N O, diens halfmiddellijn M Nevẽ met C A doet als die 10000 . Dit fowefende, de meefte verheyt O I moet even fjn mette bovefchreven DF, en de minfte verheyt N l , evē mette bovefchreven minfte D G, want tot I L 7194, vergaert L M208met M O 10000 , comt voor OI (ghelijck bové quam voor DF ) als Venus meefte verheyt diefe vandē Eertcloor hebben can
De felve getrocken vande hecle middelijn NO 20000,blijft voor deminfte verheyt die Venus vanden Eertcloot hebben can

Ende ghedaen fijndederghelijcke rekeninghen met Mcrcurius, men bevintdruytcomitals volght:
deferent's apogee, $B$ its perigee. Further let there be described about $A$ as centre the epicycle $E F$, whose semi-diameter $A E$ makes 7,194 (the twenty-third in the list), then the epicycle's apogee is $F$, its perigee $E$. Thereafter let there be described about $B$ as centre the epicycle $G H$ equal to $E F$, whose perigee be $G$. This being so, and in order to have the greatest distance $D F$, I add to $C A 10,000$ the line of eccentricity $D C 208$ (the twenty-fourth in the list), with the semi-diameter $A F 7,194$ (the twentythird in the list); this makes together for the greatest distance $D F 17,402$. And in order to have the least distance $D G$, I subtract $D C 208$ with $G B 7,194$, making together 7,402 1), from $C B 10,000$; then there is left for the least distance $D G 2,598$.

But in order to see such correspondence with a moving Earth, let the circle $I K$ be Venus' 2 ) orbit, whose centre is $L$, then the semidiameter $I L$ equal to $A F$, like the latter, makes 7,194; and let the centre of the Earth's orbit be $M$, the line of eccentricity $L M$, making (like $C D)$ 208; let the apogee of Venus' orbit from $M$ be $I$, its perigee $K$. Further let there be described about $M$ as centre the Earth's orbit NO, whose semi-diameter $M N$ equal to $C A$, like the latter, makes 10,000 . This being so, the greatest distance $O I$ must be equal to the abovementioned $D F$, and the least distance $N I$ equal to the above-mentioned least distance $D G$, for if to $I L 7,194$ is added $L M 208$ with $M O 10,000$, this makes for $O I$ (as was found above for $D F$ ), as the greatest distance from the Earth that Venus can have

When this is subtracted from the whole diameter NO 20,000, there is left for the least distance from the Earth that Venus can have

And the apogee of Venus' orbit was at the time of Ptolemy, as he says in the 2nd Chapter of his 10th book, in the ecliptic at $55^{\circ}$
And when similar computations are made with Mercury, the result is found to be as follows:

[^29]
# METEEN ROERENDENEERTCLOOT. 

Mercurius wechs halfmiddellijn 3572.
Mercurius uytmiddelpunticheyllijn . $947 \cdot$
Mercurius meafte verheyt 14519.
Mercurius minfte verheyt
S481.
Mercurius wechs verftepunt was tê tijde van Ptolemerus,foo hy feght int 7 Hooffltick fijns 9 boucx, onder des duyfteracrs

190 tr.

MERCKT.

Deghetalen der halfmiddelliinen, uytmiddelpunticheytlijnen, verheden, en fchijnbaer duyfteraerlangden hier boven befchreven gelijckfe gevonden wierden, dic fal ick nu andermael int corte oirdentick by een vervoughen, op dat daer uyt int volghende ghebruyck de begheerde ghetalen te gherievelicker ge• vonden meughen worden.

BreENVOVGING VANDE
Drvaelders balfmiddellïnen der roveghen, uytmidderpunticbeytlïnen, meeffe en minste verbeden vanden Eertcloot, altemael in firlcke deelen alffer des Eertclootneechs halfmiddellÿn 10000 doet, metf. gaders der verstepuntens jchünbaer duysteraerlangden ten tüde van Polemeus.

|  | Mercur. | Venus. | Eertcloot. | Maen. | Mars. | Iupiter. | Satumus. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Viechs halfmiddelljin. | 3572 | 7194 | 10000 | 488 | 15190 | 52174 | 92308 |
| Vytmiddelparticheytijn. | 947 | 208 | 417 | 43 | 1519 | 2391 | 5256 |
| Meefle verheyt. | 14519 | 17402 | 10417 | 531 | 26709 | 6456s | 107564 |
| Minfle verhegt. | 5481 | 2598 | 9583 | 445 | 3671 | 39783 | 77052 |
| Verflepuntsfchg̈nbaer | 190tr. | sstr. | 245 tr. 30 | - . | IIStr. 30 | 161 tr. | 233 tr. |

T'b e s L Y y $T$. Wy hebben dan gevondē de halfmiddellijnē der wegen, de uytmiddelpunticheytlijnen, met meefte en minfte verhedē vande Dwaelders, in fulcke declen alfer des Eerrclootwechs halfmiddellijn 10000 doet, deur wif. conftige wetcking gegront op ftelling eens roerendē Eertcloots, na den eyfch.

VERVOLGH.
Aldus bekent fijnde de rederi defer linien vande Dwaelders weghen en haer inronden, in fulcke deelen alfer des Eertcloots halfmiddellijn 10000 doet, en dat des Eertclootwechs halfmiddellijn in haer begrijpt 1210 halfmiddellijnen des Eertcloots, foo ift openbaer hoemen fal connen befchrijven fulcke voorftellèn, als daer vermaen afgedaen is int 2 merck des 49 voorftels vant 2 bouck met fielling eens vaften Eertcloots,te weten fulcke voorftellen als het 23 en 24 vande Son,oock ghelijck het 39 en 40 vande Maen : En boven dien hoemen vinden fal alle linien daer voorvallende, in fulcke deelen alfier des Eertclootwechs halfmiddellijn 10000 doet.

> I4 V O OR STEL.

Tc befchrijven den loop derdrie bovenfte Dvvaelders Saturnus, Iupiter en Mars in haer vveghen, opeen ghegeven tijt, met felling eens roerenden Eertcloots.

Aa 4 T'GHE.
Semi-diameter of Mercury's orbit ..... 3,572
Mercury's line of eccentricity ..... 947
Mercury's greatest distance ..... 14,519
Mercury's least distance ..... 5,481The apogee of Mercury's orbit at the time of Ptolemy was, as he says inthe 7th Chapter of his 9th Book, in the ecliptic at$190^{\circ}$

## NOTE.

I will sum up once more briefly and orderly the values of the semi-diameters, lines of eccentricity, distances, and apparent ecliptical longitudes described above, as they have been found, so that the required values may be found more conveniently in the subsequent application.

## LIST

of the semi-diameters of the Planets' orbits, lines of eccentricity, greatest and least distances from the Eearth, all in such parts as the semi-diameter of the Earth's orbit has 10,000 , as also the apparent ecliptical longitudes of the aphelia at the time of Ptolemy.

Semi-diameter of the orbit
Line of eccentricity Greatest distance Least distance Apparent ecliptical longitude of aphelion

| Mercury | Venus | Earth |
| ---: | ---: | ---: |
| 3,572 | 7,194 | 10,000 |
| 947 | 208 | 417 |
| 14,519 | 17,402 | 10,417 |
| 5,481 | 2,598 | 9,583 |
|  |  |  |
| $190^{\circ}$ | $55^{\circ}$ | $245^{\circ} 30^{\prime}$ |


| Moon | Mars | Jupiter | Saturn |
| ---: | ---: | ---: | ---: |
| 488 | 15,190 | 52,174 | 92,308 |
| 43 | 1,519 | 2,391 | 5,256 |
| 531 | 26,709 | 64,565 | 107,564 |
| 445 | 3,671 | 39,783 | 77,052 |
|  |  |  |  |
| - | $115^{\circ} 30^{\prime}$ | $161^{\circ}$ | $233^{\circ}$ |

CONCLUSION. We have thus found the semi-diameters of the orbits, the lines of eccentricity, with the greatest and least distances of the Planets, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by means of mathematical operations based on the theory of a moving Earth; as required.

## SEQUEL.

The ratio of these lines of the Planets' orbits and their epicycles thus being known, in such parts as the semi-diameter of the Earth's orbit has 10,000 , and the semi-diameter of the Earth's orbit comprising 1,210 semi-diameters of the Earth, it is evident how it is possible to describe propositions such as have been announced in the 2nd note to the 49th proposition of the 2nd book, on the theory of a fixed Earth, to wit, propositions such as the 23rd and 24th on the Sun, as also the 39th and 40th on the Moon 1); and moreover how any lines that may occur can be found, in such parts as the semi-diameter of the Earth's orbit has 10,000 .

## 14th PROPOSITION.

To describe the motion of the three upper Planets Saturn, Jupiter, and Mars in their orbits in a given time, on the theory of a moving Earth.

[^30]
## 280 Sat.Ivp.Mars, Ven.enMerc.vinding

T'ghegeven. Ommet Saturnustebeginnen foo laet den tijt fijn van eendach. T'begeerde. Men wil daer op vindenden loop van Saturnus in Gjin wech, met ftelling eens rocrenden Eertcloots.

## T' W ERCK.

Het is te weten dat Saturnus eyghentlick wefende in fijn wech tot fulcken plaets als daermen met felling eens vaften Eertcloots het inronts middelpunt teyckent, foo en heeft hy eyghentlick gheen ander loop, doende daghelicxals int 18 voorftel des 1 boucx otr.2.0.33-31.28.51. Angaende de voorofachtringhen welcke men hem fiet hebben, die en commen niet van weghen een inront datmẽ hem deur ftelling eens vaften Eercloots toefchrijft, maer deur den Eertcloots loop, fulcx dat hy met foodanich daghelicx roerfel eenvoudelick in fijn wech draeyt: Ende defghelijcx is oock te verftaen van Iupiter en Mars.

T'besivyt. Wy hebben dan befchreven den loop der drie bovenfte Dwaelders Saturnus, lupiter en Mars in haer weghen, opeen ghegheven tijt met felling eens roerenden Eertclaots,na den eyfch.

## VERTOOCH. IS VOORSTEL.

De drie bovenfte Dvvaelders Saturnus, lupiter en Mars, ontfanghen met ftelling eens roerenden Eertcloots, de felve fchijnbaer duyfteraerlangde en verheyt vanden Eertcloot, diefe hebbēmet ftelling eens vaftē Eertcloots.

Om dit voorftel birdentlick re verclaren, ick falt in fes leden verdeelen, waer afint eerfte fal fijn de teyckening van een der drie bovenfte als Marsloopmet Atelling eens vaften Eertcloots.

Intweede de teyckening van Marsloop met ftelling eens roerenden Eertcloots.

Int derde t'bewijsdat Mars in d'een en d'ander ftelling een felve fchijnbaer duyfteraerlangde heeft, en de felve verheyt vanden Eertcloot als hy isin fijn inronts verftepunt, en tinronts middelpunt an fijn wechs verftepunt.

Daer na om te bewijfen fulcx alfoo overal te ghefchien, foo fal tot bereyding van dien int vierde lidt verclaert worden, hoedat de halfmiddellijn van Saturnuswechs middelpunt tot des inronts middelpunt, altijt evewijdeghe is mette halfmiddellijn van des inrontwechs middelpunt, tot des inronis middelpunt: En des Eertclootwechs halfmiddellijn van haer middelpunt totten Eertcloot, altijt evewijdeghe mette halfmiddellijn des intonts vant middelpunt tot Mars.
Int vijfde lide, dat Mars in d'een en d'ander felling tot allen plaetfen een felve fchijnbaer duyßteraerlangde heeft, en de felve verheyt vanden Eertcloot.

Int fefte vant verfchil datter valt tuffehen de werckingen van d'een en d'ander ftelling int berekenen der fehijnbaer duyfteraerlangde des Dwaelders.

## I LIDT inhoudende de teyckening rvan Marsloop met felling eens ruaster Eertcloots.

Laet voor cerfte ftelling ghenomen wordent'punt A een vaften Eertcloot te beteyckené, en van $A$ tor $B$ fy des Sonwechs uytmiddelpunticheyulijn doen-

SUPPOSITION. To begin with Saturn, let the time be one day. WHAT IS REQUIRED. It is required to find in that time the motion of Saturn in its orbit, on the theory of a moving Earth.

## PROCEDURE.

It is to be noted that since Saturn actually is in its orbit in a place where on the theory of a fixed Earth the epicycle's centre is'drawn, in reality it has no other motion, and moves daily, as in the 18th proposition of the 1st book ${ }^{1}$ ), $0^{\circ} 2,0,33,31,28,51$. As to the advance-or-lag 2) that it is seen to have, this is not caused by an epicycle ascribed to it on the theory of a fixed Earth, but by the motion of the Earth, so that with this daily motion it simply revolves in its orbit. And the same is also to be understood of Jupiter and Mars.

CONCLUSION. We have thus described the motion of the three upper Planets Saturn, Jupiter, and Mars in their orbits in a given time, on the theory of a moving Earth; as required.

THEOREM.
15th PROPOSITION.
The three upper Planets Saturn, Jupiter, and Mars on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth.

In order to explain this proposition properly, I will divide it into six sections, the first of which is to comprise the drawing of one of the three upper Planets, namely Mars' motion, on the theory of a fixed Earth.

The second, the drawing of Mars' motion on the theory of a moving Earth.
The third, the proof that on either theory Mars has the same apparent ecliptical longitude and the same distance from the Earth when it is at its epicycle's apogee and when the epicycle's centre is at the apogee of its orbit.

Thereafter, in order to prove that this happens thus always, in preparation of this it will be explained in the fourth section how the semi-diameter from the centre of Mars' orbit ${ }^{3}$ ) to the planet itself ${ }^{4}$ ) is always parallel to the semi-diameter from the deferent's centre to the epicycle's centre, and the semidiameter of the Earth's orbit from its centre to the Earth always parallel to the semi-diameter of the epicycle from its centre to Mars.

The fifth section, that in all places Mars has on either theory the same apparent ecliptical longitude and the same distance from the Earth.

The sixth, of the difference between the operations on either theory in the computation of the apparent ecliptical longitude of the Planet.

1st SECTION, comprising the drawing of Mars' motion on the theory of a fixed Earth.

Let it first be assumed that the point $A$ denotes a fixed Earth, and let the line from $A$ to $B$ be the line of eccentricity of the Sun's orbit, according to Ptolemy's

[^31]
## METEENROERENDENEERTCIOOT. 281

de na Ptolemeus rekening t'fijnder tijt fulcke 417, alfer des Sonwechs halfmiddellijn die B C fy 10000 doet deur het 13 voorftel defes 3 boucx, mette felve BC fy op B als middelpunt befchreven de Sonwech C D, waer in C A voortghetrocken tot D, foo is D t'naeftepunt, $\mathrm{Ct}^{\prime}$ verftepunt wefende tot Ptolemexs tijt onder des duyfteraers 6 s tr. 30 (1). Om hier op nute doen de teyckening des loops van eenige der drie bovefchreven Dwaelders, ick neem tot voorbeelt daer toeals boven ghefeyt is Mars, wiens inrontwechs verftepunt ien tijde van


Ptolemers gheweef hebbende onder tiesduyfteraers instr. 30 (1) deurhet 13 voorftel defes 3 boucx, ick treck deur den vaften Eertcloot A de lini E F van A tot F na des duyfteraers bovefchreven ils tr. 30 (1), te weten foo dat den houck C A F doe sotr.dieder fijn vande ós tr. 30 (1) daer C onder is, tottē ins tr 30 (1) daer Fonder is. Ick itel daer na in AF t'punt G, roodat A G fy Marsintontwechs uytmiddelpunticheytlijn, doende deur het 13 vcorftel fulcke 1519 , alffer des Sonwechs halfmiddellijn 10000 doet: Ick teycken daer na inde lini GF
t'punt
computation making at his time 417 such parts as the semi-diameter of the Sun's orbit, which shall be $B C$, has 10,000 , by the 13 th proposition of this 3rd book; with the said $B C$ let there be described about $B$ as centre the Sun's orbit $C D$, in which, when $C A$ is produced to $D, D$ is the perigee, $C$ the apogee, which in Ptolemy's time was at $65^{\circ} 30^{\prime}$ of the ecliptic. In order to base on this the drawing of the motion of one of the three aforesaid Planets, I take as example, as has been said above, Mars; the apogee of the latter's deferent having been in Ptolemy's time at $115^{\circ} 30^{\prime}$ of the ecliptic, by the 13 th proposition of this 3rd book, I draw through the fixed Earth $A$ the line $E F$ from $A$ to $F$ towards the point at $115^{\circ} 30^{\prime}$ of the ecliptic described above, to wit, in such a way that the angle CAF be the $50^{\circ}$ which are from the $65^{\circ} 30^{\prime}$ at which $C$ is situated to the $115^{\circ} 30^{\prime}$ at which $F$ is situated. I then take on $A F$ the point $G$ such that $A G$ be the line of eccentricity of Mars' deferent, making by the 13 th proposition 1,519 such parts as the semi-diameter of the Sun's orbit has 10,000 . I then mark on the line GF the

# 282 Sat.Ipp. Mars, Vin.en Merc. vinding 

rpunt $H$, affoodat $G$ Hdoet isigo voor Mars intontwechis halfmiddellijn, welcke deur het 13 voorftel van dier langide is in futcke deelen alffer des Son: Wechs halfimiddellijn BC: 10000 doet : lek befchrij! daer na: op Gals middelpant, mette halfmiddeHijn $G$ H denrinrontwech $H E$, fniende $A F$ in $H$ als haer verftepunt,en E ist'naeftepunt: Daer na befchrijfick tot eenige plaets Mars intront, latet ren eerften finn op i'verftepuni Hals middelpunt, en dat metre halfmiddellijn H Fevenan BC (want ghelijck B C of H 10000 , tot GH, alfoo Ptolemeus gevonden reden van des inronts halfmiddellijn tot haer wechs halfmiddellijn, te weten van 39 dcel 30 (1), tot 60 deel deur het in voortel) welck inront fy FI , diens verfepunt F , naeftepunt l, waer me Mars voorghcnomen reyckening met ftelling eens vaften Eertcloots A voldaen is.

## 2 LIDT inhouderde de teyckening roan Marsloop met feeling $^{2}$ eens roerenden Eertcloots.

Om nu te commen totre teyckening met cen roerenden Eertcloot,foo neem ick den Eertcloot A nu te loopen, en de Sonan C valt te ftaen, en teycken in C A t punt $K$, alfoo dat de uytmiddelpunticheytlijn $C K$ even fy an AB, en befchrijfop Kals middelpunt, mette halfmiddellijn K A die even is met B C het rondt $A$ L als Eertlootwech, diens naeftepunt L, verfepunt $A$ : Omnu hier op te doen de teyckening van Marstoop met Aelling eens roerenden Eerrcloots, ick treck deurt punt K de lini M Nevewijdeghe met EF, en fal daerom K Noock frecken na des duyfteraers 115 tr. 30 (1) ghelijck A H; Ick ftel daer na in $K N$ t'punt $Q$, alfoo dat $K$ Qeven fy ande uytmiddelpunticheyilijn A $G$, en teycken t'punt N,foo dat QN even fy an Mars inrontwechs halfmiddellijn G H,en befchrijf daer me Marswech N M, fniende de liniK $N$ in $N$ als verftepunt,enin $M$ als naeftepunt.

> 3 LIDT inboudende bevroüs dat sMars in d'e ĕen d'ander ftelling een felve fchïnbaer duysteracrlangde beeft, en de fetve rverbeyt vanden Eertcloot als by is inffin inrontsverstepunt, ent inronts middelpunt an fijz rovechs rverstepunt.

Ghenomen dat Mars inronts middelpunt $H$ met ftelling eens vaften Eertcloots A fy an fijn wechs verfepunt $H$, en Mars ant inronts verfepunt $F$, foo falt van $A$ tot $F$ fijninde grootfe verheyt die Mars vanden vaften Eertcloot wefen can, ende dien volghens foo fal Marsmet flelling eens roerenden Eertcloors moeten wefen an fijn wechs verftepunt $N$, en den roerendē Eertcloot an P, want daer me ift vanden roerenden Eertcloot $P$ tot Mars an N, even foo verre als vanden Eericloot A, tot Marsint inront an F, uyt oirfaeck dat Marswechs halfmiddellijn $Q N$ mette uytmiddelpunticheytlijn $Q K$, even fijn an des inrontwechs halfmiddellijn GH mette uytmiddel punticheytlijn GA , en boven dien K P halfmiddellijn des Eertclootwechs, even met $\mathrm{H} F$ halfmiddellijn des inronts. Voort want P Nen A Fevewijdeghe fijn, foowort Mars in d'een en d'ander fielling cchijntraerlickiot een felve plaets des duyfteraers ghefien:Ende omderghelijcke tedenen ift openbaer, dat de aldetcontteverheyt $P$ M met ftel. ling eens ioerenden Eericloots even moet Gija an daldercorifte met felling des vaften Eert cloots, t'welck foude fijn de linivan A tot desintontsnaeftepunt by atdient op E als middelpuini befchreven waer, maer ongheteyckent ghelaten is om deur veel linien gheen dufferheyt te veroirfaken.
$4 \operatorname{LIDT}$
point $H$ such that $G H$ makes $.15,190$ for the semi-diameter of Mars' deferent, which by the 13th proposition is of that length in such parts as the semi-diameter of the Sun's orbit $B C$ has 10,000 . I then describe about $G$ as centre, with the semidiameter $G H$, the deferent $H E$, intersecting $A F$ in $H$ as its apogee, and $E$ is the perigee. Thereafter I describe in some place Mars' epicycle: let it first be about the apogee $H$ as centre, such with the semi-diameter $H F$ equal to $B C$ (for as $B C$ or HI 10,000 is to $G H$, so is the ratio of the epicycle's semi-diameter to the semi-diameter of its orbit found by Ptolemy, to wit, of $39^{\circ} 30^{\prime}$ to $60^{\mathrm{D}}$, by the 11th proposition), which epicycle shall be $F I$, whose apogee is $F$ and perigee $I$; with which the proposed drawing of Mars on the theory of a fixed Earth $A$ has been completed.

2nd SECTION, comprising the drawing of Mars' motion on the theory of a moving Earth.

In order to come to the drawing on the theory of a moving Earth, I now take the Earth $A$ to move and the Sun to be fixed at $C$, and I mark on $C A$ the point $K$ such that the line of eccentricity $C K$ be equal to $A B$, and I describe about $K$ as centre, with the semi-diameter $K A$, which is equal to $B C$, the circle $A L$ as the Earth's orbit, whose perihelion is $L$ and aphelion $A$. In order to base on this the drawing of Mars motion on the theory of a moving Earth, I draw through the point $K$ the line $M N$ parallel to $E F$, and therefore $K N$ will also tend towards $115^{\circ} 30^{\prime}$ of the ecliptic, like $A H$. I then take on $K N$ the point $Q$ such that $K Q$ be equal to the line of eccentricity $A G$, and I mark the point $N$ such that $Q N$ be equal to the semi-diameter of Mars' deferent $G H$, and with this I describe Mars' orbit $N M$, intersecting the line $K N$ in $N$ as apogee and in $M$ as perigee.

3rd SECTION, comprising the proof that on either theory Mars has the same apparent ecliptical Iongitude and the same distance from the Earth when it is at its epicycle's apogee and when the epicycle's centre is at the apogee of its orbit.

Assuming that the centre $H$ of Mars' epicycle, on the theory of a fixed Earth $A$, be at the apogee $H$ of its orbit, and Mars at the epicycle's apogee $F$, the distance from $A$ to $F$ will be the greatest distance at which Mars can be from the fixed Earth, and consequently on the theory of a moving Earth Mars will have to be at the apogee $N$ of its orbit and the moving Earth at $P$, for thus it is as far from the moving Earth $P$ to Mars at $N$ as from the Earth $A$ to Mars in the epicycle at $F$, because the semi-diameter of Mars' orbit $Q N$, with the line of eccentricity $Q K$, is equal to the deferent's semi-diameter $G H$ with the line of eccentricity $G A$, while moreover $K P$, semi-diameter of the Earth's orbit, is equal to $H F$, semidiameter of the epicycle. Further, since $P N$ and $A F$ are parallel lines, on either theory Mars is seen apparently in the same place of the ecliptic. And for similar reasons it is evident that the shortest distance $P M$ on the theory of a moving Earth must be equal to the shortest distance on the theory of a fixed Earth, which would be the line from $A$ to the epicycle's perigee, if it were described about $E$ as centre, but it has not been drawn, so as not to cause obscurity on account of a multitude of lines.
meteen roerenden Eertcioot.
4 LID $T$ dat de balfmiddellijn roan EMarsobechs middelpunt tot des inronts middelpunt, altüt everprïdeghe is mette balfmiddellinn raan des inrontsobechs middelpunt tot des inronts middelpunt : En des Eertclootvoechs balfmiddellijn rvan baer middelpunt totten Eertcloot, altüt cvervijdeghe mette halfmiddelijundes inronts ruant middelpunt tot Mars.

Laet Mars inronts middelpunt ghecommen finn van H tot R , deur welcke R getrocken de rechte G R S,foo fy $S$ middelverfepunt, van t'welck daerentuf. fchen Mars met flelling eens vaften Eertcloots ghecommen fy tot T: En hier om fal Mars met felling cens roerenden Eertcloots op dien tijt ghecommen fijn van $N$ tot $V$, (co darde booch $N V$ even is ande booch H R,enghetrocken Q V. fy is even en evewijdeghe met G R.

Oock fal den roerenden Eertcloot die doen was an P, van daergedaen hebben den loop P L X, even ande bovefchreven twee als P L even neem ick an S T,en L X ghelijck met NV, ofden houck L K X even mettē houck NQV, het welik foo wefen moet deur het 33 voortel des 1 boucx, alwacr bewefen is Mars verftepuntloop met fijn inrontfloop t'famen even te wefen mette Sonloop,t'welck hier oock is metten Eertclootloop.

Nu dan den rocrenden Fericloot gefien uyt K, fal fulcken loopgedaen heb: ben in fchijnbaer duyfleraerlangde alsde booch PLX mebrenge: En dergelijcke loop in fchijnbaer duyfteraerlangde fal oock gedaen hebben Mars met ftelling eens vaften Eertcloots. Dit foowefende, den roerenden Eertcloot gefien uytfijn wechs middelpunt K, fal fulcken loop ghedaen hebben in fchijnbaer duyfteraerlangde, als Mars met felling cens vaften Eertclootsghefien uyt fijn inronts middelpunt, en daerom moeten hun twee halfmiddellijnen $\mathrm{KX}, \mathrm{R} \mathrm{T}$, evewijdeghe fijn ghelijckfe waren int begin des loops, te weten HF met K $P$, en ghelijck de ftrecking vant middelpunt $K$ totren Eertcloot $P$, doen was na de tegenoverfijde der ftrecking vant middelpunt $H$ tot Saturnus $F$, alfo is nu oock deftrecking vant middelpunt $K$ totten Eertcloot X, na de teghenoverfijde der Arecking vant middelpunt $\mathbf{R}$ tot Saturnus $T$.

## s LIDT dat Marsin d'een en d'ander felling tot allen plaetfen cen felbe fchünbaer duysteraerlangde heeft, en de felververbegt raanden Eertcloot.

Om tottet bewijs te commen ick treck de vier linien AR, AT, KV, VX, en fegh daer mealdus: Angefien des driehoucx K V Q fijde K Q, evē en evewijdeghe is met des driehoucx A R G fijde A G, fgelijcx Q V evenen evewijdeghe met GR deur het 4 lidt, foo moet de derde fijde $K V$ even en evewijdeghe fija mette derde A R:Voort fegh ick dat anghefien des driehoucx K VX fijde K V; even en evewijdeghe is met $A R$, en $K$ X even en evewijdeghe met $R T$, deur het 4 lidt, foo moet de derde fijde XV even en evewijdeghe fijn mette derde A T,endaeromfietmen Mars an V uyt den toerenden Eertcloot X,fchijnbaerlick torte felve plaets des duyfteraers daermē hem an I Getuytden vaften Eextcloot $A$, en is foo verre van $V$ tot $X$, als van $T$ tot $A$.

6 LIDT

4th SECTION, that the semi-diameter from the centre of Mars' orbit to Mars itself (QV) ${ }^{1}$ ) is always parallel to the semi-diameter from the deferent's centre to the epicycle's centre. And the semi-diameter of the Earth's orbit from its centre to the Earth always parallel to the semi-diameter of the epicycle from its centre to Mars.

Let the centre of Mars' epicycle have travelled from $H$ to $R$, and if through this $R$ is drawn the straight line GRS, let $S$ be the mean apogee, from which meanwhile let Mars on the theory of a fixed Earth have travelled as far as $T$. And for this reason, on the theory of a moving Earth Mars will in that time have travelled from $N$ to $V^{2}$ ), so that the arc $N V$ is equal to the arc $H R$, and when $Q V$ is drawn, it is equal and parallel to $G R$.

The moving Earth, which then was at $P$, will also have performed thence the motion PLX, equal to the above-mentioned two, namely $P L$, which I take to be equal to $S T$, and $L X$ equal to $N V$, or the angle $L K X$ equal to the angle $N Q V$, which must be so by the 33 rd proposition of the 1st book, where it has been proved that the motion of Mars' apogee together with the motion in its epicycle is equal to the Sun's motion, which is here also equal to the Earth's motion.

Now the moving Earth, seen from $K$, will have performed the same motion in apparent ecliptical longitude as the arc PLX amounts to. And a similar motion in apparent ecliptical longitude will also have been performed by Mars on the theory of a fixed Earth. This being so, the moving Earth, seen from the centre of its orbit $K$, will have performed the same motion in apparent ecliptical longitude as Mars on the theory of a fixed Earth, seen from the centre of its epicycle, and therefore their two semi-diameters $K X, R T$ must be parallel, as they were at the beginning of the motion, to wit, $H F$ to $K P$, and just as the direction from the centre $K$ to the Earth $P$ then was opposite to the direction from the centre $H$ to Mars 3) $F$, so the direction from the centre $K$ to the Earth $X$ is now opposite to the direction from the centre $R$ to Mars ${ }^{4}$ ) $T$.

5th SECTION, that in all places Mars has on either theory the same apparent ecliptical longitude and the same distance from the Earth.
In order to come to the proof, I draw the four lines $A R, A T, K V, V X$, and then say as follows: Since the side $K Q$ of the triangle $K V Q$ is equal and parallel to the side $A G$ of the triangle $A R G$, and likewise $Q V$ equal and parallel to $G R$, by the 4 th section, the third side $K V$ must be equal and parallel to the third side $A R$. Further I say that since the side $K V$ of the triangle $K V X$ is equal and parallel to $A R$, and $K X$ equal and parallel to $R T$, by the 4 th section, the third side $X V$ must be equal and parellel to the third side $A T$, and therefore Mars is seen at $V$ from the moving Earth $X$, apparently in the same place of the ecliptic where it is seen at $T$ from the fixed Earth $A$, and it is as far from $V$ to $X$ as from $T$ to $A$.

[^32] roan d'eenen d'ander Stelling, int berekenen der Stbünbaer duysteraerlangde der Dopaelders.
Met felling een vaften eertcloots ontmoctt ons int rekenen der foucking van Mars fchijinbaer duyfteraerlangde defes voorbeetts den gemeenen vierden houck A G R T, met vijf bekende palen, te weien drie fijden A G, G R, R T, aliijt van een felve bekende langde : Voort den houck A G R als halfrontichil des bekenden houcx H G R, middelloop van des inronts middelpunt, en den houck GR T als halfrontichil des bekenden houcx SR T middclloop van Mars int inront, waer me deur het 6 voorfel inde Byvough der plate veelhoucken ghevonden fijnde den onbekenden houck G A T, en die vervought totte bekende duyfteraerlangde daer $\mathrm{A} G$ henē frrect, datsua den 115 tr. 30 (1), men hecft t'begheerde.
Macr met felling eens roerenden Eercloots ontmoet ons hier den cruyfvierhouck $K Q V X$, met vijf bekende palen, te weten drie fijden $K Q, Q V$, $K X$, altijt van een felve bekende langde, voort den houck $K Q$,als halfiontFchil des bekenden houcx N Q V middelloop van Saturnus in fijn wech, en de houck QKX, wefende des Eericloors middellangde L K X, min den houck LK O van sotr. waer me deur het $\sigma$ voorftel inde Byvough der platte veelhoucken ghevonden fijnde den onbekenden houck K X V, en die ghetrocken vande bekende duyfteraerlangde daer $\mathrm{X} K$ henen freckt, $\mathrm{t}^{\text {'welck }}$ is de fchijnbaer duyfteraerlangde der Middelfon K, men heeft t'beghcerde, en moet nootfakelick t'flve befluyt voortbrenghen datmen deurd'cerfe wercking heeff.
Sulcx als hier is gheweeft het bewijs van Mars, foo falt oock fijn van Saturnusen lupiter.

T'besly y t. De drie bovenfle Dwaedders dan Saturnus, Iupicter en Mars ontfanghen mer felling eens roerenden Eertcloois de felve fehijnbaer duyfteraerlangde, en verheyt vanden Eertcloot, dicfe hebben met felling cens vaften Eertcloots, t'welck wy bewijfen moeften.

## 1 MERCK.

Hier machmen nu fien d'oirfaeck hoet inde oneyghen ftelling eens vaften Eercloots by comt, dat des inronts middelpunts loop in fijn wech, en des Dwaelders loop in fijn iniont, t'famen even vallen ande Sonloop, en niet int wefen te beflaen dat die Dwaelderstote Son cen opficht nemen als tot haer Coninck, ghelijck int 6 voorftel defes 3 boucx ghefeyt is dat fommige hemlien daer in verwonderen, want inde wefentlicke fake en iffer niet dan den Dwaelder,en den Eertcloot,elck met fijn eygen toefrel in fijn wech, waer me de oneyghen verfierde ftelling des vafien Eettcloots gheraeckt fulcken overeencomminghen te crighen.

## 2 MERCK.

Omin dit voorbeelt noch te fien de overeencomming vande Son metten Eerteloot en Saturnus, in d'een en d’ander felling, ick reck de lini XC vandĕ roerenden Eertcloot X totte vafte Son C: Maer want in die felling den roerenden Eertcloot is ghecommen van $A$ over $P$ en $L$ tot $X$, foo fal op den felven tijt met felling eens vafien Eerrcloors, deroerende Son moeten ghecommen fijn van Cover $D$ tot $Y$, fulcex dat de booch $C D Y$, even fy mettebooch

APLX:

6th SECTION, of the difference between the operations on either theory in the computation of the apparent ecliptical longitude of the Planets.

On the theory of a fixed Earth we meet, in the computation of the finding of Mars' apparent ecliptical longitude in this example, with the ordinary quadrilateral $A G R T$, with five known terms, to wit: three sides $A G, G R, R T$, always of the same known length; further the angle $A G R$ as supplement of the known angle $H G R$, mean motion of the epicycle's centre, and the angle $G R T$ as supplement of the known angle SRT, mean motion of Mars in the epicycle; and thus, the unknown angle GAT being found, by the 6th proposition in the Supplement of Plane Polygons 1), and added to the known ecliptical longitude towards which $A G$ tends, i.e. $115^{\circ} 30^{\prime}$, the value required is obtained.

But on the theory of a moving Earth we meet here with the crossed quadrilateral $K Q V X$, with five known terms, to wit: three sides $K Q, Q V, K X$, always of the same known length, further the angle $K Q V$ as supplement of the known angle $N Q V$, mean motion of Mars ${ }^{2}$ ) in its orbit, and the angle QKX, being the Earth's mean longitude $L K X$ minus the angle $L K O$ of $50^{\circ}$; and thus, the unknown angle $K X V$ being found, by the 6th proposition in the Supplement of plane polygons ${ }^{1}$ ), and subtracted from the known ecliptical longitude towards which $X K$ tends - which is the apparent ecliptical longitude of the Mean Sun K the value required is obtained, and this operation must necessarily lead to the same conclusion as that obtained by the first operation.

As the proof for Mars has been here, such it will also be for Saturn and Jupiter.

CONCLUSION. The three upper Planets Saturn, Jupiter, and Mars therefore on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth; which we had to prove.

## 1st NOTE.

Here we can see the cause why it is that according to the untrue theory of a fixed Earth the motion of the epicycle's centre in its orbit and the Planet's motion on its epicycle together are equal to the Sun's motion, and that in reality those Planets do not take their guidance from the Sun as from their King, as has been said in the 6 th proposition of this 3rd book that some people wonder about it, for in reality there is nothing but the Planet and the Earth, each with its own movement in its orbit, as a result of which the untrue, fictitious theory of the fixed Earth obtains such correspondences.

## 2nd NOTE.

In order to see in this example the correspondence of the Sun with the Earth and Mars ${ }^{3}$ ), on either theory, I draw the line XC from the moving Earth X to the fixed Sun C. But since on this theory the moving Eatth has travelled from $A$ via $P$ and $L$ to $X$, the moving $\operatorname{Sun}$ in the same time, on the theory of a fixed

[^33]
## METEENROERENDEN EERTCLOOT.

A P L X : T'welck foo wefende A Y moet even en evewijdeghe fijn met $X C$, en vervolghens de vafte Son C, wort uyt den roerenden Eertcloot X ghefien onder de felve duyfteraerlangde als de rocrende Son an $Y$, uyt den vaften Eertcloot A. Voort want X C evewijdeghe is met A Y, en X V met A T, foo isden houck V X C , even metten houck T A Y, waer deur oock de fchijnbaer verheyt van Saturnus $V$ totte vafte Son C , ghefien uyt den roerenden Eertcloot X , even is ande fchijnbaer verheyt van Saturnus Ttotte roerende Son Y ghefien uyt den vaften Eertcloot A.

## 3 MERCK

Anghefien de twee ftellinghen des cerften en tweeden lidts, d'een met een vaften Eertcloot, d'ander met een roerenden, t'famen in een form ftaen, deur dien t'bewijs fulcx daer vereyfchte, en dattet tot meerder claerheyt can dienen, de felve elck befonderlick te fien, foo heb ickfe hier van malcander ghefcheyden als blijckt.

Earth, must have travelled from $C$ via $D$ to $Y$, so that the arc $C D Y$ shall be equal to the arc $A P L X$. This being so, $A Y$ must be equal and parallel to $X C$, and consequently the fixed Sun $C$ is seen from the moving Earth $X$ at the same ecliptical longitude as the moving Sun at $Y$ from the fixed Earth $A$. Further, since $X C$ is parallel to $A Y$, and $X V$ to $A T$, the angle $V X C$ is equal to the angle $T A Y$, as a result of which also the apparent distance from Saturn $V$ to the fixed Sun $C$, seen from the moving Earth $X$, is equal to the apparent distance from Mars 1) $T$ to the moving Sun $Y$, seen from the fixed Earth $A$.

## 3rd NOTE.

Since the two theories of the first and the second section, one with a fixed and the other with a moving Earth, have been given together in one figure, because the demonstration required this, and since it may serve to make things clearer when each is seen separately, I have here separated them, as appears hereafter.

[^34]286 Sat.Ivp.Mars,Venen Merc.vinding


# METEENROERENDENEERTCLOOT. <br> 16 VO ORSTEL. 

Te befchrijven den loop der tvvee onderfe Dvvaelders Venusen Mercurius in haer vveghen, opeen ghegeven tijt, met ftelling eens roerenden Eertcloots.

T'ghegheven. Om met Venuste beginnen, foo laet den tijt fijn van een dach. T'begheerde. Men wil daerop vinden dē loop in haer wech met felling cens roerenden Fertcloots,

> T' W E R C K.

Totten loop van haer inronts middelpunt met ftel-
ling eens vaften Eertcloots doende op een dach deur het 36 voorftel des I boucx
otr. 59.8.17.13.12.3I.
Vergaert haer inronts loop eens dachs, doende deur het 41 voortel des I boucx otr.36.59.25.53.11.28. Comt t'famen voor den begheerden loop eens dachs van Venus met fteling eens roerenden Eertcloots itt. 36. 7.43. 6.23.59. Ghemerckt het volghende * vertooch wefende het 17 voorftel tot bewijs Theorema. defes * werckftucx dient, foo fullen wy dat daer voor laten verftrecken. Ende Probelemafghelijex fal oock fijn den voortganck met Mercurius. T'besty y . Wy ${ }^{\text {tī. }}$ hebben dan befchrevē den loop der twee onderfte Dwaelders Venus en Mercurius in haer weghen, op een ghegheven tijt, met ftelling eens roerenden Eertcloots, na den eyfch.

## VERTOOCH. 17 VOORSTEL.

De tvvee onderfte Dvvaelders Venus en Mercurius, ontfangen met ftelling eens roerenden Eertcloors de felve fchijnbaer duyfteraerlangde, en verheyt vanden Eertcloot, diefe hebben met ftelling eens vaften Eertcloots.

Om dit voorftel oirdentlick te verclaren, ick falt in fulcke fes leden verdeclen, als int is voorftel mettedrie bovenfte ghedaen is, ghebruyckende Venus tot voorbeelt.

## I LI DT inboudende de teyckening roanV enus loop met felling eens ruaSten Eertcloots.

Laet voor certe ftelling A ghenomen worden een vaften Eertcloot te beseyckenen, en van A tot B fy des Sonwechs uyimiddelpunticheytlijn, doende na Ptolemeus rekening t'fijnder tijt fulcke 417 alfer des Sonwechs halfmiddellijn die B C fy 10000 doet deur het 13 voorftel defes 3 boucx, mette felve B C fy op B als middelpunt befchreven de Sonwech CD, waer in C A voortghetrocken tot D, foo is D t'naeftepunt, Civerftepunt, wefende tot Ptolemers tijt onder des duyfteraers 6 tr. 30 (1). Om hier op nu te doë de teyckening des loops van eenige der twee bovefchreven Dwaelders, ick neem tot voorbeclt daer toe als boven ghefeyt is Venus, wiens inrontwechs verttepunt sen tijde van Ptole$\mathrm{Bb}_{2}$ mevs

## 16th PROPOSITION.

To describe the motion of the two lower Planets Venus and Mercury in their orbits, in a given time, on the theory of a moving Earth.

SUPPOSITION. To begin with Venus, let the time be one day. WHAT IS REQUIRED. It is desired to find its motion in that time in its orbit on the theory of a moving Earth.

## PROCEDURE.

When to the motion of its epicycle's centre on the theory of a fixed Earth, being in one day, by the 36 th proposition of the 1 st book $0^{\circ} 59,8,17,13,12,31$ there is added its epicyclic motion in one day, being by the 41 st proposition of the 1 st book
this makes together, for the required motion of Venus in one day on the theory of a moving Earth
$0^{\circ} 36,59,25,5 \dot{3}, 11,28$
$1^{\circ} 36,7,43,6,23,59$
Considering that the subsequent theorem, being the 17 th proposition, serves as proof of this problem, we shall use it as such. And the procedure with Mercury will be similar.

CONCLUSION. We have thus described the motion of the two lower Planets Venus and Mercury in their orbits, in a given time, on the theory of a moving Earth; as required.

THEOREM.
17th PROPOSITION.
The two lower Planets Venus and Mercury on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth.

In order to explain this proposition properly, I shall divide it into six sections, as has been done in the 15 th proposition for the three upper Planets, taking Venus as example ${ }^{1}$ ).

1st SECTION, comprising the drawing of Venus' motion on the theory of a fixed Earth.

First let $A$ be assumed to denote a fixed Earth, and let the line from $A$ to $B$ be the line of eccentricity of the Sun's orbit, according to Ptolemy's computation making at his time 417 such parts as the semi-diameter of the Sun's orbit, which shall be $B C$, has 10,000 , by the 13 th proposition of this 3 rd book. With the said $B C$, about $B$ as centre, let there be described the Sun's orbit $C D$, in which, when $C A$ is produced to $D, D$ is the perigee, $C$ the apogee, which in Ptolemy's time was at $65^{\circ} 30^{\prime}$ of the ecliptic. In order to base on this the drawing of the motion of either of the two aforesaid Planets, I take as example, as has been said above,

[^35]
## 288 Sat.IVp.Mars, Venen Merc.vinding

meus gheweeft heb. bende onder des duyflereess $5 s$ tr.deurhet ${ }_{13}$ voortel defes 3 boucx, ick treck deur den vaften Eertcloot A, delini $F F$ van $A$ tot $F$, na des duyfteraers bovecthreven $s \mathrm{str}$ te wetē foodat dē houck CAF $\operatorname{doe}$ Io tr. 30 (1), dieder fijn vanden ss tr. daer F onder is, totté 6s. tr. 30 (1), daer $\mathbf{C}$ onder is:Ick fel daer nain AFi'punt G,fo dat A Gfy Venus in rontwechs uymiddelpunticheytijn, doende deur het 13 voorttel fulcke 208, alffer des Sonwechs halfmiddellijn B C 10000 doet: Mace want Venus inionts wech even is metten Eetclootwech, ghelijck ick ghefeyt heb int 13 voorftel, en den felven Eertcootwech even mette Sonwech, foo befchrijf ick op t'punt $G$ als middelpunt, mette halfuriddellijn GA evẽ an des Sonwechshalfmiddellijn B C, dē inrontwech $H E$, friende $H F$ in $H$ als haer verftepunt, en $E$ is inaeftepunt : Ick befchrijf daer na tot eenige plaetsVenus inrontwech, latet ten eerften fijn opt verftepunt $H$ als middelpunt, en dat mette halfmiddellijijn $H$, doende deur t'ghene verclaett is int 13 voortel 7194 , welck inront fy FI , waer me Venus tegckening met felling eens vaften Eertcloots $A$ voldaen is.

## 2 LIDT' inhoudende de teyckening roan Venusloop met feeling eensroerenden Eercloots.

Om nu te commen totte teyckening met een roerendé Eertcloot, foo neem ick den Eertcloot A nu teloopen, en de Son an C vaft te ftaen, en teycken in C A 'punt K, alfoo dat de uyumiddelpunticheytlijn CK even fy an A B,en befchrijfop Kals middelpunt , mette halfmiddcllijn K A die even is met BC, het inront A L als Eettclootwech, diens naeftepunt L, verftepunt A: Om hier op te doen de teyckening van Venusloop met felling eens roerenden Eertcloots, ick treck deur 'punt $K$ de lini $M \mathbb{N}$ evewiddege met $E F$,fniende den Fertclootwech in O enP,en faldaerom $K$ Noock ftreckē na des duyfteraers $s$ s tr.gelijck A H : Ick ftel daer na in K Nt'punt Q , alfoo dat KQ even fy ande uytmiddelpunticheytlijn $A G, e n$ teyckē 'punt $N$, foo dat $Q$ Neven fy an Venusinronts halfmiddelijn HF , en befchrijf daer me Venuswech $\mathrm{N} M$, fniende de lini N in N als verftepunt $\mathrm{e}_{2}$ in M als naeffepunt.
$3 \operatorname{LIDT}$

Venus; the apogee of the latter's deferent having been in Ptolemy's time at $55^{\circ}$ of the ecliptic, by the 13 th proposition of this 3rd book, I draw through the fixed Earth $A$ the line $E F$ from $A$ to $F$ towards the aforesaid point at $55^{\circ}$ of the ecliptic, to wit, in such a way that the angle CAF be the $10^{\circ} 30^{\prime}$ which are from the $55^{\circ}$ at which $F$ is situated to the $65^{\circ} 30^{\prime}$ at which $C$ is situated. I then take on $A F$ the point $G$ such that $A G$ be the line of eccentricity of Venus' deferent, making by the 13th proposition 208 such parts as the semi-diameter of the Sun's orbit $B C$ has 10,000 . But because Venus' deferent is equal to the Earth's orbit, as I have said in the 13th proposition, and the said Earth's orbit is equal to the Sun's orbit, I describe about the point $G$ as centre, with the semi-diameter $G H{ }^{1}$ ) equal to the semi-diameter of the Sun's orbit $B C$, the deferent $H E$ intersecting $H F$ at $H$ as its apogee, and $E$ is the perigee. Thereafter I describe in some place Venus' epicycle ${ }^{2}$ ), let it be firstly about the apogee $H$ as centre, such with the semi-diameter $H F$, making - by what has been explained in the 13th proposition - 7,194, which epicycle shall be FI, with which the drawing of Venus on the theory of a fixed Earth $A$ is completed.

2nd SECTION, comprising the drawing of Venus' motion on the theory of a moving Earth.
In order to come to the drawing on the theory of a moving Earth, I now take the Earth $A$ to move and the Sun to be fixed at $C$; and I mark on $C A$ the point $K$ such that the line of eccentricity $C K$ be equal to $A B$, and I describe about $K$ as centre, with the semi-diameter $K A$ which is equal to $B C$, the circle ${ }^{3}$ ) $A L$ as the Earth's orbit, whose perihelion is $L$ and aphelion $A$. In order to base on this the drawing of Venus' motion on the theory of a moving Earth, I draw through the point $K$ the line $M N$ parallel to $E F$; intersecting the Earth's orbit in $O$ and $P$, and therefore $K N$ will also tend towards $55^{\circ}$ of the ecliptic, like $A H$. Thereafter I take on $K N$ the point $Q$ such that $K Q$ be equal to the line of eccentricity $A G$, and I mark the point $\mathbb{N}$ such that $Q N$ be equal to the semidiameter of Venus' epicycle $H F$, and with this I describe Venus' orbit $N M$, intersecting the line $K N$ in $N$ as aphelion and in $M$ as perihelion.

[^36]
# 3 LI DT inboudende bervÿs dat Venus in d'een en d'ander felling een feloefchïnbaer duysteraerlangde beeft, en de felve verbeyt roanden Eertcloot als $\int y$ is in baer inrunts revstepunt, en t'inronts middelpunt an Sjin ovechbs rverstepunt. 

Ghenomen dat Venus inronts middelpunt $H$ met felling eens vaften Eertcloots A, iy in fijn wechs verflepunt H , en Venus ant inronts verftepunt F , foo falt van A tot F fijn inde grootfte verheyr die Venus vanden vatten Eertcloot wefen can, en dien volghens foo fal Venus met felling eens roerenden Eercloots moeten wefen an haer wechs vertepunt N ,en den roerenden Eertcloot an P P , want daer me if vanden roerendê Eercloot P tot Venusan N , even foo verre als vandē vaften Eertcloot A, tot Venus int inront an F,uyt oirfaeck dat des Eertclootwechs halfmiddellijn K P, mette uymiddelpunticheytijin $Q K$, even Gjjn andes inrontwechs halfmiddellijn $G$ H mette uytmiddelpunricheylijn G A, en boven dien $Q$ Nhalfmiddellijn van Venuswech, even met H F halfniddeliijn des inronts: Voort want P Nen A Fevewijdeghe fijn, foo wort Venus in d'een en d"ander felling fchijnbaerlick tot een felve punt des duyfteracrs ghefien :En om derghelijeke redenen if openbaer dat de aldercortfle verheyt N O met felling eens roerendè Eercloots, even moct fijn an d'an:dercortfe met felling des vaften Eertcloots, t 'welck foude fijn de lini van A tot des inronts naeftepunt, by aldient op Eals middelpunt befchreven waer, maer onghereyckent ghelaten is om deur veel linien gheen duyfterheyt te veroirfaken.
> * LI DT dat de balfmiddellijn wan des Eertclootppechs middelpunt totten Eertcloot, altijt evervïdeghe is mette baffididellïn roan des inrontovechs middelpunt, tot desinronts middelpunt:EnV enusprechs balfmiddellïn rvant middelpunt tot Venus, altüt evervoüdeghe mette balfmiddellijn des inronts ruant middelpunt tot Zenus.

Laet Venus inrontsmiddelpuntghecommen fitn van $H$ tot $R$, deur welcke $R$ ghetrocken de rechte lini GRS, 100 fy $S$ middelvertepunt, van t'welck daerentufichen Venus met felling eens vaften Eercloots ghecommen fy tot T: Ende want den loop van Venus in haer wech even is ande twee loopen, d'een vant inronts middelpunt dats hier den houck $H$ GR, dander, van Venus int inront, dats hier den houck SR T, foo moet Venus inde wech van N af daerentuffchen gedaen hebben een loop even an die twee vaorfhreven houcken, welcke fy den verkeerden houck $N Q V$, ende ghetrocken $Q V$, fy moet even en evewijdeghe fijn met R T, om t'bewijs dat op derghelijcke ghedaen is yan Mars int 4 lidt des 13 voortels defes 3 boucx: Oock fal den roerenden Eertcloot die doen was an $P$, van dact ghedaen hebben den loop PX, even an des inronts middelpunts loop $H$ R,waer deuroock de twec halfmiddellijnen KX, GR, dier twee even ronden even en evewijdeghe moeten fija.
s LIDT dat Venus in d'een en diander felling tot allenplaetfen cen Selve fchünbaer duysteraerlangde beeft, en de felve verbeyt. ruanden Eertcloot.

3rd SECTION, comprising the proof that Venus on either theory has the same apparent ecliptical longitude and the same distance from the Earth when it is at its epicycle's apogee and when the epicycle's centre is at the orbit's apogee.
When it is assumed that on the theory of a fixed Earth $A$ the centre of Venus' epicycle $H$ is in its orbit's apogee $H$, and Venus at the epicycle's apogee $F$, from $A$ to $F$ will be the greatest distance at which Venus can be from the fixed Earth, and consequently, on the theory of a moving Earth, Venus will have to be at its orbit's apogee $N$, and the moving Earth at $P$, for thus it is just as far from the moving Earth $P$ to Venus at $N$ as from the fixed Earth $A$ to Venus on the epicycle at $F$, because the semi-diameter of the Earth's orbit $K P$, and the line of eccentricity $Q K$, are equal to the semi-diameter of the deferent $G H$ and the line of eccentricity $G A$, while moreover $Q N$, the semi-diameter of Venus' orbit, is equal to $H F$, the semi-diameter of the epicycle. Further, since $P N$ and $A F$ are parallel lines, Venus on either theory is apparently seen at the same point of the ecliptic. And for similar reasons it is evident that the very shortest distance NO on the theory of a moving Earth must be equal to the very shortest 1) distance on the theory of a fixed Earth, which would be the line from $A$ to the epicycle's perigee, if it had been described about $E$ as centre; but it has not been drawn, in order not to obscure the drawing by a multitude of lines.

4th SECTION, that the semi-diameter from the centre of the Earth's orbit to the Earth is always parallel to the semi-diameter from the deferent's centre to the epicycle's centre; and the semi-diameter of Venus' orbit from the centre to Venus always parallel to the semi-diameter of the epicycle from the centre to Venus.

Let Venus' epicycle's centre have travelled from $H$ to $R$; and when through this $R$ is drawn the straight line GRS, $S$ shall be the mean apogee, from which meanwhile Venus, on the theory of a fixed Earth, shall have arrived at T. And because the motion of Venus in its orbit is equal to the two motions, one of the epicycle's centre, that is here the angle $H G R$, the other of Venus on the epicycle, that is here the angle $S R T$, Venus must meanwhile have performed in the orbit from $N$ a motion equal to the two aforesaid angles, which shall be the opposite angle $N Q V$; and when $Q V$ is drawn, it must be equal and parallel to $R T$, because of the proof furnished in a similar case for Mars in the 4th section of the 13th proposition of this 3rd book. The moving Earth, which then was at $P$, will also have performed from there the motion $P X$, equal to the motion of the epicycle's centre $H R$, in consequence of which the two semi-diameters $K X$ and $G R$ of those two equal circles must also be equal and parallel.

5th SECTION, that in all places Venus has on either theory the same apparent ecliptical longitude and the same distance from the Earth.

[^37]
# 290 Sat.Ivp. Mars, Veneen Merc.vinding 

Om tottet bewijs te commen ick treck de vier linien AR, AT, QV,VX, en fegh daer me aldus: Anghefien des. driehoucx $K X Q$ fijdé $K Q$, even en evewijdeghe is met des driehoucx A R G fijde A G, fghelijcx $Q X$ even en evewijdeghe met $G$ R, foo moet de derde fijde $K X$, even en evewijdeghe fijn met. te derde A R: Voort fegh ick dat anghefien des driehoucx $Q V$ X fijde $Q X$, even en evewijdeghe is met $A R$, en $Q V$ even en evewijdeghe met $R T$ deur het 4 lidt, fo moct de derde fijde X V, even en evewijdege fijn mette derde A T: En daerom fietmen Venus an Vuyt den roerendë Eertcloot X, fchijnbacrlick totte felve placts des duyfteraers datmẽ Venus fiet uyt den vaften Eertcloot A, $e n$ is foo verre van $V$ tot $X$, als van $T$ tot $A$.

## 6 LIDT ran trverfcbil datter rualt tuffcheu de roverckinghen raan d'een en d'ander felling, int berekenen derfchünbaer duysteraerlang de der Dopaelders.

Met ftelling eens valten Eertcloots ontmoet ons int rekenen der foucking van Venus fchijnbaer duyfteraerlangde defes voorbeelts den ghemeenen vierhouck A G R I, met vijf bekende palen, te weten de drie fijden A G,G R,R T. altijt van cen felve bekende langde : Voort den houck A G.R, als halfrontfchil des bekenden houcx H G R, middelloop van des inronts middelpunt, en den houck G R T, als halfrontichil des bekendē houcx S R T middelloop van Venus int intont, waer me deur het 6 voorftel inde byvough der platie veelhoucken ghevonden fijnde den onbekenden houck GAT, en die vervought totte bekende duyfteraerlangde daer A G henen ftreckt, dats na den ss tr. men heeft het begheerde.

Maer met ftelling eens roerendë Eertcloots ontmoet ons hier dë cruyfvierhouck KQV X met vijf bekende palen, te weten drie fijden K $Q, Q V, K X, a l-$ tijt yan een fellve bekende langde, voort den houck $K Q V$, als halfrontfchil des bekendē houcx N Q V rontfchil des middelloops van Venus in haer wech en dē houck QK X,wefende rontfchil van des Eertcloots middellangde, waer me deur het 6 voorftel inde byvough der platte veelhoucken, ghevonden-fijn. de den onbekendē houck K X V, en die vergaert totte bekende duyfteraerlangde dacr X K henen ftreckt, t'welck is de fchijnbaer duyfteraerlangde der middelfon $K$ men heeft t'begeerde, en moet nootfakelick het ecrife befluyt voortbrenghen datmen deur d'eerfte wercking heeft.

Sulcxalshier is gheweeft het bewijs van Venus, foo falt oock fijn van Mercurius.

T'be s L V y t. De twee onderfte Dwaelders dan Venus en Mercurius, ontfanghen met ftelling eens roerenden Eertcloots de felve fchijnbaer duyfteraer. langde en verheyt vanden Eertcloot, diefe hebben met felling eens vaften Eertcloots, t'welck wy bewijfen moeften.

## MERCKT.

T'iskennelick datmen de twee ftellinghen des cerften en tweeden lidts van Venus t'famen in een form ghemengt fijnde, foude meughen fcheyden, ghelijck van Mars ghedaen wiert int 3 merck des is voorftels.

In order to come to the proof, I draw the four lines $A R, A T, Q V, V X$, and then say as follows: Since the side $K Q$ of the triangle $K X Q$ is equal and parallel to the side $A G$ of the triangle $A R G$, and likewise $Q X$ equal and parallel to $G R$, the third side $K X$ must be equal and parallel to the third side $A R$. Further I say that since the side $Q X$ of the triangle $Q V X$ is equal and parallel to $A R$, and $Q V$ equal and parallel to $R T$ by the 4 th section, the third side $X V$ must be equal and parallel to the third side $A T$. And for this reason Venus is seen at $V$ from the moving Earth $X$, apparently in the same place of the ecliptic where Venus is seen from the fixed Earth $A$; and it is as far from $V$ to $X$ as from $T$ to $A$.

6th SECTIO.N, of the difference between the operations on either theory, in the computation of the apparent ecliptical longitudes of the Planets.

On the theory of a fixed Earth we meet, in the computation of the finding of Venus' apparent ecliptical longitude in this example, with the ordinary quadrilateral $A G R T$, with five known terms, to wit: the three sides $A G, G R$, $R T$, always of the same known length; further the angle $A G R$, as supplement of the known angle $H G R$, mean motion of the epicycle's centre, and the angle $G R T$, as supplement of the known angle $S R T$, mean motion of Venus on the epicycle. And thus, the unknown angle GAT being found, by the 6th proposition in the Supplement of Plane Polygons 1), and added to the known ecliptical longitude towards which $A G$ tends, i.e. the point at $55^{\circ}$, the value required is obtained.

But on the theory of a moving Earth we here meet with the crossed quadrilateral $K Q V X$, with five known terms, to wit: three sides $K Q, Q V, K X$, always of the same known length; further the angle $K Q V$, as supplement of the known angle $N Q V$, supplementing to $360^{\circ}$ the mean motion of Venus in its orbit, and the angle $Q K X$, supplementing to $360^{\circ}$ the mean longitude of the Earth. And thus, the unknown angle $K X V$ being found, by the 6 th proposition in the Supplement of Plane Polygons, and added to the known ecliptical longitude towards which XK tends, which is the apparent ecliptical longitude of the mean sun $K$, the value required is obtained, and this operation must necessarily lead to the first result, obtained by the first operation.

As the proof for Venus has been here, such is also that for Mercury.
CONCLUSION. The two lower Planets Venus and Mercury therefore on the theory of a moving Earth acquire the same apparent ecliptical longitudes and distances from the Earth that they have on the theory of a fixed Earth; which we had to prove.

## NOTE.

It is obvious that the two theories of the first and the second section of Venus, which are combined in one figure, might be separated, as was done for Mars in the 3 rd Note of the 15 th proposition.

## 18th PROPOSITION.

To explain the reason why in the 8th, 12th, 15th, and 17th propositions I have proved that the Planets on the theory of a moving Earth are found in the same

[^38]METEEN ROERENDEN EERTCLOOT. 29! voorftellen bevvefen hebbe de Dvvaelders deur ftelling eens rocrenden Eertcloots, bevonden te vvorden totte felve fchijnbaer plaetfen,en verheden van malcander, diemenfe met ftelling eens vaften Eertcloots bevint, mette omftandighen vandien.

Copernicus neemt wel, foot fchijnt, dat de tweede flllinghen, d'eene met een vaften d'ander met een roerenden Eertcloot (welverflacnde alfmen uyt deen trecktPtolemeres byvoughfels der on bekende oneventheden, en uyt d'anderde fijne) een felve befluyt voortbrenghen van der Dwaelders plaetíen en verhededen van malcander, maer hy en doetter geen bewijs af,achtende foor fchijnt, de fake foo claer datfe t'bewijs niet en behouft, t'welck my nochtans tot grondelicker kennis der oirfaken dochte meerder verfekerheyt te vercyffinen, om verfcheyden dinghen die my daer af int gedachte te vooren quamen : Ten eer. ften foo was ick een tijt lanck van meyning (ghelijcker meer fijn onder degene die hun inde felling eens roerendē Eertclootsoeffenen) datmen mette roea rende Son deur t'ghedacht vaft te fellen ter plaets des vaften Eercloots, en daer teghen den Eertcloot roerende int rondt der Son, datmen daer me foude heb. ben t'begin der fpiegheling des roerenden Eertcloots: Maer want de voorftellen op fulcken gront ghebout ghebreckich vielen, foo bevant ick de bovefchreven verfetting des Fertcloots int ront t'welck te vooren de Sonwech gheweent hadde, niet te moeten ghefchieden, maer dat om de vafte Son een ander rondt als Eertclootwech behoort befchreven te worden. Ende want my defe din. ghen foo kennelick niet en dochten datter gheen verclaring af en foude behouven, foo befchteefick van dies het 8 voorttel defes 3 boucx: Ick bevantoock dat Saturnus met d'ander Dwaelders ghefien uyt de vafteSon, niet de felve duyfteraerlangde en hadden die desinronts middelpunt heeftghefien uyt den vaften Eertcloot:Als by ghelijckenis int is voortel defes 3 boucx, de lini A R njet even en evewijdeghe te wefen met $C$ V by aldienfe gherrocken waer, maer wel met K V. Voort fach ick dat met ftelling eens roerenden Eerteloots haer wechs verftepunt valt op de teghenoverfijde des verftepunts vande Sonwech met felling eens vaften Eertcloots, t'welck my oock met een opficht fookennelick niet en docht dattet gheen bewijs en foude behouven, fulcx dat ick t'felve verclaerde int 9 voorftel des 3 boucx.

Boven dien hoewel de Sonnens fehijnbaer duyfteraerlangde gefien uyt den Eertcloot het teghenoverpunt is van des Eertcloots fchijnbaer duyfteraerlangde gefien uyt de Son, waer deurmen lichtelick foude meynen, dat wanneer de Son metd'een ftelling waer in des wechs eerite halfront hebbende achtring, dat opden felven tijt den Eertcloot met d'ander ftelling foude fijn in des wechs tweede halfront hebbende voordering niet evegroot wefende mette Sonnens achtring : Nochtans fijn de Son en den Eertcloot in hacr roerende ftelling op cen felve tijt elck inde wechs eerfte halfront met achtring, of elck inde wechs tweede halfront met voordering, en beyde evegroor, welcke dinghen my oock dochten haer bewijs te vereyffchen, en daerom heb ickt gedaen int 10 voorftel.

Ten tweeden fo is my indē handel des Maenloops dit bejegent:T'is kennelick dat den Eertcloot in een uyiniiddelpuntige wech draeyende, de felve onevenheyt of voorofachtring crijcht diemen met felling eens vaften Eertcloots de Son toefchrijft, maer den Hemel der Maen den Eertcloot omvanghende en t'famen een cloot wefende, foo int daervoor ie houden, dat dien grooter cloot,

Bb 4 derel
apparent places and distances from each other that they are found on the theory of a fixed Earth, with the circumstances relating thereto.

Copernicus indeed assumes, as it seems, that the two theories, one with a fixed and the other with a moving Earth (that is to say, if from the one are removed Ptolemy's additions of the unknown inequalities, and from the other, his own), lead to the same result with regard to the Planets' places and mutual distances, but he does not prove it, apparently considering the matter so clear that it does not call for any proof; but it appeared to me, with a view to the more thorough knowledge of the causes, to require greater certainty, on account of various things that occurred to me in this connection. In the first place, for some time I held the view (as there are more among those who study the theory of a moving Earth) that by imagining the moving Sun to be in the place of the fixed Earth, and on the other hand the Earth as moving in the circle of the Sun, one would have the beginning of the theory of the moving Earth. But since the propositions based on such a foundation turned out defective, I found that the aforesaid displacement of the Earth into the circle which had previously been the Sun's orbit should not be effected, but that about the fixed Sun another circle ought to be described as the Earth's orbit. And since these things did not appear to me so obvious as not to need an explanation, I described of this the 8 th proposition of this 3 rd book. I also found that Saturn and the other Planets, when seen from the fixed Sun, did not have the same ecliptical longitude that the epicycle's centre has, when seen from the fixed Earth; for example, in the 15 th proposition of this 3 rd book the line $A R$ would not be equal and parallel to $C V$, if this line were drawn, but is equal and parallel to $K V$. Further I saw that on the theory of a moving Earth the aphelion of its orbit falls on the opposite side to the apogee of the Sun's orbit on the theory of a fixed Earth, which also did not appear to me so obvious at simple view as not to require any proof, so that I have explained it in the 9 th proposition of the 3rd book.

Moreover, though the Sun's apparent ecliptical longitude, when seen from the Earth, is the opposite to the Earth's apparent ecliptical longitude, when seen from the Sun - in consequence of which one might easily think that if the Sun on the one theory were in the orbit's first semi-circle, being in lag, in the same time the Earth on the other theory would be in the orbit's second semi-circle, being in advance for an amount not equal to the Sun's lag - yet the Sun and the Earth, when assumed to be moving, are in the same time each in the orbit's first semi-circle with lag, or each in the orbit's second semi-circle with advance, and both equal in amount, which things also appeared to me to require a proof, and therefore I have given it in the 10th proposition.

Secondly, I met with the following in dealing with the Moon's motion. It is obvious that the Earth, when it revolves in an eccentric orbit, shows the same inequality or advance-or-lag that is ascribed to the Sun on the theory of a fixed Earth; but since the Heaven of the Moon contains the Earth and they are together one sphere, it is to be assumed that this greater sphere shows the

## 292 Sat.Ivp.Mars, Ven.en Merc.vinding

de felve voorfchreven onevenheyt crijcht, die de cleender den Eertcloot heeft waer uyt men niet onbillich en fchijnt te befluyten dat haer verftepunt daer af oock de felve onevenheyt crijcht, t'welck my eertt dede twijffelen of dit geen oirfack vande tweede onbekende onevenheyten mocht wefen die Ptolemeets meent bemerd te hebbē. Maer om hier in vafter te gaen, ick heb de faeck voorder overdocht, en daer toe een form gheteyckent opdefe wijfe : Laet A BC den Eertclootwech beteyckenen, diens middelpunt $D$, de \$on $E$, deur welcke twee punten D, E, ghetrocken de middellijn A DEC,foobeteyckent A t'verftepunt, C t'naeftepunt, en den Eertcloot fy an A. Daer na verlangt D A tot F,en tuffchen A en Fgheftelt fijnde t'punt $G$, ick befchrijf daer op als middel.
 punt de Maenwech F H, diés verftepunt F: Maer want het rocrfeldes felfdē verftepunts totet gene wy verclaren willen gheen verandering byen brengt,om dattet fonder onevenheyt is, foo neemick de Maenwech geen eygen roerfel te hebben, maer het middelverftepunt als $\mathbf{F}$ altijt te blijven inde lini ghetrocken uyt het middelpunt $D$ deui den Eertcloot. Dit foowefende, laet den Eertcloot met haer Maenwech gecommen fijn van $A$ tot $B, \mathrm{cn}$ fal haer middelverftepunt volghens t'voorgaende gheftelde, fijn in de voortgherrocken lini D B, het welck fy in I, ick treck daer na van Edeur B tot inde Maenwech de lini EBK, foo dat K t'verftepunt bediet, en den houck E B D of 1 B K de achtring des Eertcloots B, en daerom oock des heelen Maenwechs, en vervolghens des middelverftepunts I, t'welck tot cen ander plaets gefien wort uyt E dan uyt $\mathrm{D}: \mathrm{Nu}$ is devraech of $\mathrm{t}^{\prime}$ felve vertepunt T , mette comft des Eertcloots $\operatorname{van} A$ tot $B$, gheen onevenheytghecreghen en heeft van weghen des Eertcloots uytmiddelpuntighe wech? Maer alles wel overdocht fijnde, foo valter onderfcheyt te maken tuftchen de plaetfen des fienders, want foomen het oogh ftelt ande Son E als duyfteraers middelpunt, ${ }^{\prime}$ verftepunt $I$ fal van daer ghefiea een onevenheyt ghecreghen bebben: Maer want de dadelicke fiening daer t'ghefchil af is, niet en ghebeprt uyt $E_{\text {, maer }}$ uyt den Eertcloot $B$, foo moetmenfe daer nemen, t'welck doende t'punt K wiiftan des Eertcloots fchijnbacr duyfteraerlangde, als commende de lini E B K ayt des duyfteraers middelpunt E , fulcx dat by aldié t'midddelverftepuntdaer gefien wierde, het foude mette comit des Eertcloots van A tot B de onevenheyt ghecregen hebben des houcx I B K: Maer iwortan I ghefien, foo veel voorwaertals den houck K B I bedraecht, en daerom falt mette comft des Eertcloots van A tot B, fchijnbaerlick inden duyfteraer foo veel gheloopen hebben als den booch $A$ Bofden houck A D B bedraecht, dat is effen foo vecl als den Eertcloot eyghentick geloopen heeft,fonder cenige opevenheyt : Inder vougen dat ick doen fach, dat hoewel den Eertcloot en oock den heclen Maenwech de felve onevenheyt heeft diemen met ftelling
same aforesaid inequality that the smaller - the Earth - has, from which it seems to be concluded not unjustly that their apogee also receives from this the same inequality; which first caused me to doubt whether this could not be the cause of the second unknown inequality which Ptolemy thinks he has perceived. But to be more certain in this, I considered the matter further, and for this purpose drew a figure in the following manner: Let $A B C$ denote the Earth's orbit, its centre $D$, the $\operatorname{Sun} E$, and when through these two points $D, E$ is drawn the diameter $A D E C, A$ denotes the aphelion, $C$ the perihelion, and the Earth shall be at $A$. When thereafter $D A$ is produced to $F$, while between $A$ and $F$ is marked the point $G$, I describe about this as centre the Moon's orbit $F H$, whose apogee is $F$. But since the motion of this apogee does not make any difference to what we wish to explain, because it is without inequality, I assume that the Moon's orbit has no proper motion, but that the mean apogee, namely $F$, always remains on the line drawn from the centre $D$ through the Earth. This being so, let the Earth with the Moon's orbit have travelled from $A$ to $B$, then its mean apogee according to the foregoing supposition will be on the line $D B$ produced, which shall be in $I$; thereafter I draw from $E$ through $B$ into the Moon's orbit the line $E B K$, so that $K$ denotes the apogee, and the angle $E B D$ or $I B K$ the lag of the Earth $B$, and therefore also of the whole Moon's orbit, and consequently of the mean apogee $I$, which is seen from $E$ in another place than it is from $D$. Now the question is whether this apogee $I$ has not, upon the passage of the Earth from $A$ to $B$, acquired an inequality, on account of the Earth's eccentric orbit? But when everything has been well considered, a distinction has to be made between the places of the observer, for if the eye is put at the Sun's place $E$ as centre of the ecliptic, the apogee $I$, when seen from there, will have acquired an inequality. But since the practical observation, with which the question is concerned, does not take place from $E$, but from the Earth $B$, it must be taken there; and when this is done, the point $K$ indicates the Earth's apparent ecliptical longitude, since the line $E B K$ comes from the ecliptic's centre $E$, so that, if the mean apogee were seen there, upon the passage of the Earth from $A$ to $B$ it would have acquired the inequality of the angle $I B K$. But it is seen at $I$, so much forwards as the angle $K B I$ amounts to, and therefore upon the passage of the Earth from $A$ to $B$ it will apparently have moved in the ecliptic as much as the $\operatorname{arc} A B$ or the angle $A D B$ amounts to, that is exactly as much as the Earth has really moved, without any inequality. In such a manner that I then saw that, though the Earth and also the whole Moon's orbit has the same inequality that is ascribed

Qelling eens vaften Eertcloots de Son toefchrijft, dat nochtans des Maenwechs verftepunt uyt den Eertcloot ghefien die onevenheyt niet en crijcht, twelek my uyt de bovefchreven twijffeling brocht: Ick bevantoock datter ghcen verandering en viel deur het ftellen van des verftepunis cyghen loop, fdaechs op ; 2 (1) 27 (2) tegen t'vervolgh der trappē als int it voorftel defes 3 boucx, dat met felling eens vaften Eertcloots is van 6 (1) 41 (2) na t'vervolgh der trappen deur het is voortel des i boucx : Sghelijex oock datier gheen verandering en viel deur het ftellen des duyfteringfnees eyghen loop fdaechs van 1 tr. 2.19 tegen t'vervolgh der trappen alsint felve in voorftel defes 3 boucx, dat met felling cens vaften Eertcloots is van 3 (1) II (2) tegen t'vervolgh der trappen deur het II voorftel des i boucx.

Maer hoewel my defe voorfchreven dinghen alfoo bekent wierden, dat en vertoonde fich niet fooopenbaerlick, dat icker uyt foude willen befluyten de overeencommingen des Maenloops deur ftelling eens roerenden Fertcloors, meite Maenloop deur ftelling eens vaften Eertcloots gheen verclating te behouven, fulcx dat ick daer af befchreef het 12 voorftel.

Ten derden foo is my int overlegghen des loops van d'ander Dwaelders, te weten Saturnus, Iupiter, Mars, Venus en Mercurius, dit te vooren ghecommen : T'is kennelick datmen tottet berekenen der Dwaelderplaetfen met felling eens vaften Eertcloots, verfcheyden linien treckt uyt des Sonwechs uyt-middelpuntichpunt, dats den felven vaften Eertcloor, tot d'ander noodighe punten, als inde form des is voorftels de linien A R; A T, gherrockenuyt den vaften Eertcloot A. Ende dien volghens men foude lichtelick meynen dat tottet berckenen der Dwaelderplaetfen met felling eens roerenden Eertcloots, fulcke linien als KX, K V., behooren ghetrocken te worden niet uyt K, maer uyt des Eertclootwechs uytmiddelpuntich punt C, dats de vafte Son, gemerckt die plaets fulcx wat is inde felling eens roerenden Eertcloots, gelijck de plaets des vaften Eericloots inde ftelling der toerende Son: Inder voughen dat my dit oock docht bewijs te vereyfchen.

Ten vierden machmen hier noch by voughen degroote verandering dieder valt, deur datmenin des roerenden Eertcioots flelling het inrondt wech doet, den Dwaelder feght andes inronts middelpunt te wefen, en weerom daer teghen datmen den Eertcloot die vaft ghentelt wiert, fulcken loop gheeft als ghefien is.

Alditen dochten my gheen dinghen om an te nemen voor eyntlick een felve befluyt uyt te brenghen, fonder daer af de reden te weten en bewijste doen : Tis oock daer voor te houden dat fy die tot kennisdier gelijekheyt eerft gherochten, feker middelen tot inleyding hadden waer deur fy fulcx voor gewis hielden. Maer anghefien Copernicus die niet befchreven en heeft, nochiansal ighene hy van dies ftelt vaft gaet (als de Maen met ftelling eens roerenden Eertcloots foo te berekenen ghelijek met ftelling cens vaften Eertcloots, fonder van weghen de ftelling des Eertclootloops verandering te crijghen, voort in d'ander Dwaelders de linien als de bovefchreven niet te trecken uyt de Son als weerelts middelpunt, maer uyt des Eertclootwechs middelpunt) t'gheeft billichlick vermoeden een van tween, te weten of dat hem d'oirfaeck defer ghelijckheyt anders bejeghent is dan my, ent'felve met fulcken lichticheyt dat hem onnoodich docht verclaring daer aftedoen, of dies niet, dat hy by ghevalle ghecreghen heeft eenighe oude boucken vande befchrijving des loopenden Eericloots,fonder fulckeredenen daer in vervatet te wefen, en dat hy daerom fulex alfoo mach uyighegheven hebben.
to the Sun on the theory of a fixed Earth, nevertheless the apogee of the Moon's orbit, when seen from the Earth, does not acquire that inequality, which removed my aforesaid doubts. I also found that no change was caused by putting the true motion of the apogee at $52^{\prime} 27^{\prime \prime}$ a day, contrary to the order of the degrees, as in the 11th proposition of this 3rd book, which on the theory of a fixed Earth is $6^{\prime} 41^{\prime \prime}$ in the order of the degrees, by the 11th proposition of the 1st book. Likewise that no change was caused by putting the proper motion of the line of nodes at $1^{\circ} 2^{\prime} 19^{\prime \prime}$ a day contrary to the order of the degrees, as in the said 11th proposition of this 3rd book, which on the theory of a fixed Earth is $3^{\prime} 11^{\prime \prime}$ contrary to the order of the degrees, by the 11 th proposition of the 1 st book.

But though these aforesaid things thus became known to me, this was not manifested so clearly that I should be inclined to conclude from it that the correspondences of the Moon's motion on the theory of a moving Earth with the Moon's motion on the theory of a fixed Earth do not require any explanation; so that I described thereof the 12 th proposition.

Thirdly, the following occurred to me in considering the motion of the other Planets, to wit, Saturn, Jupiter, Mars, Venus, and Mercury. It is evident that for the computation of the places of the Planets on the theory of a fixed Earth various lines are drawn from the point of eccentricity of the Sun's orbit, i.e. the said fixed Earth, to the other necessary points, namely in the figure of the 15th proposition the lines $A R, A T$, drawn from the fixed Earth $A$. And consequently one might easily think that for the computation of the places of the Planets on the theory of a moving Earth such lines, as $K X, K V$, ought to be drawn, not from $K$, but from the point of eccentricity of the Earth's orbit C, i.e. the fixed Sun, observing that this place is the same in the theory of a moving Earth as the place of the fixed Earth in the theory of the moving Sun; so that I thought that this, too, required to be proved.

Fourthly, there may be added the great change which is caused by the fact that in the theory of the moving Earth the epicycle is taken away, the Planet is said to be at the epicycle's centre, and again, on the other hand, that the Earth, which was assumed to be fixed, is given such a motion as has been seen.

All these appeared to me not to be things that could be taken to lead ultimately to the same result, without knowing the reason thereof and giving a proof. It is also to be assumed that those who first attained to knowledge of this equality had secure aids to guide them, in consequence of which they considered this certain. But since Copernicus has not described these, while yet all that he states about this is firmly established (such as computing the Moon on the theory of a moving Earth in the same manner as on the theory of a fixed Earth, without its undergoing any change because of the assumption of the Earth's motion; further, with the other Planets, not to draw the lines described above from the Sun as the world's centre, but from the centre of the Earth's orbit), it gives a just surmise of either one thing or the other, to wit, either that the cause of this equality appeared different to him from what it does to me, and this with such easiness that he thought it unnecessary to give an explanation of it, or otherwise that he had perhaps access to some old books describing the moving Earth, which did not contain such reasons, and that he may therefore have edited them like this.

## 294 Sat.Ivp.Mars, Venen Merc.vinding

Macr, mocht nu ymant fegghen, laet een van beyden wefen, wat nut is uft foodanich verhael te trecken!Dit : By aldien d'oirfacck der gelij ckheyt en overcomming defer twee ftellinghen eens roerenden en vaften Eerrcloots, voor Copernicus foo ciaer gheweeft heeff, datfe hem docht gheen uytlegging te behouven, t'fal anderen meughen beweghen daer op teletten, en naerder wech te befchrijven, om niet deur een langherte doen dat deur een corter can ghedaen worden. Maer foo hy fulcx ghecreghen heeft uyt eenighe oude boucken hem ter handighecommen, t'foude hope gheven datter vande wetenfchappen des wijfentijts herwaerts of derwaerts in d'een of d'ander * bouckcaffe noch meer overblijffels meughen fijn dan die, en oirfaeck gheven van vlietelicker daer na te vernemen dan men ghedaen heeff. T'besiv y т. Hier is dan verclaert de reden waerom ick inde 8. 12. 15. en 17 voorflellen bewefen hebbe de Dwacldersdeur felling eens roerenden Eertcloots bevonden te worden totte felve fchijnbaer plaetfen en verheden van malcander, diemenfe met felling eens vaften Eericloots bevint, mette omflandighen van dien, na den eyfch.

## 19 V O OR STEL.

## Te verclaren op vvelcke ftelling, te vveten de oneygen met een vaften Eertcloot, of de eyghen met een roerende, oirboirft fchijnt de rekeninghen te maken vande langdeloopder Dvvaelders.

Int voorgaende a bouck befchreven finde den loopder $D_{\text {waelders deur er- }}$ varings dachtafels, en int 2 deur wifcontighe wercking beyde ghegront op de oneyghen ftelling eens vaften Eertcloots, en dat ick volghens mijn voornemen daer na in dit 3 bouck befchreven hebdien loop ghegrontopde eyghen ftelling des waren roerenden Eertcloors, foo mocht ymant dencken, dat nadien wy voor theginnen defes handels wiften die felling oneyghen te wefen, en defe warachtich, oft niet beter en waer gheweeft dien oneygen onbefchreven te laten, en den tijt mettet onderfoucken der felfde niet deur te brenghen, maer in die plaets ten eerften ant warachtighe te vallen :Hier op antwoorde ick int ghemeen, dat ick dekennis van d'een en d'ander feer noodich acht, en om daer af int befonder breeder te freken, fegh aldus: Defe twee fellingen fulcke ghelijckheyt hebbende als int voorgaende blijckt, foo acht ick onnoodich te befchuijven nieuwe werckfucken vande vinding der Dwaelderlangden, effening der daghen, faminghen, tegheflanden, duyteringhen, en meer anderen, ghegront op 太elling eens roerenden Eertcloots: la mijn meyning is dat de voorvallende rekeninghen, deurgaens bequamelicker fouden gedaen worden deur vervouging des ghedachts op de oneyghen ftelling eens vaften Eertcloots, en op gheteyckende formen na den eylch van dien, dan op de eyghen des roerenden Eericloots, al waren fy oock volcommelick befchreven.
Om van t'welck by voorbeelt breeder redenen te verclaren, ghenomen dat ymant in een varende fchip bevale een pack thien ghemeten voeten achterwaert te legghen : Die fulck bevel na wil commen, felt uyt fijn ghedach het roerfel des fchips, die thien voeten daer in metende even al off fill laghe, want anders verftaen fijinde, tufchen den tijt dattet bevel ghefchiede, en twerck gedaen wiert, mach t'fhip 1000 voet voort ghevaren fijn, inder voughen datmen het pack in plaets van 10 voeten, foude moeten iolo voeten achterwaertleg-

But, someone might now say, let it be one of the two; what profit is to be gained from such a story? This: If the cause of the equality and correspondence of these two theories of a moving and a fixed Earth was so clear to Copernicus that he thought it did not require any explanation, it may induce others to pay heed to this and describe a shorter course, in order not to do by a longer procedure what can be done by a shorter. But if he has learned this from some old books that came into his hands, this would raise the hope there may be more remains than these of the knowledge of the Age of the Sages, here or there in some library or other, and would cause us to inquire thereafter more diligently than has been done.

CONCLUSION. Here the reason has thus been explained why I have proved in the 8 th, 12 th, 15 th, and 17 th propositions that the Planets on the theory of a moving Earth are found in the same apparent places and distances from each other that they are found on the theory of a fixed Earth, with the circumstances relating thereto; as required.

## 19th PROPOSITION.

To explain on which theory, to wit, the untrue theory with a fixed Earth or the true theory with a moving Earth, it seems most suitable to base the computations of the motion in longitude of the Planets.

Since in the foregoing 1st book the motion of the Planets has been described by means of empirical ephemerides, and in the 2nd by mathematical operations, both based on the untrue theory of a fixed Earth, and since according to my intention I have thereafter described in this 3rd book the said motion according to the true theory of the moving Earth, it might be thought (since before we began this discussion, we knew the former theory to be untrue and the latter true) whether it would not have been better to leave the untrue one undescribed and not to waste time in studying it, but instead to begin at once with the true theory. To this I reply in general that I consider the knowledge of one theory and the other as highly necessary, and to speak of it specially in more detail, I say as follows: Since these two theories have such equality as appears in the foregoing, I deem it unnecessary to describe new problems about the finding of the Planets' longitudes, equality of time, conjunctions, oppositions, eclipses, and other things, based on the theory of a moving Earth. Nay, I am of opinion that the computations needed would generally be made more easily by directing our thought to the untrue theory of a fixed Earth and to figures drawn in accordance with its requirements than to the true theory of the moving Earth, even if they were described perfectly.

In order to explain this more fully by an example, assume that a man in a sailing vessel should order a parcel to be put ten paced feet backwards. He who wants to obey this order, puts out of his mind the movement of the ship, since those ten feet have exactly the same length as they would if it were lying still; for if it were understood differently: between the time when the order was given and that when the work was performed the ship may have sailed on 1,000 feet, so that, instead of 10 feet, the parcel would have to be put 1,010 feet

## METEENROERENDENEERTCLOOT.

ghen, dat waer buyten t'chip miffchien int water: T'welck de meyning niet wefende, foo ift in fulcken ghevalle beter, het fpreken en t'doen te voughen na het fchijnbaerlick, dats na de fchijrbaer ftillandt der inwendighe floffen des fchips, dan na het eyghen. Maer fooder een ander ghefchil waer, niet van een pack te verleggen, maer van cen pael, ncem ick, int water te moeten flaen, thien voeten achterwaert van een fekeï plaets ant fchip, daer verfaetmen de faeck eyghentlick, te weten thien voeten achterwaert, van die plaets (t'chip mach dacrentuffchen ghevaren hebben hoct wil) daer den bevcelder af fprack. Sulcx dat in fmenichen handelingen tweederley wijfe van freeken en doen valt, d'eene ghegront opt fchijnbaer, d'ander opt eyghen, waer af men altijt die behoort te verkiefen, deur welcke men t'voornemen beft can verflaen en uytrechten. Dit foo toeghelaten, t'chhijnt oirboir in dit Hemelloopichrift t'ghedacht een gront tegheven oock op tweederley felling, d'eene Cchijnbaer, d'ander eyghen elck na den eyfch van i'voornemen daer de faeck lichtelicxt deur can verftaen worden. Te weten opt fchijnbaer, int leeren der beginfelen,en in t'maken der bovcfehreven rekeninghen, om datmen de woordendier fofop defen loopenden Fertcloot ghebruyckt al offéftil laghe : Als wanneermen fpreeckt van der weerellichten opganck boven den fichteinder, onderganck onder den fichteinder , comfle tottet middachront, en veel dierghelijcke, twelck eyghentlick heel verkert fichteinders onderganck, en opganck is, en comfte des middachronts totte lichten, welcke woorden duyfter fouden vallen: la en fijn by Copernicus felf niet ghebeficht, hoewel fijn voornaemfle wit was vanden roerenden Eertcloot te fchrijven. Voort ghelijckt int varende fchip nutter was fijn roerfel uyt het ghedacht te fellen, en te houden al off ftil ftonde, en t'fchijnbacr te nemen al of eygen waer, alfoo ift in defen ghevalle bequamer tote leering, het roerfel des Eertcloots uyt het ghedacht te fellen, en te houden al offe ftil flonde, het fchijnbaer nemende al oft eyghen waer. Maer wefende ghefchil vande breedeloop der Dwaelders Saturnus, Iupiter, Mars, Venus, en Mercurius, van welcke int volghende ghefeyt fal worden, daer ift reden (ghelijck vant flaen der pacl int water ghefeyt is) fijn rekeningen eerf te gronden op formen gheteyckent na den eyfch der eygen felling des roerenden Eertcloots, uyt oirfaeck dat wy daer deur beter connen gheraken tot oirfakelicke kennis des bree-deloops, en dat de wercking ghegront op de verfierde felling eens vaften Eertcloors daer uyt ghetrocken wort op de wijfe alsick hicr na berchrijven fal.
Dis nu foo mijn ghevoclen, en op fulcx heb ick defe befchrijving geformt; doch foo ymant ander wichtigher redenen hadde my onbekent, deur welcke hy oirboirder bevonde anders te doen, hy foude die meughen volghen.

> Tot hier toe vande langdeloop der Dwaelders ghefeyt wefende, ick fal nu commen tottet befchrijven vande breedeloop.
backwards, which would be outside the ship, perhaps in the water. This not being what was intended, in such a case it is better to speak and act according to appearance, i.e. the apparent rest of the internal materials of the ship, than according to the truth. But if there were another dispute, not of moving a parcel, but, for example, of having to strike a pole in the water, ten feet behind a given place in the ship, there the matter is taken literally, to wit, ten feet behind that place (the ship may meanwhile have sailed in any desired direction) of which the commander spoke. So that in men's actions there are two ways of speaking and doing, one based on appearance and the other on the truth, of which we should always choose that one by means of which the intention can best be understood and carried into effect: If this is admitted, it seems suitable in this book on the Heavenly Motions to base our thoughts also on two theories, one apparent, the other true, each according to the requirement of what is intended, by which the matter can be understood most easily. To wit, on the apparent theory in the learning of the elements and in the making of the aforesaid computations, because the words of this subject matter are applied to this moving Earth as if it were lying still. For example, when we speak of the luminaries rising above the horizon, setting beneath the horizon, their arrival in the meridian, and many similar things, which in reality, quite the reverse, is the setting and rise of the horizon, and arrival of the meridian at the luminaries, which words would be obscure. Nay, they have not been employed by Copernicus himself, though his chief object was to write about the moving Earth. Further, just as in the sailing ship it was more useful to put its movement out of one's mind and to assume that it lay still, and to take appearance as if it were the truth, thus in this case it is better for didactic purposes to put the motion of the Earth out of one's mind, and to assume that it stands still, taking appearance as if it were the truth. But when there is a dispute about the motion in latitude of the Planets Saturn, Jupiter, Mars, Venus, and Mercury, which will be discussed in what follows, there is good reason (as it has been said of the striking of a pole in the water) for first basing one's computations on figures drawn in accordance with the requirements of the true theory of the moving Earth, because thus we can better attain to knowledge of the causes of the motion in latitude, and because the operation based on the fictitious theory of a fixed Earth is inferred from it in the manner I shall describe hereinafter.
This is my opinion, and on this I have based this description, but if anyone had other, weightier reasons, unknown to me, for which he should find it more suitable to proceed otherwise, he may follow them up.
The motion in longitude of the Planets having been discussed up to this point, I shall now come to the description of the motion in latitude.

## VANDE BREE- <br> DELOOP.

## O N D ER S CHEYT

DES DERDEN BOVCX VANde breedeloop der vijf Dvvaelders<br>Saturnus, Iupiter, Mars, Venus, en Mercurius, met ftelling cens roerenden Eertcloots.

## CORTBEGRYP DESES VYFDEN ONDERSCHEYTS.



O(ghefien den roerenden Eertcloot en de filstaende 'Son, deur t'ghefelde altüt inden duysteraer finn fonder af rowicking of breedc, en dut de ©Manens breedeloop befchreven int 2 bouck beginnervde ant 34 rooorstel met felling eens ruaSten Eertcloots, geen reerfchil en heeft dat reerclaring bebouft mette breedeloop der felling eens roerenden Eertcloots, foo en roalt roan bemlien breede bier niet tefegghen, maer alleenelick rvan die der ruüf ander als roolght:

Gbelïck de Ouden inde befchrïving ruande Drvaelders langdeloop bil_ licblickbeginnen met dadelicke erbaringen van yders loop op bekendentït, om daer uyt ghemeene regelente trecken dienende tottet rvinden baers locps, in toecommende tüden, alfoo vereyfibt oock fulcx de natucrlicke oirden inde befobrïping des breedeloops, inder rougen dat ickdaer me in elck Drvaelders befchrijping beginnen fal : Ende rovant de regbel van eenen Dvvaelder ruoor allen dient, foo falickalleenelick vander eerSten of oppersten Saturnus gheformde rvoorstellen befchrijven, en van d'ander fulck vermaens doen als breeder rverclaring rverey/bt. Hier af fal ick fes rooorstillen befcbryiven.

Het eerste rovefende in doiordëhet 20, is befchrÿringruan Ptolemeus dadelicke ervaringen rvanSaturnus /chynbaer duysteraerbreede, dienende om däer uyt ghemeene regelte trecken rvan fynn breedeloops eygbenfchappen.

Het 2 vevefende in d'oirden bet 21 , omte rinden de rvechlangden der

# OF THE MOTION IN LATITUDE <br> FIFTH CHAPTER 

OF THE THIRD BOOK

Of the Motion in Latitude of the Five Planets
Saturn, Jupiter, Mars, Venus, and Mercury, on the Theory of a Moving Earth

## SUMMARY OF THIS FIFTH CHAPTER.

Since the moving Earth and the fixed Sun by supposition are always in the ecliptic without any deviation or latitude, and since the motion in latitude of the Moon (described in the 2nd book, starting with the 34th proposition) on the theory of a fixed Earth has no such difference from its motion in latitude on the theory of a moving Earth as would require an explanation, it is not necessary here to speak of their latitude, but only of that of the five others, as follows.

Just as the Ancients in describing the Planets' motion in longitude rightly start with practical experiences of the motion of each in a known time, in order to derive therefrom common rules serving to find their motion in future times, the same is also required by the natural order in the description of the motion in latitude, so that I will start therewith in the description of each Planet. And because the rule of one Planet applies to all, I will describe propositions with figures only of the first or upper Planet Saturn, and for the others I will give such description as is necessary for a fuller explanation. I will describe hereof six propositions.

The first, which is the 20th in the sequence, is a description of Ptolemy's practical experiences of Saturn's apparent ecliptical latitude, serving to derive therefrom a common rule for the properties of its motion in latitude.

Vande Breedeloopder Difaeid.
tvoceppunten rvan Saturnunovechs /chÿnbaer grootfe afvöjckinghen roan den duysteraer, met $\int$ gaders de cortite rverbeden vanden Eertclootroech tottefelve tovee punten: Oock me de langde der beele lini vant eenpunt dier grootfe afonücking tottet ander, infulcke deelen alßer des Eertclootopechs balfmiddellyn roooo doet, deur rovifonstighe rovercking ghegront op felling eens roerenden Eertcloots.

Het 3 rovefende in d'oirden bet 22 , om tervinden Saturnusbvechs afprücking vandë duyferaer: Met gadershoe verre de duysteraetnnervant des Eertclootropechs middelpunt rvalt, in fulcke deelenalf ${ }^{\text {er }}$ des Eertclootrovechs balfmiddellin 10000 doet, deur rovifconstigeroverckinggegront op felling eens roerenden Eertcloots.

Het 4 rovefende in d'oirden bet 23 , om tervinden de rovecblangde der trove uyterfe punten vande duyferaerfne, en roande toveeuyterfte punten der afovijcking in Saturnusrovech: Oock der lini die roan Saturnusrvechs middelpuint op de duyferaerfne rechthouckich rvalt, in fulcke deeless alßer des. Eertclootevechs balfmiddellijn roooo doet, deur rovifoonStighe ruvercking ghegront op felling eens roerenden Eertcloots.

Het srovefende in d'oirden het 24 , om te vinden de langde der lini die raan een gegeve pust in Saturnusopech recbthouckichrvalt opt plat des duyferaers, in fulcke deelë alfer des Eertclootrovechs balfmiddellÿnroooodoet, deur rovifonstige rovercking gegront op felling eens roerenden Eertcloots.

Het orovefende in dooirden bet is, om te rivinden Saturnusfbÿnbaer duysteraerbreede op eenghegheven tüt, deur rvifconstighe voerckingghegront op felling eens roerenden Eertcloots.

Daer nafal roolgen bet bovefchrevenrvermaen rian d'ander Dppaelders, fonder daer af gheformde rvoorstellen te maken.

## EERSTVANSATVRNVS <br> BREEDELOOP.

20 VOORSTEL.
Te befchrijven Ptolemiens dadelicke ervaringhen van Saturnus fchijnbaer duyfteraerbreeden, dienende om daer uyt gemeene reghel te trecken van fijn breedeloops eyghenfchappen.

ILID T.

Want mijn gevoelen is datter by de menfchen eertijts een grondelicker ervarentheyt gheweeft heef, vande Dwaelderslangdeloop met ftelling eens rocsenden Eertsloots,foo vermoede ick daer uytby hemlien oock kennis geweeft

Ce tefline

The 2nd, which is the 21 st in the sequence, to find the orbital longitudes of the two points of the apparently greatest deviations of Saturn's orbit from the ecliptic, as well as the shortest distances from the Earth's orbit to these two points; also the length of the whole line from the one point of that greatest deviation to the other, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by mathematical operation based on the theory of a moving Earth.

The 3rd, which is the 22nd in the sequence, to find the deviation of Saturn's orbit from the ecliptic, as well as how far the line of nodes is from the centre of the Earth's orbit, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by mathematical operation based on the theory of a moving Earth.

The 4 th, which is the 23rd in the sequence, to find the orbital longitudes of the two extremities of the line of nodes and of the two extremities of the deviation in Saturn's orbit; also of the line which from the centre of Saturn's orbit is dropped perpendicular to the line of nodes, in such parts as the semidiameter of the Earth's orbit has 10,000 , by mathematical operation based on the theory of a moving Earth.

The 5th, which is the 24th in the sequence, to find the length of the line which from a given point in Saturn's orbit is dropped perpendicular to the plane of the ecliptic, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by mathematical operation based on the theory of a moving Earth.

The 6th, which is the 25 th in the sequence, to find Saturn's apparent ecliptical latitude at a given time, by mathematical operation based on the theory of a moving Earth.

This is to be followed by the above-mentioned description of the other Planets, without making thereof illustrated propositions.

## FIRST OF SATURN'S MOTION IN LATITUDE.

## 20th PROPOSITION.

To describe Ptolemy's practical experiences of Saturn's apparent ecliptical latitudes, serving to derive therefrom a common rule for the properties of its motion in latitude.

## 1st SECTION.

Because it is my opinion that in earlier times people had more thorough experience of the Planets' motion in longitude on the theory of a moving Earth,

## 298

## Vande Breedeloop

tefijne van der felve breedeloop, om datfe, alfmender wat op let ghenouchfaem heur felven daer in openbaert,fulcx dat ick meen Ptolemeus gaghenlaghen ervaringhen van dies niet d'eerfe te wefen, maer datmender voor hem al dapperlick op ghelet, en fpiegheling daer af gheformt heeft, doch de felve ter hande van hem noch niemant anders gecommen lijnde, datmen weet, foo fullen wy danckbaerlick annemen den vlietighen arbeyt by hem hier in ghedaen, fonder welcke het nu fwaerlick foude by commen tot befcheyt defes handels te geraken, ghemerckt men te weynich ganaghers vindt. Om dan torte fake te commen ick fegh aldus: Ghelijckmen totter foucken der ghedaente vande Sonnens rchijnbaer evenaerbreede, en vande Manens fchijnbaer duyfteracrbreede, ren certten tracht dadelick te vinden haer meefte afivijckinghen na het Zuyden en Noorden, om daer deur te commen tot kennis der placts vande duyftraerfne, en de reft dies angaende, alfoo heeft Ptolemeus int dadelick onderfoucken der ghedaente van Saturnus ichijnbaer duyfteraeibreede, ten eerften ghetracht na fijn meefte afwijckingen, en die bevonden op de Noortfijde van 3 tr. 2 (1) ( 500 ftaetfe in (ijn tafel) ghebeurende altijts als fijn inronts middelpunt fchijnbaerlick was se tr. voor lijn wechs verftepunt,te wetē onder des duyferacrs 183 tr. en Saturnus an des inronts naeftepunt: Maer buyten het naeftepunt wefende, foo was fijn Noorderfche afwijcking voor datmacl cleender, ende ten minften doen hyalfooant verftepunt was, want hoewel hy dat dadelick niet fien en conde, deur dien Saturnus doen by de Son was, foo merckte hijt nochtans by giffing deur de daghelickfche minderinghen die hy in fijn uyterlte verfchijniaghen gade flouch.

## 2 LID T.

Op de Zuytfijde bevant hy de meefte afwijcking van 3 tr. s (1), ghebeurendealtijt als fijn inronts middelpunt was onder het teghenoverpunt des bovefchreven 183 tr. dats onder des duyfteraers 3 tr. en Saturnus an fijn inronts naeftepunt : Maer buyten het naeftepunt wefende, foo was fijn Zuyderfehe afwijcking voor datmael cleender, en sen minften doe men hem alfoo an het verttepunt vandt.

## 3 LID T.

Tot hier toe is ghefeyt van Saturnus eyghenfchappen wefende hetinronts middelpunt an fijn wechsgrootite afwijckingen, maer wefende tuffchen beyden in een der duyfteraerfneen twee uyterften,foo bevant hy Saturnus alijitint plat des duyfteraers fonder breede, tot wat plaets des inronts hy oock mocht weren.

## 4 L I D T.

Het Ichijnbaerlickfte dat Ptolemeus bedencken conde van d'oirfacck defes feltfaem roerfels, om daer op een fpiegheling te gronden, deur welcke men Sa. turnus breede op alle toecommende tijden berekenen en vante vooren weten mocht, heeft hy befchreven int 3 hoofiftick fijns 13 boucx, waer af den fin dufdanich is.

Laet ABiplat des duyfteraers beteyckenen overcant ghefien, diens middelpunt dats den vaften Eertcloot C, waer deur gherrocken is de wech DE, en freckénde C D opde Noortfide na des duyteraers 183 tr. als int 1 lidt, fulce

I suppose from this that they also were acquainted with their motion in latitude, because, if some heed is paid thereto, it is sufficiently revealed therein, so that I think that Ptolemy's observations were not the first in this respect, but that before his day it had already been attentively observed and theories had been framed on it; but since these have not been handed down to him or anyone else as far as is known, we will gratefully accept the diligent work he has done in this respect, without which it would now be difficult to attain to knowledge of this matter, seeing that too few observers are to be found. To come to the matter, I say as follows. Just as, in order to find the nature of the Sun's apparent equatorial latitude and of the Moon's apparent ecliptical latitude, it is first attemped to find directly their greatest deviations towards the South and the North, in order thus to know the place of the line of nodes and the rest relating thereto; thus Ptolemy in practically investigating the character of Saturn's apparent ecliptical latitude first inquired into its greatest deviations and found them on the North side to be $3^{\circ} 2^{\prime}$ (thus it appears in his table ${ }^{1}$ ), which always occurred when its epicycle's centre was apparently at $50^{\circ}$ ahead of its orbit's apogee, to wit at $183^{\circ}$ of the ecliptic, and Saturn at the epicycle's perigee. But when it was outside the perigee, its Northerly deviation was for that case smaller, and smallest when it was thus at the apogee; for though he could not see this actually, because Saturn then was near the Sun, yet he found this by guessing, from the daily decrements he observed in its extreme appearances.

## 2nd SECTION.

On the South side he found the greatest deviation to be $3^{\circ} 5^{\prime}$, which always occurred when the epicycle's centre was at the point opposite the above-mentioned $183^{\circ}$, i.e. at $3^{\circ}$ of the ecliptic, and Saturn at its epicycle's perigee. But when it was outside the perigee, its Southerly deviation was for that case smaller, and smallest when it was thus found at the apogee.

## 3rd SECTION.

Up to this point Saturn's properties have been described when the epicycle's centre was at its orbit's greatest deviations, but when it was between the two at one of the two extremities of the line of nodes, he always found Saturn in the plane of the ecliptic without any latitude, no matter in what place of the epicycle it might be.

## 4th SECTION.

The most plausible explanation that Ptolemy could think of as the cause of this curious movement, to base thereon a theory by means of which one might calculate and know in advance Saturn's latitude at all future times, he has described in the 3rd chapter of his 13th book, the meaning of which is as follows.

Let $A B$ denote the plane of the ecliptic, seen transversely, whose centre is the fixed Earth $C$, through which has been drawn the orbit $D E, C D$ tending on the North side towards $183^{\circ}$ of the ecliptic, as in the 1st section, so that the two

[^39]dat de twee houckē $A C D, B C E$ des wechs afwijcking bedié,en op fijn uytertte punt $D$ na het Noordē als middelpunt is befchrevē tinront F G bycansevewijdich mettēduyteraer A B, diēs naentepunt $G$,verftepunt $F$,vā welcke getrockē fijn de twee linieie G C, EC . Ick heb hier gefeyt bycans evewijdich,deur dien tiverfchil feer cleē is, alleenelick và 2 tr. 4(1), want dē houck A C D berckēde hy op 2 tr. 26 (1), en C D G op 4 tr. 30 (1), welcke twee houckē om volcommé evewijdicheyt tc hebben evegroot foudē moetē fijn. Defe bovefchrevẽ $\begin{aligned} \text { ondē wordē altemael gelijick }\end{aligned}$ vanden duyteraer gefeyt is verface overcant gefiē te fijn. Voort wefende Salurnus antin ronts naeflepunt $\mathbf{G}$,fo wiert fijn fchijnbaer afwijcking vandē duytteraer, dats dē houck A C G,ten grootfḕ bevonden van 3.tr. 2 (1) daer afghefeyt is int I lidt. Maer buyten het naeftepüt fijnde, als neem ick voor $D$, of an F, fo was fijn Noorderfche afwijkking voor datmael cleender, en ten minflen ant vertepunt $F$ wefende, want clecnder is dē houck ACFdäACD. Maer om dergelijcke verclaring oock te doen op de Zuytijide, fo lact opdes wechs uyterfte punt Eals middelpŭt. belchreven fijn het inront H I,oock bycans evewijdich mettē duyfteraer A B,diens naeftepunt $H$, verftepunt $I$, van welcke getrocke fijn de twee linié HC, I C. Voort wefende Saturnus ant inronts naeftepunt H , fo wiert fijn afwijcking vanden duyteraer, dats den houck BCH , tē grootftē bevonden vā 3 tr. $\boldsymbol{s}$ (1), daer af gefeyt is int 2 lidt , maer buyten het naeftepunt fijnde, als neem ick voor E of in I,foo was fijn Zuyderfche afwijcking voor datmael cleender, en té minften ant verftepunt wefende, want cleender is den houck B C I dan B C E.
Defe twee eyghenfchappen der afwijcking als het inront is ande uyterften D E aldus befchreven fijnde, wy fullen nu commen totte verclating van d'oitfaeck der eyghenfchappen verbact int 3 lidt, te weten alft tufchen beyden is. Ptolemetus ghevoet dat commende het inront van D nade duyfteraerfne, het blijf daerentuffchen altijt bycans evewijdich metten duyfteraer, te weten foo gematicht, dat wefende het inront FG voor C , fijn plat is dan altijt teenemacl int plat des duyfteraers,als ter plaets van KL, en aldan foo moetmé gelijck int 3 liditghefeyt is, Saturnusalijit bevinden inden duyferact fonder breede, tot wat plaers des inronss hy oock wefen mocht: Ende op fulcke fpiegheling heeft Potemens fijn voorttellen, tafelen en rekeninghen ghemaeckt, welcke ick na mijn fiil beichreven hadde, op dattet anderen tot hulp mochte frrecken die na beter fpiegheling trachten wilden, maer daer na ghevonden hebbendet'gene ick meen uyr kennis der oiffaken te commen, ghelijck ick dat int volgende befchrijven fal, heb fulcx onghedruckt ghelaten, ghenouch achiende de eyghen-

Cc 2 ichap-
angles $A C D, B C E$ denote the deviations of the orbit. And about its most northerly point $D$ as centre has been described the epicycle $F G$, almost parallel to the ecliptic $A B$, whose perigee is $G$, apogee $F$, from which have been drawn the two lines GC, FC ${ }^{1}$ ). I have here said "almost parallel", because the difference is very small, only $2^{\circ} 4^{\prime}$, for he calculated the angle $A C D$ to be $2^{\circ} 26^{\prime}$, and $C D G$ to be $4^{\circ} 30^{\prime}$, which two angles would have to be equal for perfect parallelism. The above-mentioned circles are all understood to be seen transversely, as has been said of the ecliptic. Further, when Saturn was at the epicycle's perigee $G$, its apparent deviation from the ecliptic, i.e. the angle $A C G$, was found at most to be $3^{\circ} 2^{\prime}$, as has been said in the 1st section. But when it was outside the perigee, I assume in front of $D$ or at $F$; its Northerly deviation was for that case smaller, and smallest when it was at the apogee $F$, for the angle $A C F$ is smaller than $A C D$. But to give a similar explanation also for the South side, let there be described about the orbit's extremity $E$ as centre the epicycle $H I$, also almost parallel to the ecliptic $A B$, whose perigee is $H$, apogee $I$, from which have been drawn the two lines HC, IC. Further, when Saturn was at the epicycle's perigee $H$, its deviation from the ecliptic, i.e. the angle $B C H$, was found to be at most $3^{\circ} 5^{\prime}$, as has been said in the 2nd section, but when it was outside the perigee, I assume in front of $E$ or at $I$, its Southerly deviation was for that case smaller, and smallest when it was at the apogee, for the angle $B C I$ is smaller than $B C E$.

These two properties of the deviation when the epicycle is at the extremities $D, E$ thus having been described, we now come to the explanation of the cause of the properties described in the 3 rd section, to wit, when it is between the two. Ptolemy is of opinion that when the epicycle moves from $D$ to the nodes, meanwhile it always remains almost parallel to the ecliptic, to wit, so moderately that when the epicycle $F G$ is in front of $C$, its plane is always altogether in the plane of the ecliptic, as at $K L$, and in that case, as has been said in the 3rd section, Saturn must always be found in the ecliptic without any latitude, no matter in what place of the epicycle it may be. And on this theory Ptolemy has based his propositions, tables, and calculations, which I had described in my own manner, in order that it might help others, who wanted to find a better theory. But since after that I found what in my opinion results from knowledge of the causes, as I shall describe in the following pages, I have left it unprinted, considering it sufficient that the properties of the first experiences, observed by Ptolemy

[^40]fchappen der eerfte ervaringhen deur ptolemess met feltfaem yver en neerficheyt gagheflagen, int gemeen aldus verclaert te wefen, en daer mete commen tottevoorghenonaen feicgheling ghegront op ftelling eens rocrenden Eertcloots. T'beslvy T. Wy hebben dan befchicven Pojlemeus dadelicke ervaringhen van Saturnus ichijnbaer deyferaerbreeden, dienende om daer uy: gemeene reghel te trecken van lijn breedeloopseyghenfchappen, na den eyich.

## ${ }_{2} 1$ VOORSTEL.

Tevinden de vvechlangden der tvvee punten van Saturnusvvechs fchijnbaer groottte afvvijckingen vanden duyfteraer, metfgaders de cortfte verheden vanden Eertclootvvech totte felve tvveepunten. Oock me de langde der heele lini vant cen punt dier grootfte afvvijcking totter ander, in fulcke deelē alffer des Eertclootvvechs halfmiddellijn 10000 doet, deurvvifconftighe vverckinggegrontop ftelling eens roerenden Eertcloots.
T'ghegheven. Laet A B C D Saturnuswech betcyckenen, diens middelpunt $E$, des eertclootwechs middelpunt $F$, waer op befchreven is den Eert.

cloot.
with exceptional zeal and diligence, had thus been explained generally and that thus I had come to the intended theory based on the theory of a moving Earth. CONCLUSION. We have thus described Ptolemy's practical experiences of Saturn's apparent ecliptical latitudes, serving to derive therefrom a common rule for the properties of its motion in latitude; as required.

## 21st PROPOSITION.

To find the orbital longitudes of the two points of the apparently greatest deviations of Saturn's orbit from the ecliptic, as well as the shortest distances from the Earth's orbit to these two points; also the length of the whole line from the one point of that greatest deviation to the other, in such parts as the semi-diameter of the Earth's orbit has 10,000, by mathematical operations based on the theory of a moving Earth.

SUPPOSITION. Let $A B C D$ denote Saturn's orbit, whose centre is $E$, the centre
clootwech GH, en ghetrocken deur de twee punten $F$ E Saturnuswechs middellijn A C, foo is A tverftepunt, weiende onder des duyfteraers 233 tr. deur het 13 voorftel defes 3 boucx, ende want deur het i lide des 20 voorftels, Saturnus groorfte Noorderfche afwijcking gebeurde als hy fehijnbaerlick was sotr. voor des duylteraers 233 tr. foo rreck ick deur ipunt Fde lini LF D, fniende den Eertclootwech in I en K, foo dat den houck A F D doe de felve sotr.en fullen daer me Den B fijn de twee punten van Saturnuswech daer hy fchijnbaerlick in fijn grootfte afwijckinghen vanden duy fteracr can gefien worden, endat uyt de punten $K$ en I.

T'begheerde. Wy mocten vinden de wechlangde dertwee punten $B$ en D, dat fijn de twee boghen A B en A B D, voort de cortfte twee verheden $K D, 1 B$, vanden Eertclootwech totte felve twee punten, oock me de langde der heele lini vant cen punt dier grootte afwijeking tottet ander, in fulcke dee. len alifer des Eertclootwechs halfmiddellijn 10000 doet.

T'bereytsel. Laet gherrockenfijate E, ED.

> T'W ERCK.

De drichouck EF D heeft drie bekende palé,te wetē de uytmiddelpunticheytlijn EF 5256, des wechs halfmiddellijn E D 92308 deur de Byeenvouging van het 13 voorftel defes 4 boucx, en den houc E F D sotr.deur t'gegevẽ:Hier me gefocht dē houck E DF, wort bevonden deur het $s$ voorftel der platte driehoucken van
Welcke vergaert totten houck A F D sotr. deur t'ghegheven, comt voor den houck A E D of booch A D
Maer t'vertepunt A is t'begin des wechs, daerom A D 52 tr. 30 (1) ghetrocken vant heel ront 360 tr. blijft voor de begeerde wech. langde van t'punt der fchijnbaer grootfte uyterfte Noorderfche afwijcking $D$, dats den booch A B D
Ende de fijde FD wort bevonden van 95610 , waer af getrocken des Eertclootwechs halfmiddellijn F K 10000, blijft voor de begeerdecortfe verheyt K D vanden Eertclootwech tottet punt der fchijnbaer grootfe Noorderfche afwijcking D
Ende fghelijcx gedaen metten driehouck EF $\mathrm{B}, \mathrm{foo}$ wort den houck E B F bevonden van
Welcke ghetrocken vanden houck BFC sotr. (als even fijnde met haer teghenoverhouck AF D) blijft voor den houck C E B
Defelvegherrocken vant halfront A:BC, blijft voor de begheerde wechlangde vä t'punt der fchijnbaer grootfte Zuyderfche afwijcking $B$,dats de booch A B
Ende de fijde F B wort bevonden van 88849 ,waer af ghetrocken des Eertclootwechs halfmiddellijn F I 10000, blijft voor de begeerde cortfte verheyt I B, vanden Eertclootwech tottet punt der fchijabaer groottte Zuyderiche afwijcking B
En om te hebben de langde der heele lini B D, t 'is kennelick dat die deur de drie deelen B I 78849, IK 20000, en K D 85610, t'famen bevonden wort voor t'begheerde van
184459.

Waer af t'bewijs deurt'werck openbacris. T'besty y t. Wy hebben dan ghevonden de wechlangden der twee punten van Saturnuswechs fehijnbaer grootte afwijckingen vandē duyfteraer, metfgaders de cortfte verhedë vanden Eertclootwech totte felve twee punten, oock me de langde der heele lini vant Cc 3 ecs
of the Earth's orbit $F$, about. which has been described the Earth's orbit GH; and when through the two points $F, E$ is drawn the diameter of Saturn's orbit $A C, A$ is the apogee, which is at $233^{\circ}$ of the ecliptic by the 13 th proposition of this 3rd book. And because by the 1st section of the 20th proposition Saturn's greatest Northerly deviation occurred when it was apparently at $50^{\circ}$ before $233^{\circ}$ of the ecliptic, I draw through the point $F$ the line $B F D$, intersecting the Earth's orbit in $I$ and $K$, so that the angle $A F D$ shall make the said $50^{\circ}$; then $D$ and $B$ will be the two poiats of Saturn's orbit where it can apparently be seen in its greatest deviations from the ecliptic, such from the points $K$ and $I$.

WHAT IS REQUIRED. We have to find the orbital longitudes of the two points $B$ and $D$, i.e. the two arcs $A B$ and $A B D$, further the two shortest distances $K D, I B$ from the Earth's orbit to these two points; also the length of the whole line from the one point of that greatest deviation to the other, in such parts as the semi-diameter of the Earth's orbit has 10,000 .

PRELIMINARY. Let there be drawn $E B, E D$.

## PROCEDURE.

The triangle EFD has three known terms, to wit, the line of eccentricity $E F$ $=5,256$, the orbit's semi-diameter $E D=92,308$ by the Compilation of the 13 th proposition of this 3 rd book 1 ), and the angle $E F D=50^{\circ}$ by the supposition. When the angle $E D F$ is sought therewith, this is found, by the 5 th proposition of plane triangles 2 ), to be

When this is added to the angle $A F D=50^{\circ}$ by the supposition, the angle $A E D$ or arc $A D$ becomes

But the apogee $A$ is the beginning of the orbit, therefore when $A D=$ $52^{\circ} 30^{\prime}$ is subtracted from the whole circle $=360^{\circ}$, there is left for the required orbital longitude of the point of the apparently greatest extreme Northerly deviation $D$, i.e. the arc $A B D$,

And the side $F D$ is found to be 95,610 , and when from this is subtracted the semi-diameter of the Earth's orbit $F K=10,000$, there is left for the required shortest distance $K D$ from the Earth's orbit to the point of the apparently greatest Northerly deviation $D$

And when the same is done with the triangle $E F B$, the angle $E B F$ is found to be

When this is subtracted from the angle $B F C=50^{\circ}$ (as being equal to its opposite angle $A F D$ ), there is left for the angle $C E B$

When this is subtracted from the semi-circle $A B C$, there is left for the required orbital longitude of the point of the apparently greatest Southerly deviation $B$, i.e. the arc $A B$,

And the side $F B$ is found to be 88,849 , and when from this is subtracted the semi-diameter of the Earth's orbit FI $=10,000$, there is left for the required shortest distance $I B$, from the Earth's orbit to the point of the apparently greatest Southerly deviation $B$,

And in order to have the length of the whole line $B D$, it is obvious that by the addition of the three parts $B I=78,849, I K=20,000$, and $K D=85,610$, this required value is found to be
$132^{\circ} 30^{\prime}$

78,849

184,459

[^41]een punt dier grootfe afwijcking tottet ander, in fuilcke declen alfer des Eertclootwechs halfmiddellijn 10000 doet, deur wifconttighe wercking ghegront op Itelling eens roerenden Eertcloots, na den eyfch.

## 22 VOORSTEL.

Tevinden Saturnusvvechs afvvijcking vandẽ duyfteraer. Metfgaders hoe verre de duyfteraerfine van des Eerrclootvvechs middelpunt valt, in fulcke deelen alffer des Eertclootvvechs halfmiddellijn 10000 doet, deur vvifconftighe vvercking ghegront op ftelling eens rocrenden Eertcloots.

T'ghegheven. Lact de liniA B den Eertclootwech bedien overcant ghefien, die ick even teycken an des Eertclootwechs middellijn I K inde form
 des 21 voorftels, C fy tmiddelpunt, daer na treck ick defe D E, even met die DB inde felve form des 21 voorftels, doēde 1844959 , en defc C D evé met die $F$ D, defe C E cven met die FB,en friende defe twee linien makander in of ontrent $C$, fulcx dat dē houck der afwijcking dier twee platren is AC D,en A D fy de lini vanden Eertcloor an $A$, totSaturnuswechsuyterfte noortiche punt der awijcking doēde deur het 21 voorttel 8 s 610 , wefende daer de lini K D : Sgelijcx fy B E de lini vanden Eertcloot an B,tot Saturnuswechs uyterAe zuytfche punt der afwijcking $E$, docnde deur het felve 21 voorttel 78849 , welcke daer beteyckent is met $F$ B,daer na $A B$ an weder fijden verlangt wefende tot Fen G, foo fijn A Fen B G int plat des duyfteraers, en Saturnusmeette noorderfche breede fy de houck F A D, doende deur her $s$ lide des 20 voorftels 3 tr. 2 (1), maer fijn meette zuyderfche breede dé houck G B E, doende dcur het 2 lidt des 20 voorflels 3 tr. $s$ (1).

T'begeerde. Wy mocten vinden Saturnuswechs afwijeking vander duyteraer, dats de houck A C D, met fgaders hoe verre de duyfleracrfne van des Eericlootwechs A B middelpunt $C$ valt.

## T' W ERCK.

De cruyfvierhouck A B D E hecft vijfbeken. de palen, re weten de fijde A B middellijn des 'Eertclootwechs accoodeur t'gheftelde: Boven dien foo doet deur t'ghegheven A D 85610, B E 78849 , den houck D A B 176 tr. 58 (1), want foo veel blijfter alfmen treckt EAD 3 tr. 2 (1), vant halfront, en den houck E B A 176 tr. ss (1), want foo veel blijfter

The proof of which is evident from the procedure..CONCLUSION. We have thus found the orbital longitudes of the two points of the apparently greatest deviations of Saturn's orbit from the ecliptic, as well as the shortest distances from the Earth's orbit to these two points; also the length of the whole line from the one point of this greatest deviation to the other, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by mathematical operations based on the theory of a moving Earth; as required.

## 22nd PROPOSITION.

To find the deviation of Saturn's orbit from the ecliptic, as well as how far the line of nodes is from the centre of the Earth's orbit, in such parts as the semi-diameter of the Earth's orbit has 10,000, by mathematical operations based on the theory of a moving Earth.

SUPPOSITION. Let the line $A B$ denote the Earth's orbit, seen transversely, which I draw equal to the diameter of the Earth's orbit $I K$ in the figure of the 21 st proposition; let $C$ be the centre. Thereafter I draw this $D E$ equal to that $D B$ in the said figure of the 21st proposition, making $1,844,959$, and this $C D$ equal to that $F D$, this $C E$ equal to that $F B$, and these two lines intersecting each other in or about $C$, so that the angle of the deviation between those two planes is $A C D$, then $A D$ shall be the line from the Earth at $A$ to the extreme northerly point of the deviation of Saturn's orbit, making by the 21st proposition 85,610, which there is the line $K D$. In the same way let $B E$ be the line from the Earth at $B$ to the extreme southerly point of the deviation of Saturn's orbit $E$, making by the said 21 st proposition 78,849 , which is there denoted by $F B$. Thereafter, $A B$ being produced on either side to $F$ and $G, A F$ and $B G$ are in the plane of the ecliptic, and Saturn's greatest northerly latitude shall be the angle $F A D$, making by the 1 st ${ }^{1}$ ) section of the 20th proposition $3^{\circ} 2^{\prime}$, but its greatest southerly latitude the angle GBE, making by the 2nd section of the 20 th proposition $3^{\circ} 5^{\prime}$.

WHAT IS REQUIRED. We have to find the deviation of Saturn's orbit from the ecliptic, i.e. the angle $A C D$, as well as how far the line of nodes is from the centre $C$ of the Earth's orbit $A B$.

## PROCEDURE.

The crossed quadrilateral $A B D E$ has five known terms, to wit, the side $A B$ (the diameter of the Earth's orbit) $=20,000$ by the supposition; moreover, by the supposition $A D$ makes $85,610, B E 78,849$, the angle $D A B 176^{\circ} 58^{\prime}$, for that is what is left when $F A D=3^{\circ} 2^{\prime}$ is subtracted from the semi-circle, and the angle $E B A=176^{\circ} 55^{\prime}$, for that is what is left when $G B E=3^{\circ} 5^{\prime}$ is subtracted

[^42]blifferalfmen treckt $G B E 3$ tr. $s$ (1) vant halfront: Merat noch dat benevens de bovelchreven vijf bekende palen, tot meerder gerief bekent fijn drie ander, te weten DE lini tuffchen de twee punten der uyterfte breeden van Saturnus, doende deur het 21 voorftel defes 3 boucx 1844959 , de lini A E 98849 , als evé ghenouch fijnde met A B 2 coco, en B E 78849 tfamen : Voort de lini B D 109610, als even genouch fijnde met A B 20000, en A D 85610tiamen: Hier meghefocht den houck $A C D$, wort bevonden deur het 6 voorftel inde Byvough der plate veelhoucken voor Saturnuswechs begeerde afwijcking vanden duyfteraer 2 tr. 43 (1), waer voor Ptolemeus int 3 Hoofiftick fijns 13 boucx al taftende vandt 2 tr. 26 (1).

Angaende de verheyt der duyfteraerfne van des Eertclootwechs middelpunt C, fy wort ghenouchfaem bevonden daer in te vallen, want onder verfcheyden neminghen der palen daer t'werck deur gedaen can worden, fooviel my deur deghene die ick nam den houck A D C van 19 (1), waer me des driehoucx D A C drie bekende palen, te weten de twee houcken A D C, D C A, en de fijde A D my uyibrochten de lini A C van 10294, 'twelck te veel is 294, want om volcommen te wefen foudet fj j 10000, maer t'fchilt foo weynich dat nemende voor den houck A DC 18 (1), in plaets van 19 (1) als vooren, foo comt dan voor AC9732, twelck 268 weynigher is dan de volcommenheyt vereyfcht, fulcx darment daer voor houden mach de duyfteraerfae re vallen deur des Eertcloowechs middelpunt C, overeencommende mette rekening die Ptolemeus op fijn fpiegheling ghemaeckt heeft, aldaer vallende deur den vaften Eertcloor; want de felve in die ftelling fulcx wat is als des Eertclootwechs middelpunt inde hare, ghelijck ick int 18 voorfel defes 3 boucx dact af wat verclaring ghedaen heb.

Merckt noch dat ander manier van wercking dan de voorgaende machgedaen worden, met eerft te vinden de lini C D (dat is van des Eertclootwechs middelpunt tot Saturnus ter ghegheven plaets fijns wechs) deur het 6 lidt des is voorftels defes 3 boucx, want die bekent fijnde, foo heeft den driehouck A D C drie bekende palen, te weten benevens die CD noch de lini A D,en dé houck $A C D$, waer me d'ander onbekende palen ghevonden worden.

T'bes LVY T. Wy hebben dan gevonden Saturnuswechs afwijcking vanden duyfteraer: Metfgaders hoe verre de duyfteraerfne van des Eertclootwechs middelpunt valt, in fulcke deelen alfer des Eertclootwechs halfmiddellijn . 10000 doet , deur wifconitighe wercking ghegront op ftelling eens roerenden. Ecrtcloots, naden eyfch.

## MERCK INHOVDENDE VERclaring dat Saturnus breedeloop feker ghetuychnis gheff frant roerjeldes Eertcloots.

Alfmen met ftelling eens vaften Eertcloots feghtSaturnus inronts middel. punt te wefen ande duyfteraerfne, foo bevintmen hem metter daet altijt int plat des duyfteraers fonder breede, tot wat plaets hy oock int intont fijn mocht deur het 3 lidt des 20 voorftels, t'welck voor een wonder gehouden fijnde, fo heeft Ptolemeus daer toe verdocht fulcke fiegheling als befchreven is int felve 20 voorthel, maer met defe ftelling eens roerendẽ Eertcloots fietmẽ alles nootfakelick te moeten volghen uyt de eenvoudighe draeying van Saturnus hemel op haer as, fonder yet nieus of vreemis daer by te moeten verfieren, en datmen fich met reden verwonderen mocht,fooment anders bevonde, want commen-

> Ccs
de by
from the semi-circle. Note also that besides the above-mentioned five known terms for greater convenience three more are known, to wit, $D E$, the line between the two points of the extreme latitudes of Saturn, making by the 21st proposition of this 3rd book $1,844,959$, the line $A E=98,849$, as being sufficiently equal to $A B=20,000$ and $B E=78,849$ together. Further the line $B D=105,610$ as being sufficiently equal to $A B=20,000$ and $A D=85,610$ together. When the angle $A C D$ is sought therewith, by the 6th proposition in the Supplement of plane polygons ${ }^{1}$ ) there is found for [it, i.e. for] the required deviation of Saturn's orbit from the ecliptic $2^{\circ} 43^{\prime}$, for which Ptolemy in the 3rd Chapter of his 13 th book tentatively found $2^{\circ} 2^{\prime} \sigma^{\prime}$.

As to the distance of the line of nodes from the centre of the Earth's orbit C, it is found substantially to fall therein, because among several assumptions of the terms by means of which the operation can be performed I found among those I took the angle $A D C$ equal to $19^{\prime}$, by means of which the three known terms of the triangle $D A C$, to wit, the two angles $A D C, D C A$ and the side $A D$, yielded me the line $A C=10,294$, which is 294 too much, for in order to be perfect it would have to be 10,000 ; but the difference is so small that, taking the angle $A D C$ equal to $18^{\prime}$ instead of $19^{\prime}$, as above, I get $A C=9,732$, which is 268 less than perfection requires; so that it may be assumed that the line of nodes falls through the centre of the Earth's orbit $C$, which corresponds to the calculation performed by Ptolemy on the basis of his theory, where it falls through the fixed Earth, for the latter in that theory is the same as the centre of the Earth's orbit is in this theory (of the moving Earth), as I have explained in the 18th proposition of this 3rd book.

Note also that another method of operation than the preceding one may be used by first finding the line $C D$ (i.e. from the centre of the Earth's orbit to Saturn at the given point of its orbit) by the 6th section of the 15 th proposition of this 3rd book, for when that is known, the triangle $A D C$ has three known terms, to wit, besides the said $C D$ also the line $A D$ and the angle $A C D$, by means of which the other unknown terms are found.

CONCLUSION. We have thus found the deviation of Saturn's orbit from the ecliptic, as well as how far the line of nodes falls from the centre of the Earth's orbit, in such parts as the semi-diameter of the Earth's orbit has 10,000 , by mathematical operation based on the theory of a moving Earth; as required.

## NOTE

consisting in a statement that Saturn's motion in latitude furnishes certain evidence of the motion of the Earth.
When it is said on the theory of a fixed Earth that the centre of Saturn's epicycle is in the line of nodes, it is indeed always found in the plane of the ecliptic without any latitude, no matter in what place it may be on the epicycle, by the 3 rd section of the 20th proposition; and because this was considered a wonder, Ptolemy devised for it the theory that has been described in the said 20th proposition; but with the present theory of a moving Earth it is seen that everything must necessarily follow from the simple rotation of Saturn's heaven about its axis, without anything new or strange having to be invented; and that one would

[^43]
## Vande Breedeloop

de by voorbeelt ghefeyt, Saturnus van E tot dat hy is ande dayfteraerfae voor C, foo is hy dan int plat des duyfteraers, en wantter den Eertcloor nummermeer buyten en loopt, foo volght daer uyt dat tot wat plaets haers wechs cien felven Eertcloot dan is, fooen can Saturnus van dacr niet dan inden duytteraer ghefien worden : En is onder anderen hier mee het roerfel des Eertcloots foo openbaer, datment by de ghene dict ontkennen, voor ghebrect. van ervarentheyt houden mach.

## ${ }_{23}$ VOORSTEL。

Te vinden de vvechlangde der twyee uyterftepunten vande duyfteraerfne, en vande twvee uy terfte punten der afvvijcking in Saturnusvvech, oock der lini die vã Saturnusvvechis middelpunt op de duyfteraerfne rechthouckich valt in fulcke deelen alffer des Eertclootv vechs halfmiddellijn 10000 doet, deur vvifonftige vercking ghegront op felling eenstoerenden Eertcloots.

Toghegheyen. Anghefien ick oan mija voornemen wel te verclaren hier foude mocten verteyckenen de form des 21 voortels, om daer noch by te vervougé t'genc in dit vooftel vercyfcht is, foo fal ick de voorfchrevé form des 2: voorttels felf daer toe gebruyckē, : ot welcken einde ick aldus fegh : Nadiert de duyfteracrfne deur des Eertclootwechs middelpunt Areckt, volgenst'inhour. des 22 voorflels, foo treck ick inde form vant 21 voorfle! deur des Fertclootwechs middelpunt $F$ de lini L M, ais duyhteracrfne rechthouckich op D B , van wiens :wec uyterfte punten $L, M$, ick treck de wee linien L Een M E: Treck daer na deur t'punt E Saturnuswechs middellijn N O evewijdeghe met D B, enfiniende L MinP. Tbegheerde. Wy moeten vinden de wechlangden van $L$, $M$, wefende de twee uyterfte punten vande duyfteraerfne $L M$; Sghelijcx de wechlangde van $\mathbf{N} O$, wefende de uyterte panten der afwijekingin Sa. turnuswech, ende E P langde der lini die van Saturnuswechs middelpunt E op de duy!taaerfee L Mrechrhouckich comt.

## TVERCK.

Vanden rechthouck LFD doende 90 tr. ghetrocken dein houck AF D, doende deur het $I$ lidt des 20 voorttels 50 tr, blijft voor
den. houck LFE
Dedrichonck L F E heefi die bekende palen, te weten LEals halfmiddellijn des wechs 92308 , de uytmiddelpunticheytlijn E F 5255 deur her Byeeuvoughfel vant 13 voorftel defes 3 boucx, en den houct L F E 40 tr. eerfe in d'oirden: Hier me ghelocht den houck FI. E, woit bevonden deur het $s$ veorfel der platte diehoucken van

40 t.

2 tr. 6.
Welcke verzaent tette 40 tr des houcx L FE, comt voor den houck A EL, of hrooci A L, als begheerde wechlangde vant een punt derduyferaetho $L$

42 Ir. 6

Maeronis te vindé de wechlangde vant ander punt $M$, $x$ 'is kenaelick dea houck $F M E$, even te wefen metten houck $F I, E$, en te doen als die
wonder with reason if one found it otherwise, for when e.g. Saturn moves from $E$ until it is in the line of nodes in front of $C$, it is in the plane of the ecliptic, and because the Earth never moves outside it, it follows that no matter in what place of its orbit the said Earth then is, Saturn cannot thence be seen anywhere but in the ecliptic. And from this, among other reasons, the motion of the Earth is so evident that those who deny it are to be considered lacking in experience.

## 23rd PROPOSITION.

To find the orbital longitudes of the two extremities of the line of nodes, and of the two extremities of the deviation in Saturn's orbit, also of the line which from the centre of Saturn's orbit is dropped perpendicular to the line of nodes, in such parts as the semi-diameter of the Earth's orbit has. 10,000, by mathematical operations based on the theory of a moving Earth.

SUPPOSITION. Since in order to explain my intention properly I should have to draw anew the figure of the 21 st proposition and add thereto what is required in the present proposition, I will use the aforesaid figure of the 21st proposition itself, to which end I say as follows: Since the line of nodes passes through .the centre of the Earth's orbit, according to the contents of the 22nd proposition, I draw in the figure of the 21st proposition, through the centre of the Earth's orbit $F$, the line $L M$ as the line of nodes at right angles to $D B$, from whose two extremities $L, M$ I draw the two lines $L E$ and $M E$. I then draw through the point $E$ the diameter of Saturn's orbit NO parallel to $D B$ and intersecting $L M$ in $P$. WHAT IS REQUIRED. We have to find the orbital longitudes of $L, M$, which are the two extremities of the line of nodes $L M$; also the orbital longitudes of $N, O$, which are the extremities of the deviation in Saturn's orbit, and $E P$, the length of the line which from the centre of Saturn's orbit $E$ is dropped perpendicular to the line of nodes $L M$.

## PROCEDURE.

When from the right angle $L F D$, making $90^{\circ}$, is subtracted the angle $A F D$, making by the 1 st section of the 20 th proposition $50^{\circ}$, there is left for the angle $L F E$

The triangle $L F E$ has three known terms, to wit, $L E$ (as the semidiameter of the orbit) $=92,308$, the line of eccentricity $E F=5,256$ by the Compilation of the 13th proposition of this 3rd book, and the angle $L F E=40^{\circ}$ (the first in the present list); when the angle FLE is sought therewith, it is found by the 5 th proposition of plane triangles ${ }^{1}$ ) to be

When this is added to the $40^{\circ}$ of the angle $L F E$, I get for the angle $A E L$ or arc $A L$, as the required orbital longitude of the one point of the line of nodes $L$,

But in order to find the orbital longitude of the other point $M$, it is obvious that the angle $F M E$ is equal to the angle $F L E$ and, like the latter, makes $2^{\circ} 6^{\prime}$; when this is subtracted from the angle CFM which, being the opposite angle to $L F E=40^{\circ}$ (the first in the present list), has the same value, there is left for the angle FEM, that is also CEM, or for the arc $C M, 37^{\circ} 54^{\prime}$. When this is added to the semi-circle $A B C=180^{\circ}$, the required orbital longitude of the point $M$ is

[^44]
## DER DVVAELDERS.

als die $2 \operatorname{tr} .6$ (1), defelve ghetrocken vanden houck CF $M$, die als reghenoverhouck van LF E 40 tr. eerfte in d'oirden oock $f 00$ vecl doet, blijft voor den houck FE M, dats oock C E M , of voor de booch $\mathrm{C}_{3} \mathrm{~m}_{\mathrm{tr}}$. 54 (1) : De felve vergaert totter halfrondt ABCI 80 tr, comt voor begheerde wechlangde des punts $M$
Maer om nu te vinden de wechlangde vande twee uytertte punten der afwijcking in Saturnuswech C,(t'welck om bekende redenen niet en fijn de twee puptē B, D,hoewel Saturnus daer uyt dē Eertcloot inde aldergroorfte fchijnbaer duytteraerbreede can ghefien wordē, maer $\mathbf{N}, \mathbf{O}$ ) ick fegh aldus: A ngefien dē houck E DF doet deur het 21 voorttel 2 tr . 30 (1), en dar dē houck N E Devé is an ED F,om dat ED is tuffehen detwee evewijdegen E N,F D, foo doct dè houck E N D, of de booch D N oock 2 tr. 30 (1), die vergaert totte wechlangde des punts $D$, doende deur het 21 voorttel 307 Ir. 30 (I), comt voor beghecrde wechlangde des punts $N$
Ende Oteghenoverpunt van dien moet fijn in des wechs

310 tr.
1 Otr.

Om nu te vinden de lini E P, foo heeft daer toe den drichouck E LP drie bekende palen, te weten de halfmiddellijn EL 92308 deur de Bycenvougingh van het 13 voortel defes 3 boucx, den houck ELP 2 tr. 6 (J) tweede in d'oirden, en den houck EPL recht: Hicr me ghefocht de fijde EP, wort bevonden deur het 4 voorftel der platte drichoucken voor begheerde lini van 3378.

Waer af t'bewijs deur twerck openbaeris. T'beslvyt. Wy hebben dan ghevonden de wechlangde der twee uyterfie punten vande duyfteraerfne, en vande twee uyterfe punten der afwijeking in Saturnuswech, oock der linidie vā Saturnuswechs middelpunt op de duyfteraerfne rechthouckich valt, in fulcke deelen alfer des Eertclootwechs halfniddellijn ro000doet, deur wifconftighe wercking ghegront op felling eens roerenden Eertcloots, na den eyfch.

## VERVOLGH.

T'iskennelick dat Saturnus in fijn wech vanden 42 tr. 6 (1) derde in d'oirden, dats inde form des 21 voorftels van L over B tot $M$, altijt Zuyderlick moet wefen, maer vanden 217 tr . 54 (1) vierde in d'oirden, totten 42 tr .6 (1), dats van M over $A$ tor $L$ altijt Noorderlick: Om twelck noch opentlicker te verclaren, merckt dat de voorfchreven booch van $I$ over $B$ tot $M$ doende 217 tr. 54 (1), inde form des 22 voortels anghewefen is deur de lini CF, waer me t'felve rontfdeel L B M beteyckent wort overcant ghefien te wefen : T'weldk foo fijnde,Saturnus en can in C E der form des 22 voorftels tot fulcken placts niet wefen, dat hy ghefien uyt den Eertcloot tot wat plaets die oock in haer wech A B mocht wefen, anders verfchijne dan op de Zuytfijde des duyfteraers F G: En fghelijcx en can hy int deelC D der form des 22 voorftels (beteyckenende het boveíhhreven rontfdeel MA L der form des 22 voortels) tot fulckë plaets niet wefen, dat hy ghefien uyt den Eertcloot, tot wat placts die oock in haer wech A B mocht wefen, anders verfchijne dan op de Noortfijdedes duyfieracrs FG.

## 24 VOORSTEL.

Te vinden de langde der lini die van een gegeven punt in Saturnusveech rechthouckich valtopt plat desduyfleraers

But in order now to find the orbital longitudes of the two extremities of the deviation in Saturn's orbit $C$ (which for known reasons are not the two points $B, D$, though Saturn can there be seen from the Earth at the greatest apparent ecliptical latitude, but $N, O$ ), I say as follows: Since the angle EDF by the 21st proposition makes $2^{\circ} 30^{\prime}$, and the angle $N E D$ is equal to $E D F$, because $E D$ is situated between the two parallel lines $E N, F D$, the angle $N E D^{1}$ ) or the arc $D N$ also makes When this is added to the orbital longitude of the point $D$, which by the 21 st proposition makes $307^{\circ} 30^{\prime}$, the required orbital longitude of the point $N$ becomes
$2^{\circ} 30^{\prime}$.

And $O$, the opposite point thereto, must be in the orbit at
In order now to find the line $E P$, the triangle $E L P$ has three known terms, to wit, the semi-diameter $E L=92,308$ by the Compilation of the 13th proposition of this 3 rd book, the angle ELP $=2^{\circ} 6^{\prime}$ (the second in the present list), and the angle EPL right. When the side $E P$ is sought therewith, the required line is found, by the 4 th proposition of plane triangles ${ }^{2}$ ), to be

The proof of which is evident from the procedure. CONCLUSION. We have thus found the orbital longitudes of the two extremities of the line of nodes, and of the two extremities of the deviation in Saturn's orbit, also of the line which from the centre of Saturn's orbit is dropped perpendicular to the line of nodes, in such parts as the semi-diameter of the Earth's orbit has 10,000, by mathematical operations based on the theory of a moving Earth; as required.

## SEQUEL.

It is obvious that Saturn in its orbit from longitude $42^{\circ} 6^{\prime}$ (the third in the present list), that is in the figure of the 21st proposition from $L$ via $B$ to $M$ (i.e. to $217^{\circ} 54^{\prime}$ ), must always be on the South side, but from longitude $217^{\circ} 54^{\prime}$ (the fourth in the present list) to longitude $42^{\circ} 6^{\prime}$, that is from $M$ via $A$ to $L$, always on the North side. In order to explain this even more plainly, note that the aforesaid arc from $L$ via $B$ to $M$, making $175^{\circ} 48^{\prime 3}$ ), in the figure of the 22nd proposition is designated by the line $C E 4$ ), by which this part of the circle $L B M$ is denoted to be seen transversely. This being so, Saturn cannot in $C E$ of the figure of the 22 nd proposition be in such a place that, when seen from the Earth - no matter in what place the latter may be in its orbit $A B$ it appears anywhere but on the South side of the ecliptic $F G$. And in the same way, in the part $C D$ of the figure of the 22nd proposition (denoting the abovementioned part of the circle $M A L$ of the figure of the 21 st proposition) it cannot be in such a place that, when seen from the Earth - no matter in what place the latter may be in its orbit $A B$ - it appears anywhere but on the North side of the ecliptic $F G$.

## 24th PROPOSITION.

To find the length of the line which from a given point in Saturn's orbit is dropped perpendicular to the plane of the ecliptic, in such parts as the semi-

[^45] middellijn 1000 doet, deur vvifconftighe vverckinggegront op felling eens rocrenden Eertcloots.

T' ghegheven. Laet ABCDSaturnushemel fijn, diens middelpunt E,waer deur gherrocken is de rechte BED (van gedaente als N E O inde form des 21 voorftels) beteyckenende Saturnuswech overcant gefien, daer in t'punt


Ffy de duyfteraerfne oock overcant ghefien, foo dat EF (even an EPint 2 I voorftel) is de lini die van Saturnuswechs middelpunt op de duyfteraerfne rechthouckich comt, doende deur het 23 voorftel 3378 , daer na gherrocken deuri'punt $F$ de rechte A F C, bediende iplat des duyfteraers overcant ghefien, ende den houck B F A , wefende de afwijcking des wechsvan t'plat des duyfteracrs doet deur het 22 voorftel defes 3 boucx 2 tr. 43 (1). T'W ERCK.

## 1 VCORBEEIT.

Ghenomen ten eerften dat hier inghevonden moet fijn de langde der lini $B G$, die van des wechs meefte afwijcking $B$, rechthouckich valt opt plat des duyferaers A C. Omdaer toe te comment ick fegh des wechs halfmiddellijn E B te doen 92308 deur het Byeenvoughfel vant 13 voorftel defes 3 boucx, en FE 3378 deur ighegheven, welcke vergaert maken t'famen 95686 voor de lini F B, waer me de driehouck B F G drie bekende palen heeft, te weten de fijde
diameter of the Earth's orbit has 10,000 , by mathematical operations based on the theory of a moving Earth.

SUPPOSITION. Let $A B C D$ be Saturn's Heaven, whose centre is E , through which has been drawn the straight line BED (of the same character as NEO in the figure of the 21st proposition), designating Saturn's orbit, seen transversely, wherein the point $F$ shall be the line of nodes, also seen transversely, so that $E F$ (equal to EP in the 21st proposition) is the line which from the centre of Saturn's orbit is dropped perpendicular to the line of nodes, by the 23rd proposition making 3,378. Thereafter through the point $F$ is drawn the straight line $A F C$, denoting the plane of the ecliptic seen transversely, and the angle $B F A$, which is the deviation of the orbit from the plane of the ecliptic, by the 22 nd proposition of this 3 rd book makes $2^{\circ} 43^{\prime}$.

PROCEDURE.
1st EXAMPLE.
Let it firstly be assumed that in this has to be found the length of the line $B G$, which from the greatest deviation of the orbit $B$ is dropped perpendicular to the plane of the ecliptic $A C$. In order to come to this, I say that the semidiameter of the orbit EB makes 92,308 by the Compilation of the 13th proposition of this 3rd book, and FE 3,378 by the supposition, which when added together make 95,686 for the line $F B$, so that the triangle $B F G$ has three known terms, to wit, the side $F B=95,686$, the angle $B F G=2^{\circ} 43^{\prime}$, and

FB 95686, den houck B F G 2 tr. 43 (1), en den houck B G Frecht deur tighegheven:Hier me ghefocht de fijde B G, wort bevonden deur het 4 voorfel der platie driehoucken voor t'begheerde van 4535 .

## 2 VOORBEELT.

Ghenomen ten tweeden dat gevonden moet fijn de lini HI, commende uyt des wechs 30 trap, van t'punt der uyterfte afwijcking B ghetelt, maer want die lini even is ande lini dieder valt uyt des wechs halfmiddellijn E B, van t'punt $H$ als uyterftedes houckmaet pijls B H, van 30 tr. foo laet ons E B anfien voor wechs halfmiddellijn, waer in EH fal fijn houckmaet van 60 tr, dats van t'vierendeelrontrchil derghegeven 30 tr. doende die houckmaet 8660 . Dit foo fijnde ick fegh aldus: Doende de halfmiddellijn E B 10000,foo doet E H 8660, wat fal E H doen wefende E Bgheftelt op 92 zos?comt alfdan voor EH 79939 , daer toc vergactt EF doende deur t'ghegeven 3378 , comt voor FH 83317 , waer me de driehouck H FI drie bekende palen heeft, te weten de fijde FH 83317 , den houck HFI 2 tr. 43 (1), en den houck H I F recht : Hier me ghefocht de fijdeHI, wort bevonden deur het 4 voorftel der platte driehoucken voor het begheerde van 3949. Eñ is kennelick HI te commen uyt Saturnuswechs 340 tr. want defe B wort inde form des 21 voorftels beteyckent met N , wefende in des wechs 3 Iotr. deur het 23 voortel, waer toe de 30 tr. comt als vooren 340 tr.

Merckt nu dat fulce als hier gheweeft is de manier van t'vinden der lini H I tuffichen E en B , ofte int halfront E B, alfoo falfe oock fijn tot allen plactifen int felve halfront.

## 3 VOORBEELT.

Ghenomenten derden dat gevonden moet fijn de lini E K, commende uyt des wechs 90 tr. van t'punt der uyterfte afwijcking $D$ ghetelt. Om daer toe te commen, ick fegh dat anghefien E F doet 3378 deur t'ghegeven, foo heeft den drichouck E F K dric bekende palen, te weten FE 3378 , den houck EFK 2 tr. 43 (1), en den houck EK $F$ recht : Hier me ghefocht de fijde E K wort bevonden deur het 4 voorftel der platte drichoucken voor t'begheerde van 160 . Dufdanich dan gheweeft hebbende den voortganck int halfront $E B$, wy fullen nu derghelijcke doen int ander halfront $E D$.

## 4 VOORBEELT.

Ghenomen ten 4 dat ghevonden moet fijn de langde der lini D L, die van des wechs meefte Zuyderfche afwijcking $D$, rechthouckich valt opt plat des duyfteraers AC: Om daer toe te commen, ick fegh des wechs halfmiddellijn ED tedoen 92308 deur het Byeenvougfel vant 13 voortel defes 3 boucx, en F E 3378 deur t'ghegheven, welcke ghetrocken vande 92308 , blijft 88930 , voor de lini F D, waer me de drichouck D F L drie bekende palen heeft, te weten de fijde FD 88930, den houck DFL 2 tr. 43 (1), en den houck D L F recht deur ighegheven: Hier me ghefocht de fijde DL, wort bevonden deur het 4 voorftel der platte driehoucken voor t'begheerde van 4215.

## s VOORBEELT.

Ghenomen ten vijfden dat ghevonden moet fijn de lini MN, commende uyt des wechs 30 trap van t'punt der agterfte afwijcking D ghetelt, maer want dielini
the angle $B G F$ right by the supposition. When the side $B G$ is sought therewith, the required value is found by the 4 th proposition of plane triangles to be 4,535.

## 2nd EXAMPLE.

Let it secondly be assumed that the line $H I$ has to be found, which proceeds from $30^{\circ}$ of the orbit, taken from the point of the greatest deviation $B$; but because this line is equal to the line which extends from the semi-diameter of the orbit $E B$, from the point $H$ as extremity of the versed sine $B H$ of $30^{\circ}$, let us regard $E B$ as the semi-diameter of the orbit, in which $E H$ shall be the sine of $60^{\circ}$, i.e. the complement of the given $30^{\circ}$, said sine making 8,660 . This being so, I say as follows: When the semi-diameter $E B$ makes $10,000, E H$ makes 8,660 . What will $E H$ be when $E B$ is taken 92,308? Then $E H$ becomes 79,939 . When to this is added $E F$, making by the supposition $3 ; 378, F H$ becomes 83,317 , so that the triangle HFI has three known terms, to wit, the side $F H=83,317$, the angle $H F I=2^{\circ} 43^{\prime}$, and the angle HIF right. When the side $H I$ is sought therewith, the required value is found by the 4th proposition of plane triangles ${ }^{1}$ ) to be 3,949 . Then it is obvious that $H I$ proceeds from $340^{\circ}$ of Saturn's orbit, for this $B$ in the figure of the 21 st proposition is denoted by $N$, which is situated at $310^{\circ}$ of the orbit by the 23 rd proposition; when to this is added the $30^{\circ}$, the required value is $340^{\circ}$, as above.

Now note that such as here has been the method of finding the line HI between $E$ and $B$, or in the semi-circle $E B$, the same it will also be in any place in this semi-circle.

## 3rd EXAMPLE:

Let it thirdly be assumed that the line $E K$ has to be found, which proceeds from $90^{\circ}$ of the orbit, taken from the point of the greatest deviation $D$. In order to come to this, I say that since $E F$ makes 3,378 by the supposition, the triangle $E F K$ has three known terms, to wit, $F E=3,378$, the angle $E F K=$ $2^{\circ} 43^{\prime}$, and the angle $E K F$ right. When the side $E K$ is sought therewith, the required value is found by the 4th proposition of plane triangles to be 160. The procedure in the semi-circle $E B$ having been thus, we shall now do the same in the other semi-circle $E D$.

4th EXAMPLE.
Let it fourthly be assumed that the length of the line $D L$ has to be found, which from the greatest Southerly deviation of the orbit $D$ is dropped perpendicular to the plane of the ecliptic $A C$. In order to come to this, I say that the semi-diameter of the orbit $E D$ makes 92,308 by the Compilation of the 13th proposition of this 3 rd book, and FE 3,378 by the supposition. When the latter is subtracted from the 92,308 , there is left 88,930 for the line $F D$, so that the triangle $D F L$ has three known terms, to wit, the side $F D=88,930$, the angle $D F L=2^{\circ} 43^{\prime}$, and the angle $D L F$ right by the supposition. When the side $D L$ is sought therewith, the required value is found by the 4th proposition of plane triangles to be 4,215 .

## 5th EXAMPLE.

Let it fifthly be assumed that the line $M N$ has to be found, which proceeds from $30^{\circ}$ of the orbit, taken from the point of the greatest deviation $D$,

[^46]die lini even is ande lini dieder valt uyt des wechs halfmiddellijn, van t'punt $M$ als uyterfte des houckmaetpijls D M van 30 tr. foo laet ons E $D$ anfien voor wechs halfmiddellijn, waer in $E M$ fal fijn houckmaet van 60 tr. dats vant'vierendeelrontfchil der ghegeven 30 tr. doende die houckmaer 8660: Dit foofijnde ick fegh aldus:Doende de halfmiddellijn E D 10000,foo doet E M 8660, wat fal E M doen wefende E D gheftelt op 92308 ?comt alfdan voor E M 79939, daer af ghetrocken EF doende deurt'ghegheven 3378, blijft voor FM 76 ;61, waer me dedriehouck MFN drie bekende palen heefr, te weten de fijde F M 76961, den houck MF N 2 Ir. 43 (1), en den houck M N F techt : Hier me ghefocht de fijde $\mathrm{M} N$, wort bevonden deur het ${ }_{4}$ voorftel der platte driehoucken voor t'begheerde van 3629.

Merckt nu dat fulcx als hiergheweeft heeft de manier van t'vinden der lini M N tuffehen $F$ en $D$, alfoo falfe oock fijn tot allen plaetfen tuffchen $F$ en $D$.

## 6 VOORBEELT.

Ghenomen ten feften dat ghevonden moet fijn de lini OP, commende uyt des wechs 89 tr. van t'punt der uyterte afwijcking $D$ ghetelt: Maer want die lini even is ande lini dieder valt uyt des wechs halfmiddellijn $E D$ van t'punt $O$ als uyterfte des houckmaetpijls $D O$ van 89 tr. foo laet ons E D anfien voor wechs halfmiddellijn, waer in E O fal fijn houckmaet van Itr, dats van t'vierendeelrontfchil der ghegeven 89 tr. wefende die houckmaet van 175. Dit foo fijnde ick fegh doende de halfmiddellijn E D 10000, foodoet EO 175, wat fal EO doen wefende E D gheftelt op 92308 ?comt alfdan voor EO 1615 , die getrocken van EF doende deurt'ghegheven 3378 , blijft voor OF 1763, waer me de driehouck OPF drie bekende palen heeft, te weten de fijde $\mathrm{FO}_{1763}$, den houck OFP 2 tr. 43 (1), en den houck O P F recht: Hier me ghefocht de fijde O P wort bevonden deur het 4 voorftel der platte drichoucken voor t'begeer. de van 84.

Mercke noch dat fulcx als hier gheweeft is de manier van t'vinden der lini OP tuffichen Een $F$, alfoo falle oock fijn tot allen plaetifen tuffichen Een $F$.

T'bes i Y y T. Wy hebben dan gevonden de langde der linidie van een ge. gevẽ punt in Saturnuswech rechthouckich valt opt plat des duyfteraers, in fulcke deelen alffer des Eertclootwechs halfmiddellijn icooodoet, deur wifconftighe wercking ghegrontop ftelling eens roerenden Eertcloots, ra den eyfch.

## VERVOLGH.

T'is kennelick hoe datmen om de begheerde lini van Saturnuswech rechthouckich opt plat des duyfteraers met lichticheyt te vinden, fal meughen ma. ken een tafel dier linien van trap tot trap, vant vertepunt beginnende, als by voorbeelt om te hebbē de lini vallende alfoo van Saturnuswechs eerften trap, ick neem voor my de form des al voorftels, daer in teyckenende t'punt $Q$, al. foodat van des wechs verftepunt $A$ tot $Q i$ tr. beteyckent, waer uyt volght N Q tedoé sitr. (want de wechlangde van $N$ doet deur het 23 voorftel 310 tr. wiens rontfchil voor NA sotr. daer toc A Qitr. comt als boven voor NQ sitr.) daerom alfmen deur dit 24 voorftel vindt de hanghende vanden gitr . van Bafghetelt (ghelijck vooren mette hangende HI van 30 tr. gedaen wiert) men heeft t'begheerde, om dat die lini vallen fal uyt Saturnuswechs itr. enalfoo met alle ander.

Merckt noch dat wanneer defe dinghen niet aldus voorbeeltfche wijfe ghe. daen en wordë, maer met eraft om opeen toecommende tijt dadelick de bree,
but because this line is equal to the line which extends from the semi-diameter of the orbit, from the point $M$ as extremity of the versed sine $D M$ of $30^{\circ}$, let us regard $E D$ as the semi-diameter of the orbit, in which $E M$ shall be the sine of $60^{\circ}$, that is of the complement of the said $30^{\circ}$, said sine making 8,660 . This being so, I say as follows: When the semi-diameter $E D$ makes $10,000, E M$ makes 8,660 . What will $E M$ be when $E D$ is taken 92,308 ? $E M$ then becomes 79,939 . When from this is subtracted $E F$, making by the supposition 3,378 , there is left for $F M 76,561$, so that the triangle MFN has three known terms, to wit, the side $F M=76,561$, the angle $M F N=2^{\circ} 43^{\prime}$, and the angle $M N F$ right. When the side $M N$ is sought therewith, the required value is found by the 4 th proposition of plane triangles to be 3,629 .

Now note that such as here has been the method of finding the line MN between $F$ and $D$, the same it will also be in any place between $F$ and $D$.

## 6th EXAMPLE.

Let it sixthly be assumed that the line $O P$ has to be found, which proceeds from $89^{\circ}$ of the orbit, taken from the point of the greatest deviation $D$. But because this line is equal to the line which extends from the semi-diameter of the orbit $E D$, from the point $O$ as extremity of the versed sine $D O$ of $89^{\circ}$, let us regard $E D$ as the semi-diameter of the orbit, in which $E O$ shall be the sine of $1^{\circ}$, that is of the complement of the given $89^{\circ}$, said sine making 175. This being so, I say: When the semi-diameter $E D$ makes $10,000, E O$ makes 175 . What will $E O$ be when $E D$ is taken 92,308 ? $E O$ then becomes 1,615 . When this is subtracted from $E F$, making by the supposition 3,378, there is left for $O F 1,763$, so that the triangle $O P F$ has three known terms, to wit, the side $F O=1,763$, the angle $O F P=2^{\circ} 43^{\prime}$, and the angle $O P F$ right. When the side $O P$ is sought therewith, the required value is found by the 4th proposition of plane triangles to be 84 .
Note also that such as here has been the method of finding the line $O P$ between $E$ and $F$, the same it will also be in any place between $E$ and $F$.

CONCLUSION. We have thus found the length of the line which from a given point in Saturn's orbit is dropped perpendicular to the plane of the ecliptic, in such parts as the semi-diameter of the Earth's orbit has 10,000, by mathematical operation based on the theory of a moving Earth; as required.

## SEQUEL.

It is obvious that in order easily to find the required line from Saturn's orbit perpendicular to the plane of the ecliptic, it is possible to make a table of those lines from degree to degree, starting at the apogee. For example, in order to have the line thus extending from the first degree of Saturn's orbit, I take before me the figure of the 21st proposition and mark therein the point $Q$ such that the distance from the orbit's apogee $A$ to $Q$ denotes $1^{\circ}$, from which it follows that $N Q$ makes $51^{\circ}$ (for the orbital longitude of $N$ by the 23rd proposition makes $310^{\circ}$, whose difference from $360^{\circ}, N A$, makes $50^{\circ}$; when to this is added $\mathrm{AQ}=1^{\circ}, N Q$ becomes, as above, $51^{\circ}$ ). If therefore by this 24th proposition the perpendicular at $51^{\circ}$ is found, taken from $B$ (as has been done above for the perpendicular $H I$ at $30^{\circ}$ ), the required value is obtained, because that line
de te vinden, dattet noodich foude fijn deur dadelicke ervaring eerft te vinden waer nu des wechs verftepunts fchijnbacr duyfleraerlangde is: Ten andetë hoe de duyfleraerfne verloopen mach fijn fichtent Ptolemeust tijt (diens ervaringen ick voorbeeltfche wijfeghenomen hebbe om de redenen thaerder plaets verclaert ) want de Befchrijvers der dachafels nemen al of den loop van Saturnus duyfteraerfne, even waer met des wechs verfepunisloop alijit sotr. van malcander blijvende, maer daer fonde nieuwe dadelickegagheflaghen ervaring af behooren te wefen, want by aldien den 100 p des verftepuntsen des duyfteraerfnees van Saturnus verfchcyden fijn, ghelijek vande Maen ghebeurt,foomocht fulcx oirfaeck wefen waer deur fijn breeden niet dadelick foo bevonden on wierden, ghelijck rekeninghen der dachtafels mebrenghen.

## 25 VOORSTEL.

Te vinden Saturnus fchijnbaer duyferaerbreede op een ghegeven tijt, deur vvifconftighe vercking gegront op ftelling eens roerenden Eertcloots.

Toghegheven. Laet Saturnus op den ghegheven tijr wefen in Gijn wechs 340 tr, alwaer de lini van hem rechthouckich opt plat des duyfteraers doë fal 3949 deur het 2 voor-
 beelt des 24 voorftels defes 3 boucx : En de verheyt van hem totten Eertcloot die gevonden wort na de manier verclaert int 6 lidtdes 15 voor ftels defes 3 boucx, wefende daer delini XV, fy neemick, van 80000 . T'Begheerdie. Wy mocten hier me vinden Saturnus fchijnbaer dayfteraerbreede. T'berey t Sel. Ick teycken de rechthouckige driehouck A B C recht an $B$, doende de fijde A B de ghegheven 3949 , en A C 80000 .

## 'T'W ERCK.

De driehouck A B C heeft drie bekende palen, te weten de fijde A B 3949, de fijde A C 80000, en den houck B recht:Hier me ghefocht den houck A C B, wort bevonden deur het $s$ voorttel der platte driehoucken voor de begheerde breede van 2 tr. so (1). Maer om nu te weten of die Zuydelick of Noordelick is, dat wijft fijn wechlangde, want deur t'vervolgh des 23 voorttels blijckt, dat die wefende tuffchen den 44 tr. 12 (1), ende den 2 is tr. 48 (1), fy is Zuydelick, macr inde reft des wechs (daer defen 340 tr . in valt) Noordelick. Waer aft'bewijs openbacr is. T' besly y t. Wy hebben dan gevonden Saturnus fehijnbaer duyfteraerbrecde op een ghegheven tijt, deur wifconftighe wercking ghegront op felling eens rocrenden Eertcloots, na den eyfch.

## MERCKT.

Anghefien de reghel der fes voorftellen tot hier toe van Saturnus breede befehreven, gemeen is over de breeden van d'ander vier Dwaelders Iupiter, Mars, Venus en Mercurius,foo en fal ick daer opgheen gheformde voorttellen maken; ghelijck oock verhaelt isint Coribegrijp defes s Onderfcheyts, maer beDd rchrij.
will extend from the first degree of Saturn's orbit, and the same with all the others.

Note also that when these things are not done thus by way of example, but in earnest, in order to find practically the latitude at future times, it would be necessary first to find by practical experience where the apparent ecliptical longitude of the orbit's apogee is now situated. Secondly, how the line of nodes may have shifted since the days of Ptolemy. (whose experiences I have taken by way of example for the reasons explained in their place), for the Describers of the ephemerides all assume the motion of Saturn's line of nodes to be equal to that of the orbit's apogee, always remaining $50^{\circ}$ apart, but this ought to be ascertained by new direct observational experience, for if the motion of the apogee and that of Saturn's line of nodes are different, as is the case with the Moon, this might be the cause why its latitudes were not found in practice to be such as calculations of the ephemerides imply ${ }^{\mathbf{1}}$ ).

## 25th PROPOSITION.

To find Saturn's apparent ecliptical latitude at a given time, by mathematical operations based on the theory of a moving Earth.

SUPPOSITION. Let Saturn be at the given time at $340^{\circ}$ of its orbit, where the line dropped perpendicular from it to the plane of the ecliptic shall be 3,949 by the 2nd example of the 24 th proposition of this 3 rd book. And the distance from it to the Earth, which is found in the manner explained in the 6th section of the 15 th proposition of this 3 rd book, which there is the line $X V$, I assume to be 80,000 . WHAT IS REQUIRED. We have to find herewith Saturn's apparent ecliptical latitude. PRELIMINARY. I draw the right-angled triangle $A B C$, right-angled in $B$, the side $A B$ making the said 3,949 and $A C=80,000$.

## PROCEDURE.

The triangle $A B C$ has three known terms, to wit, the side $A B=3,949$, the side $A C=80,000$, and the angle $B$ right. When the angle $A C B$ is sought therewith, the required latitude is found by the 5 th proposition of plane triangles to be $2^{\circ} 50^{\prime}$. But in order to know whether this is Southerly or Northerly, this is indicated by its orbital longitude, for by the sequel of the 23 rd proposition it appears that when it is between $44^{\circ} 12^{\prime}$ and $215^{\circ} 48^{\prime 2}$ ), it is Southerly, but in the rest of the orbit (in which falls this $340^{\circ}$ ) it is Northerly. The proof of which is evident. CONCLUSION. We have thus found Saturn's apparent ecliptical latitude at a given time, by mathematical operations based on the theory of a moving Earth; as required.

## NOTE.

Since the rule of the six propositions described so far for Saturn's latitude is common to the latitudes of the other four Planets Jupiter, Mars, Venus, and Mercury, I will not make any illustrated propositions thereon, as has also been

[^47]
## Vande Breederoop

fchrijven alleenelick by manier van vermaen t'gene breeder verclaring fchijnt te vereyffhen; beginnende met Iupiter als volght.

NVVAN,IVPITERS<br>BREEDE.

Ptolemeus heeft deur dadelicke gagheflaghen ervaringhen degedaenten van Iupiters brecdeloop alfins bevonden gelijck van Saturnus int voorgaende gefeyt is, welcke int befonderdufdanich Gijn :

Ten eerften foo was fijn meefte breede op de Noortfijde van 2 tr. 4 (1), ghebeurende altijt als fijn inronts middelpunt fchijnbactlick was $20 t r$ voor fijn wechs verftepunt, te weten onder des duyferacts 141 ir. en Iupiter an des inronts naeftepunt, maer buyten het naeftepunt wefende,foo was fijn Noorderrehe breede voor datmael cleender, en ten minften doen hy alfooan het verRepunt was.

Ten tweeden foo bevant hy op de Zuytfijde de meefle breede van 2 tr. 8 (1), ghebcurende altijit als fijn inronts middelpunt was onder het teghenoverpunt des bovefehrevē 141 tr. dats onder des duyfteraẹs 321 tr.en lupiter an fijn inronts naeftepunt : Maer buyten her naeflepuni wefende, foo was fijn Zuyderfehe breede voor datmael clecnder, enten minften doenmen heman het verftepunt vandt.
Ten derdē wefende het inronts middelpunt in een der duyfteraerfnees twee uyterfee, fo bevant hy Iupiter, gelijck oock van Saturnusgefeyt is, altiji int plat des duyfteraers fonder breede, tot wat plaets des inionts hy oock wefen mocht.
De fpiegeling by Poolewiens hier op met felling eens vaften Eertcloots veroirdent, is van ghedaente teenemael gheweeft als die van Saturnus, fulcs dattet onnoodich fchijnt de felve hicr te verhalen:Ende want de fipiegeling met ftelling eens rocrenden Ecricloots aude voorgaende van Saturnus oock ghelijck is, en daer deur verflaen wort, foo en befchriffick die niet intlanghe.

## NVVAN MARS <br> BREEDE.

Ptolemeus heeff deur dadelicke gaghellaghen ervaringhen de gedaenten van Mars breedeloop alfins bevonden ghelijck van Saturnus int voorgaende ghefeyt is.

Ten eerthen foo was fijn meefte breede op de Noortfijde van 4 tr. 21 (1),gebeurende altijt tals fijn inronts middelpunt wasan fijn wechs verttepunt (het weicke deur de Byeenvougingh des 13 voorftels is onder des duyftetaers is tr. 30 (I)) en Mars in des inronts naeflepunt, maer buyten het naeftepunt wefende,foo was $\mathrm{G} j \mathrm{n}$ Noorderfche breede voor datmael cleender,en ten minfē doen hy alfoo ant vertepunt was.

Ten tweeden foo bevant hy op de Zuyitijde de meefte breede van 7 tr. 7 (1), gebeurende altijt als fijn inronts middelpunt was in Gjin wechs naeflepunt onder het teghenoverpunt des bovefchreven IIs tr. 30 (1), dats onder des duyteraers 295 tr. 30 (1), en Mars an fijn inronts naeftepunt:Maer buyten het naeftepunt wefende, foo was fijn Zuyderfche breede voor datimael cleender , en ten minften doemen hem alfoo ant verffepunt vandt.
Ten derdĕ wefende het inronts middelpunt an een der duyfteraerfneestwee upterfen,foo bevant hy Mars, ghelijck oock van Saturnus ghefeytis, aliijt int
said in the Summary of this 5th Chapter, but I will merely mention those things which seem to call for a fuller explanation, starting with Jupiter, as follows.

## NOW OF JUPITER'S LATITUDE.

Ptolemy through direct observational experiences has found the character of Jupiter's motion in latitude to be in every respect as has been said of Saturn in the foregoing, which in particular is as follows.

Firstly, its greatest latitude on the North side was $2^{\circ} 4^{\prime}$, which always occurred when its epicycle's centre was apparently at $20^{\circ}$ ahead of its orbit's apogee, to wit, at $141^{\circ}$ of the ecliptic, and Jupiter at the epicycle's perigee; but when it was outside the perigee, its Northerly latitude was for that case smaller, and smallest when it was thus at the apogee.

Secondly, he found on the South side the greatest latitude of $2^{\circ} 8^{\prime}$, which always occurred when its epicycle's centre was in the point opposite to the abovementioned $141^{\circ}$, i.e. at $321^{\circ}$ of the ecliptic, and Jupiter was at its epicycle's perigee. But when it was outside the perigee, its Southerly latitude was for that case smaller, and smallest when at the apogee.

Thirdly, when the epicycle's centre was in one of the two extremities of the line of nodes, he always found Jupiter, as has also been said of Saturn, in the plane of the ecliptic without any latitude, no matter in what place of the epicycle it might be.

The theory that Ptolemy based on this, on the assumption of a fixed Earth, was entirely of the same character as that of Saturn, so that it seems unnecessary to relate it here. And because the theory on the assumption of a moving Earth is also equal to the preceding one of Saturn, and is understood therefrom, I shall not describe it in full.

## NOW OF MARS' LATITUDE.

Ptolemy through direct observational experiences has found the character of Mars' motion in latitude to be in every respect as has been said of Saturn in the foregoing.

Firstly, its greatest latitude on the North side was $4^{\circ} 21^{\prime}$, which always occurred when its epicycle's centre was at its orbit's apogee (which by the Compilation of the 13 th proposition is at $115^{\circ} 30^{\prime}$ of the ecliptic), and Mars in the epicycle's perigee; but when it was outside the perigee, its Northerly latitude was for that case smaller, and smallest when at the apogee.

Secondly, he found on the South side the greatest latitude of $7^{\circ} 7^{\prime}$, which always occurred when its epicycle's centre was at its orbit's perigee, the point opposite to the above-mentioned $115^{\circ} 30^{\prime}$, i.e. at $295^{\circ} 30^{\prime}$ of the ecliptic, and Mars at its epicycle's perigee. But when it was outside the perigee, its Southerly latitude was for that case smaller, and smallest when at the apogee.

Thirdly, when the epicycle's centre was at one of the two extremities of the line of nodes, he always found Mars, as has also been said of Saturn, in the
plat des duyferaers fonder breede, tot wat plaets des inronts hy oock mocht wefen.

De Ipiegheling by Ptolemers hier op met ftelling cens vaften Eetcioots veroirdent, is van ghedaente teenemacl gheweeff als die van Saturnus, fulcx datter onnoodich fchijat de felve hier te verhalen : Ende want de fpiegeling met Atelling eens roerenden Eertcloots, ande voorgaende van Saturnus oock ghelijck is, en daer deur verftaen wort, foo en beforrijfick die niet int langhe : Doch fal jck hier verhalen dat in dit werck wat conheyt valt anders als in dat , deur dien Mars uyterne breederian fijn wechs verffepunt en naenepunt ghebeuren, als ghefeyt is, want anghefien de lini tuffchende felve twee punten bekent is deur de Byeenvouging des 13 voorftels defes 3 boucx, alwaer Marswechs halfoiddellijn faet op 15190 , welcie tweemael ghenomen cont voor de felve lini 30380, foo en behonfimen die niet tefoucken na de manier des 21 voorflels, nuch oock als int 2; voorftel de wechlangie vande twee uyterfte punten der afwijcking in Marswech, anghefien de felve het veillepunt en nacfterunt fin.

## NV VAN MERCVRIVS

BREEDE.
I LIDT.
Inhoudende Ptolemeus dadelicke gagheflaghen ervaringhen van Mercuriusloop.

Om beuqamciicker te verclarę Ptolemeus dadelicke gageflagè ervaringen der gedaēte vä Mercurius breedeloop mette fomme vä fija fpiegeling dacr op ver. oirdent,folaet A B C de
 inrontwech beteyckenen, diens midjelpunt is E , de vaften Eertcluot $F$, deur weicke en oock deur Eghetrocken fy de liniCFEA, roo dat A t'verftepunt is, C inaeffepunt, en deur $F$ ghetrocken wefende de lini BF D rechthouckich op A C, fo bedicn de nve: punten $B, D$, des wechs 90 tr. en 27 ctr. cn hoewel dat fo veel verfchile als de uytmiddelpunticheyt E F veroiráackt, nochtans angefien PtO -
lemeus de felve twee punten den $90 e \mathrm{en} 270$ noemt, wy fullenfer voor nemen, daer na fy opt punt D als middelpurt befchreven het inront GHIK , diens verftepunt $G$, naeltepunt $I$, en middelverheden $H, K$, tuffichen welcke vier punten gheteyckent fijn de twee middellijnen I G, H K.

Dit aldus wefende, foo heeff Itciemeus deur dadclicke ervaring bevonden dat Mercurius meelte breede op de zuytifijde was van 4 tr. s (1), ghebcurende altijt
plane of the ecliptic without any latitude, no matter in what place of the epicycle it might be.

The theory that Ptolemy based on this on the assumption of a fixed Earth was entirely of the same character as that of Saturn, so that it seems unnecessary to describe it here. And because the theory on the assumption of a moving Earth is also equal to the preceding one of Saturn, and is understood therefrom, I shall not describe it in full. But I will relate that in this procedure some abridgement can be made different from that, because Mars' greatest latitudes occur at its orbit's apogee and perigee, as has been said, for since the line between these two points is known by the Compilation of the 13 th proposition of this 3rd book, where the semi-diameter of Mars' orbit is given as 15,190, which, when taken twice, gives 30,380 for the said line, it need not be sought after the manner of the 21 st proposition, nor, as in the 23 rd proposition, the orbital longitudes of the two extremities of the deviation in Mars' orbit, since these are the apogee and the perigee.

## NOW OF MERCURY'S LATITUDE.

## 1st SECTION.

Consisting in Ptolemy's practical observational experiences of Mercury's motion.
In order to explain more easily Ptolemy's practical observational experiences of the character of Mercury's motion in latitude, together with the summary of his theory based thereon, let $A B C$ denote the deferent, whose centre is $E$, the fixed Earth $F$, through which and also through $E$ let there be drawn the line CFEA, so that $A$ is the apogee, $C$ the perigee, and when through $F$ is drawn the line $B F D$ perpendicular to $A C$, the two points $B, D$ denote $90^{\circ}$ and $270^{\circ}$ of the orbit, and though this differs as much as amounts to the eccentricity $E F$, yet since Ptolemy calls these two points $90^{\circ}$ and $270^{\circ}$, we shall take them thus. Thereafter let there be described about the point $D$ as centre the epicycle GHIK, whose apogee is $G$ and perigee $I$, and points of medium distance $H, K$, between which four points are drawn the two diameters $I G, H K$.

This being so, Ptolemy found by direct experience that Mercury's greatest latitude on the South side was $4^{\circ} 5^{\prime}$, which always occurred when its epicycle's
als fijn inronts middelpunt was 90 tr. van fijn wechs verftepunt, foo wel ter eender als ter ander fijde, dat is foo wel inden 270 tr an D , als inden 90 an $B$ (welcke 90 tr, is onder des duyfteraers 280 tr. gemerckt deur de Byeenvouging des 13 voortels defes 3 boucx, het verftepunt onder des duyfteraers 190 tr. is) en Mercurius in des inronts naeftepunt als an I: Maer buyten het naeftepunt wefende, foo was fijn zuyderfche breede voor datmael cleender, en ten minften doen hy alfo ant verftepunt $G$ was. D'oirfaeck waerom de bovefchreven breeden even vallé als het inronts middelpunt is an D of B , blijckt inde form, om dat de lini vanden Fertcloot $F$ tot $D$, even is ande lini van $F$ tot $B$ : Want daer uyt volght dattet inronts middelpunt an B wefende, fijn vertepunt en naeftepunt in fulcken gheftalt uyt den Eertcloot $F$ ghefien worden, als wanneert an $D$ is.

Ten tweedë fo bevant hy op de noortfijde de meefte breede van 1 tr. 45 (1), ghebeurende altijt alsfijn inronts middelpunt was gotr. vā fijn wechs verftepunt, foo wel ter cender als ter ander fijde, en Mercurius an fijn intonts naefte. punt,maer buyten het naeftepunt wefende, foo was fijn noorderfche breede voordatmael cleender, en ten minften doemë hem alfoo ant verftepunt vandt.

## 2 LID T.

## Inhoudende Ptolemeus fpiegheling ghetrocken uytde voorgaende dadelicke ervaringhen des 1 lidts.

Anghefien Ptolemeus voorgaende ervaringhen, noch breeder connen verclacrt worden deur fijnfpieghelinghen die hy daer op verdocht heeft,foo fal ick de fomme van dien hier by voughen als volght.

Nadien des inrontwechs twee punten die uyt den vaften Fertcloot Finde meefte breede ghefien worden fijn Ben $D$, foo foude daer uyt volghen dat de ghemeene fne van die wech en den duyfteraer, rechthouckich moet commen op B D, ende want Psolemeus fich in aller Dwaelders breedeloopen voorftelde die te gaen deur den Eertcloot F, foo foude volgens die oirden de lini A F C de duyfteraerfne moeten fijn, en daerom het inronts middelpunt wefende an A of C, en Mercurius antinronts verfte of naeftepunt, foo foude hy uyt den Eertcloot F moeten gefien worden int plat des duyfteraers fonder breede: Maer de ervaring wees hem anders, want hy doé fijn breede altijt bevant vă 45 (1) na t'Zuyden: Sulcx dat hy daerom (benevens noch een ander redé daerinden Byvough des breedeloops met ftelling eens vaften Eertcloots af gefeyt fal worden) Mercurius fpiegheling anders veroirdende als vandedrie bovenfte Dwaelders, t'welck aldus toeginck: Hy heeft ghefeyt de lini BD freckende deur de twee punten der uytertte afwijcking, te wefen deghemeene fne des inrontwechsen duyfteraers, teghen de natuerlicke reghel:Maer weerom ter ander fijde gafden inrontwech en het inront feker drie feer verfierlicke wagghelende roerfels, die inchers halvenghenoemt worden *afweging, *afwijcking, en * afkeering, waer me hy tot fijn voornemen gherocht, waer af ick cock van elckint befonder verhael fal doen, dat treckende uyt de bepalinghen die Purbachies tot defe plaets van dit roerfel verftandelick doet.

Om dan mette * afweging te beginnen, fco is te weten dat Ptelemeus den inrontwech ghefeyt heeft Op BD als as een wagghelende roerfel te hebben overentweer gaende of waggelende als de balck eenswaeghs,ghenoemt afweging, fulcx dattet inronts middelpunt wefende an B of $D$, 100 en iffer gheen afwe-

> ging,
centre was at $90^{\circ}$ from its orbit's apogee, both on one side and on the other, i.e. both at $270^{\circ}$ in $D$ and at $90^{\circ}$ in $B$ (which $90^{\circ}$ is at $280^{\circ}$ of the ecliptic, seeing that by the Compilation of the 13 th proposition of this 3 rd book the apogee is at $190^{\circ}$ of the ecliptic), and Mercury was at the epicycle's perigee, namely at $I$. But when it was outside the perigee, its Southerly latitude was for that case smaller, and smallest when at the apogee $G$. The cause why the abovementioned latitudes are equal when the epicycle's centre is at $D$ or $B$ appears from the figure, because the line from the Earth $F$ to $D$ is equal to the line from $F$ to $B$. For from this it follows that when the epicycle's centre is at $B$, its apogee and perigee are seen from the Earth $F$ in the same manner as when it is at $D$.

Secondly, he found on the North side the greatest latitude of $1^{\circ} 455^{\prime}$, which always occurred when its epicycle's centre was at $90^{\circ}$ from its orbit's apogee, both on one side and on the other, and Mercury at its epicycle's perigee; but when it was outside the perigee, its Northerly latitude was for that case smaller, and smallest when at the apogee.

## 2nd SECTION.

Consisting in Ptolemy's theory derived from the foregoing practical experiences of the 1 st section.

Since Ptolemy's foregoing experiences can be explained even more fully by means of the theories he has conceived thereon, I will here add the summary thereof, as follows.

Since the two points of the deferent which from the fixed Earth $F$ are seen at the greatest latitude are $B$ and $D$, it would follow therefrom that the intersection of that deferent and the ecliptic must be perpendicular to $B D$, and because Ptolemy, in the case of all the Planets' motions in latitude, imagined them to pass through the Earth $F$, according to this rule the line $A F C$ would have to be the line of nodes, and therefore, if the epicycle's centre were at $A$ or $C$, and Mercury at the epicycle's apogee or perigee, it would have to be seen from the Earth $F$ in the plane of the ecliptic without any latitude. But experience taught him differently, for he then always found its latitude to be $45^{\prime}$ towards the South, so that he therefore (apart from another reason, which is to be dealt with in the Supplement of the motion in latitude on the assumption of a fixed Earth) framed Mercury's theory differently from that of the three upper Planets, in the following way. He said that the line $B D$ passing through the two points of the greatest deviation was the intersection of the deferent and the ecliptic, contrary to the natural rule. But on the other hand again he gave the deferent and the epicycle three highly artificial oscillatory motions, which for the sake of distinction are called deviation, declination, and deflection 1), with which he achieved his intention, of $\cdot$ which I will also give an account for each in particular, taking

[^48]ging, maer is des wechs heel plat int plat des duyteraers : Daer na het inronts middelpunt van BofD verrreckende, foo begint den wech af te weghen, of te ncygher altijt na het Zuyden, en vermeerdert defe afweging gheduerlick tot dattet inronts middelpunt ghecommen is ant verttepunt $A$, of naeftepunt C, en dan is de afweging ten grootiten vande bovefchreven 45 (1); Welck daer na wcerom vermindert, tot dattet inronts middel punt ghecommen is an B, of I,aiwaer dan weerom gheen afweging en is. En blijckt hier uyt dattet roertel t'welck hct inronts middelpunt vande afweging ontfangt nummermeer op de noortfijde en ghefchict.

Macr om nu vande *afwijcking te fegghen,foo is te weten dattet plat des in- Dectimation sents deur een waggelende roerel lafneyght vant plat fijss wechs op tweeder- ne. ley wijfe:Ten eerffen met afwijcking op de middellijn $\mathrm{H} K$, freckende deur de middelverhedミ̄ $H$, K: Met dit roerrel gebeuret dat de middellijns I $G$ verftepunt G, op d'een fijde des wechs afwijckt, en t'naeflepunt 1 op d'ander. Defe afviic. king houdt dufdanige reghei: Wanneer des inronts middclpunt als $D$, is an des wechs verftepunt A, de voorfchreve middellijn G is in t 'plat des wechs: Maer hei inronts middelpunt vant'verftepunt $A$ vertreckende, fo begint des intonts verfepunt afic wijcicen na het Zuyden, ende het naeftepunt na het Noorden, welcke afw:jicking geduerlick vermeerdert tot dat des in ronts middelpunt ande middelverheyt Bgecommen is,en aldan gebeurt de middellijns als IG meefte afwijcking, welike daer ra gheduerlick vermindert, ior datter middelpuntdes inronts is an des wechs naeftepunt C , alwaer de voorfhrevē middellijn als IG wederom geen afwi;;king en heeff, maer het inronts middelpunt van C verrreckende na de middelverheyt $D$, het vertepunt als $G$ begint a fe wijcken van ipiat des wechs na het Noorden, en het naeflepunt geliick I na hei Zuyden,en vermeerdert die afwijching geduerlick tot dat des inronts middelpunt ant uyterne D gecommen is, alwaer die afwijcking weerom ten grootfen wert. Van daer voort verminderfe tot dattet intontsmiddelpuntan t'vertepunt $A$ is alwaer geiijck int tegin de voorfhreyé middellijn als IG, weerom int platdes vechis is: En daer na volgt weerom d'cerfte geffalt. Vy:t'gene gefeyt isblijed dat des wechs afweging teggrootat fijnde, fo heeft het inron: geen afwiicking,macr de wech tonder afveging wefende, dat dä des inronts afvijicking tē groctite is.

Nu refter noch de ${ }^{*}$ af keering ie verclaren welcke durdanich is: Des inronts ${ }_{\text {Refefios }}$ plat heeff boven de voorfchreven waggeling op den as H K , noch een ander op den as I $G$ tufficher des inronts verftepunt en naeftepunt (ghenouchfaem toegaende gelijck de weederley waggeling die het zeecornpas ontfangt, met twee affen op malcander rechthouckich commende) deur welck roerfel gebeurt dat de iniddeilijn $\mathrm{H} K$ het plat des wichsdeurnijt inde lini I G als gemeene fne, fo datdes intonts fiincker helft op d'een fijde des inrontwechs, de rechter helft op d'ander fijde af keert: Defe middellijns af keering houat dufdanige regel: Wauneer des inronts middelpunt is ande middelverbeyt D , foo en heeft de voorfchreven middellijn H K geen af keering vande wech ABC D, dan is int plat der felve: Maer het inronts middelpunt van $D$ vertreckende na het verftcpunt A, foo oegint de middellijns תlincker helft HD afte keeten na het Zuyden, de andet helft na het Noorden, welcke afkeering geduerlick vermeerdert tot datset inronts middelpuntant verfeppant A ghecommer is, allian ten grootfen weínde. Daer na :oorgaende na het ander punt B foo verminderte weerom rot datfiz an gecommen is, alwaer weerom geen af keering cn ghefchiet. Maer het intonts niddelpunt van die plaets vettreckende na het maeftepunt $C$, fotegint ce voorfhreven flincker helfig ghelijck $H$ D weerom af te keeren na het

$$
\text { Dd } 3 \quad \text { Noor. }
$$

this from the description which Purbachius gives of this motion in a comprehensible manner in this place.

To begin with the deviation, it is to be noted that Ptolemy has said that the deferent has about $B D$ as axis an oscillatory motion, going to and fro or oscillating like the beam of a balance, called deviation, so that when the epicycle's centre is at $B$ or $D$, there is no deviation, but the entire plane of the orbit is in the plane of the ecliptic. Thereafter, when the epicycle's centre starts from $B$ or $D$, the orbit begins to deviate or incline always to the South, and this deviation increases continuously until the epicycle's centre has arrived at the apogee $A$ or perigee $C$, and then the deviation is greatest: the above-mentioned 45'. Thereupon it decreases again until the epicycle's centre has arrived at $B$ or $D$, where then again there is no deviation. And from this it is apparent that the motion which the epicycle's centre receives from the deviation never occurs on the North side.

But to speak now of the declination, it is to be noted that the plane of the epicycle through an oscillatory motion diverges from the plane of its orbit in two ways. Firstly, with declination about the diameter $H K$, passing through the points of medium distance $H, K$. With this motion the apogee $G$ of the diameter $I G$ diverges on one side of the orbit and the perigee $I$ on the other side. This declination observes the following rule. When the epicycle's centre (as in the present case $D$ ) is at the orbit's apogee $A$, the aforesaid diameter $I G$ is in the plane of the orbit. But when the epicycle's centre starts from the apogee $A$, the epicycle's apogee begins to decline towards the South and the perigee towards the North, which declination constantly increases until the epicycle's centre has arrived at the point of medium distance $B$, and then there is the greatest declination of the diameter (IG), which thereupon decreases continuously until the centre of the epicycle is at the orbit's perigee $C$, where the aforesaid diameter ( $I G$ ) again has no declination; but when the epicycle's centre starts from $C$ towards the point of medium distance $D$, the apogee $(G)$ begins to decline from the plane of the orbit towards the North, and the perigee (I) towards the South, and this declination increases continuously until the epicycle's centre has arrived at the extremity $D$, where this declination again becomes greatest. From this point onwards it decreases until the epicycle's centre is at the apogee $A$, where, just as in the beginning, the aforesaid diameter ( $I G$ ) is again in the plane of the orbit. And this is followed again by the first situation. From what has been said it appears that when the orbit's deviation is greatest, the epicycle has no declination, but when the orbit is without deviation, then the epicycle's declination is greatest.

Now it still remains to explain the deflection, which is as follows. The epicycle's plane has, in addition to the aforesaid oscillation about the axis $H K$, yet another oscillation about the axis $I G$ between the epicycle's apogee and perigee (which proceeds substantially like the two kinds of oscillation which the mariner's compass receives, with two axes at right angles to one another), in consequence of which motion the diameter $H K$ intersects the plane of the orbit in the line $I G$ as intersection, so that the epicycle's left half deflects on one side of the deferent, the right half on the other side. This deflection of the diameter observes the following rule. When the epicycle's centre is at the point of medium distance $D$, the aforesaid diameter $H K$ has no other deflection from the orbit $A B C D$ than that which is in the plane of the latter.

Noorden, en vermeerdert alfoo tot datfe ant naeftepunt C is, alwaermenfe dan weerom ten grootfen bevint : Van daer vermindertfe geduerlick tot dattet inronts middelpunt comt and'ander middelverheyt $D$, alwaer weerom geen afkeering en is,en alidan begint weerom de voorgaende gefalt. Hier uyt is kennelick dat ter plaets des inrontwechs daer het inront geen afwijcking en heeft, fijn meefte afkeering te ghebeuren.

## 3 L I D T.

Inhoudende verclaring vā Mercurius breedeloop met ftelling eens rocrenden Eertcloots.

Hier vooren befchreven fijnde het 1 lidt inhoudende Ptolemeus dadelicke ervaringen (waer by tot breeder verclaring noch vervought wiert het 2 lidt van fijn fiegeling) men foude deur vervouging der felve ervaring op felling eens roerenden Eertcloots volgens de voorgaende gemcene regeltotter begheerde commen, nochtansangefien de form vande onderfte Dwaelders binnen den Eertclootwech loopende, wat anders valt als vande bovenfe, en dat Mercurius wech niet deur des Eertclootwechs middelpunt en ftreet, t'welek voor de fom. mige verclaring mocht vereyfichen,foo fal icker wat af feggen. Laet A BCD


But when the epicycle's centre starts from $D$ towards the apogee $A$, the left half of the diameter $H D$ begins to deflect towards the South, the other half towards the North, which deflection increases continuously until the epicycle's centre has arrived at the apogee $A$, when it is greatest. Thereupon proceeding towards the other point $B$, it decreases again until it has arrived there, where again there is no deflection. But when the epicycle's centre starts from that place towards the perigee $C$, the aforesaid left half ( $H D$ ) begins to deflect towards the North again, and thus increases until it is at the perigee $C$, where it is then again found greatest. From there onwards it decreases continuously until the epicycle's centre arrives at the other point of medium distance $D$, where again there is no deflection, and then the preceding situation occurs again. From this it is obvious that at the place of the deferent where the epicycle has no declination its greatest deflection occurs.

## 3rd SECTION.

Consisting in the explanation of Mercury's motion in latitude on the assumption of a moving Earth.

Since above has been described the 1st section consisting of Ptolemy's practical experiences (to which, for a fuller explanation, was also added the 2nd section of his theory), by applying this experience to the assumption of a moving Earth one might according to the preceding common rule arrive at what is required. Nevertheless, since the figure of the orbits of the lower Planets within the Earth's orbit is somewhat different from that of the upper Planets, and since Mercury's orbit does not pass through the centre of the Earth's orbit, which for some might require an explanation, I will say something about it. Let $A B C D$ denote the Earth's orbit, whose centre is $E$, the centre of Mercury's orbit $F$, about which has been described its orbit GHIK; when therafter through $E$ and
cien Eertclootwech beteyckenen, diens middelpunt $E$, Mercuriuswechs middelpunt $F$, waer op berchicven is Gjn wech G HiK, dacr na deur Een F gherrocken de iniddellijn A C,en deur tpun: E de lini B D rechthouckich op A C, foo is I punt vent van des Eerrcloorwechs middelpunt $E$, en $G$ het naestepunt: Vcoit anghefien Ptolemces Eevonden hecfi dat Mercurius meefe brecden altijt ge beurden als het inronts middelpunt was by de middelverheden, fo volghe daer uÿt met flelling eens roerendē Eertiloots, dat de felve meefte breedēaitijr gefien worden als Mercuritis is an fijn wechs middelverheden $H$ en $K$, en den Eertcloot an B of $\mathrm{D}: \mathrm{Nu}$ dan H en K wefende de twee puntē welcke in Mercusiuswech degrootfte afwijeking crijgē diemë uyt den Eertclootwech fien can, foofeggen wy dier twee platen gencene fine te moeten commen rech:houckich op B D, dats in G I, of evewijdich, mette felve, en niet in HK gelijck Ptolemeus die ftelt:Maer om nu :e vinde waer de felve duyteraerfne valt, metfyaders Mercuriuswechs afwijething van rplat des duyfteraers, ghelijck van Sautnus int 21 en 22 voorftel ghedacn wiert, ick fouck voor al de langde derlini $\mathrm{H} K$, tot dien eynde aldus fegghende : De driehouck EK F heeft drie bekende palen, te weié Mercuriuswechs halfmiddellijn FK. 3s72, en de uytmiddelpunticheytlijn E F 94 ; deur de Byeenvouging des 13 voorftels defes 3 boucx, en dē houck K E F recht : Hier me gefocht de fijde E K, wort bevonden deur het 5 voorftel der platte drichoucken van I)aer roe noch foo vecl voor E. K, cemr voor de begheerde HK En van ED 10000 , gherrocken E K 3444 cerfie in d'oirden, blijit voor de lini K D,oock me voor HB
Dit aldus bekent fijade ick teycken een ander form alsgedaen wiert met Saturnus int 22 voor?tel, treckende ten eerften L M als Eertcloctwech overantghefien, everi an B D 20000 , en fel int middel van L M t'punt $N$ als Eertclootwechs middelpunt, ick treck daer na de lini O P van 6888 even an $H$ K tweede in d'oirden, en friende L Min $Q$, daer naL Ceve met H B 6s 66 derde in d'oirden, fgelijex M P even met K D,dats oock doernde $\sigma$ s $\xi 6$,en fegh den houck OLQte doen 1 tr. 45 (1), enPMQ4tr. s(1) volghens d'ervaring int I lidt: Dit foo weíende de cruylvierhouck IOM P heeft vijfbekende palen,ie weté L M 20000,LO 6ss6, M P6ss6, den houck O LQxtr. 4s (1), en den houck PMQ $4 \mathrm{ii} . \mathrm{s}$ (1) deur t'ghegheven. Merckt noch dat benevens de bovefchreve vijf palen tot meerder gerief bekent fiin drie ander, te wetē O P 6888, PLi 13444 als even genouch fijnde mer O P 6888 en OL 6 ss 6 t'famen, voort $O M$ doende oock foo vee!: Hier me ghefochiden houck $O Q L$, wort bevonden deur het 6 voerftel inde Byvough der platte veelhoucken voor Mercuriuswechs begheerde afwijeking vanden duyfteraer
En de lini $Q$ M van 11364 , waer af ghetrocken M N 10000, blijft voor de lini vande duyferaerfae $Q$ totten Eertclootwechs mid. delpunt N . 1364.

Tot hier toe is befchreven t'ghene ick van Mercuriusint befonder verclaren wilde. Belanghende ander byvallen als inde fes voorftellen van Saturnus breede befchrcverı fijn, die houden wy als voor. ghemeene reghel over Mercurius en d'ander Dwaclders te verftrecken.

Angaende overeencomminghen en verfehil defer fielling van Mercurits Dd 4 brec.
$F$ is drawn the diameter $A C$, and through the point $E$ the line $B D$ perpendicular to $A C, I$ is the point furthest from the centre of the Earth's orbit $E$, and $G$ is the nearest point. Further, since Ptolemy found that Mercury's greatest latitudes always occurred when the epicycle's centre was at the points of medium distance, it follows therefrom on the assumption of a moving Earth that these greatest latitudes are always seen when Mercury is at its orbit's points of medium distance $H$ and $K$, and the Earth at $B$ or $D . H$ and $K$ now being the two points which in Mercury's orbit receive the greatest deviation that can be seen from the Earth's orbit, we say that the intersection of these two planes must be perpendicular to $B D$, i.e. in $G I$, or parallel thereto, and not in $H K$, as Ptolemy assumes. But in order now to find where this line of nodes falls, as also the deviation of Mercury's orbit from the plane of the ecliptic, as was done with Saturn in the 21st and 22nd propositions, I seek first of all the length of the line $H K$, saying to this end as follows. The triangle $E K F$ has three known terms, to wit, the semi-diameter of Mercury's orbit $F K=3,572$, and the line of eccentricity $E F=947$ by the Compilation of the 13th proposition of this 3rd book, and the angle $K E F$ right; when the side $E K$ is sought therewith, this is found by the 5th proposition of plane triangles to be

When to this is added the same value for $E K$, the required $H K$ becomes

And when from $E D=10,000$ is subtracted $E K=3,444$ (the first in the present list), there is left for the line $K D$, and also for $H B$,

This being known, I draw another figure, as was done with Saturn in the 22nd proposition, first drawing $L M$ as the Earth's orbit, seen transversely, equal to $B D=20,000$, and I mark in the middle of $L M$ the point $N$, as centre of the Earth's orbit; I then draw the line $O P$ of 6,888 equal to $H K$ (the second in the list) and intersecting $L M$ in $Q$, then $L O$ equal to $H B=6,556$ (the third in the list), also $M P$ equal to $K D$, i.e. also making 6,556 , and I say that the angle $O L Q$ makes $1^{\circ} 45^{\prime}$, and $P M Q 4^{\circ} 5^{\prime}$, according to the experience in the 1st section. This being so, the crossed quadrilateral LOMP has five known terms, to wit, $L M=20,000, L O=6,556, M P=6,556$, the angle $O L Q=1^{\circ} 45^{\prime}$, and the angle $P M Q=4^{\circ} 5^{\prime}$ by the supposition. Note also that besides the above-mentioned five terms for greater convenience three more are known, to wit, $O P=6,888, P L=13,444$ as being substantially equal to $O P=6,888$ and $O L=6,556$ together, further $O M$ having the same value. When the angle $O Q L$ is sought therewith, by the 6th proposition in the Supplement of plane polygons 1) the required deviation of Mercury's orbit from the ecliptic is found to be

And when from the line $Q M$ of 11,364 is subtracted $M N=10,000$, there is left for the line from the line of nodes $Q$ to the centre of the Earth's orbit $N$

Up to this point has been described what I wished to explain in particular for Mercury. As to other cases, such as have been described in the six propositions
${ }^{1}$ ) See p. 189, note I.

## 316 Vande Breedeloop der Dtvaeld.

 breedeloop met die van Ptolemeus, daer affal ghefeyt worden inden volgenden Byvough des breedeloops met fteling eens vaften Eertcloots.NVVANVENVS<br>BREEDE.

Prolemess heeft deur dadelicke gaghellaghen ervaringhen de ghedaen: zen van Venus breedeloop alfins bevonden ghelijck van Mercurius int voorgaende ghefeyt is, welcke int befonder durdanich fijn.

Ten eertten foo was haer meefte breede op de noortfijde van 6 tr. 22 (1), gebeurendealtijt als haer inronts middelpunt was 90 tr. van fijn wechs verfepunt foo wel ter eender als terander fijde, dat is foo wel inden 270 tr. als inden 90 (welcke gotr, is onder des duyfteracrs 145 tr. ghemerckt deur de Byeenvouging des 13 voorftels defes 3 boucx het verttepunt onder des dupfteraers ss tr. is) en Venus in des inronts naeftepunt : Maer buyten het naeftepunt wefende, foo was heur noorderfche breede voor darmael cleender, en ten mintten doen fy alfoo ant verftepunt was.

Ten tweeden foo bevant hy op de zuytfijde de meefte breede van 1 tr. 2 (1), ghebeurende altijit als heur inronts middelpunt was gotr. van fijn wechs verftepunt foo wel ter eender als ter ander fijde, en Venus an haer inronts naeftepunt, maer buyten het naeftepunt wefende, foo was haer zuyderfche breede voor darmael cleender, en ten minften doenmenfe alfoo ant verftepunt vandt.

De fpiegheling by Psolemetss hier op met ftelling eens vaften Eertcloots veroirdent is met haer afweging, afwijcking, afkeering, en ander ghedaente, teenemael gheweeft alsdie van Mercurius, fulcx dattet onnoodich fchijnt de felve alhier te verhalen : Ende want de fpiegeling met felling eens roerenden Eertcloots ande voorgaende van Saturnus en Mercurius oock ghelijck is, en daes deur verftaen wort,foo en befchrijf ick die niet int langhe.

Angaende overeencomminghen en verfchil defer ftelling van Venus breedeloop met die van Ptolemeus, daer af falghefeyt, worden inden volghenden Byvough des breedeloops met ftelling eens vaften Eertcloots.
of Saturn's latitude, we assume that these apply as a common rule to Mercury and the other Planets.

As regards the correspondences and difference of this theory of Mercury's motion in latitude and that of Ptolemy, these are to be discussed in the subsequent Supplement of the motion in latitude on the assumption of a fixed Earth.

## - NOW OF VENUS' LATITUDE.

Ptolemy through practical observational experiences has found the character of Venus' motion in latitude to be in every respect as has been said of Mercury in the foregoing, which in particular is as follows.

Firstly, its greatest latitude on the North side was $6^{\circ} 22^{\prime}$, which always occurred when its epicycle's centre was at $90^{\circ}$ from its orbit's apogee, both on one side and on the other, i.e. both at $270^{\circ}$ and at $90^{\circ}$ (which $90^{\circ}$ is at $145^{\circ}$ of the ecliptic, seeing that by the Compilation of the 13th proposition of this 3 rd book the apogee is at $55^{\circ}$ of the ecliptic), and Venus was at the epicycle's perigee. But when it was outside the perigee, its. Northerly latitude was for that case smaller, and smallest when at the apogee.

Secondly, he found on the South side the greatest latitude to be $1^{\circ} 2^{\prime}$, which always occurred when its epicycle's centre was at $90^{\circ}$ from its orbit's apogee, both on one side and on the other, and Venus was at its epicycle's perigee; but when it was outside the perigee, its Southerly latitude was for that case smaller, and smallest when at the apogee.

The theory that Ptolemy on the assumption of a fixed Earth based thereon was, with its deviation, declination, deflection, and other properties, altogether the same as that of Mercury, so that it seems unnecessary here to describe it. And because the theory on the assumption of a moving Earth is also equal to the preceding one of Saturn and Mercury, and is understood therefrom, I will not describe it in full.

As regards the correspondences and difference of this theory of Venus' motion in latitude and that of Ptolemy, these are to be discussed in the subsequent Supplement of the motion in latitude on the assumption of a fixed Earth.

## B Y V O V G H DES BREEDELOOPS <br> DERVYFDWAELDERS Saturnus, Iupiter, Mars, Venus, en Mercurius, ghegront op felling eens vaften Eercloots.

## SUPPLEMENT

## OF THE MOTION IN LATITUDE OF THE FIVE PLANETS

Saturn, Jupiter, Mars, Venus, and Mercury, Based on the Theory of a Fixed Earth

## CORTBEGRYP DE-

## SES BYVOVGHS.



Ntt 19 rooorstel des 3 boucx is ghefeyt, gherievigher tefinn rekeninghen raande langdeloop der $\operatorname{D}$ voaelders te maken op de onegghen felling eens raasten Eertcloots, dan op de eygen eens roerenden, en dien rolghens foudcmen om de felve reden meughen feggben derghelïcke met felling eens ruasten Eertcloots oockoirboirder te fjn rvande breedeloop, en dat daerom de natuerlicke oirden foude rvereyffchen defen Bybough niet hier, maer int toveede bouckmet felling eens rvasten Eertcloot bebooren rvernougbt terovefen, ghelijck mette EManens breedeloop daer ghedaen is. Om bier op te antrpoorden, foo is te ruveten dat nadien grondelicke kennus defes handels ghetrocken rovort uyt de breedeloop metfftling eens roerenden Eericloots, orvelckealfdoen noch niet befchreven enn rvas, noch roolghens mün rooorghenomen oirden befchreven en moest ruvefen, foo en conde dit daer niet bequamelickcommen: Maer de Selve breedeloop nu int dèrde bouck revclaert finnde, foo connen rovy daer uyt trecken ighene de breedeloop snet felling eens ruaften Eertcloots ruereyybt, en dacrom bebick die bier befchreven.
Theeremata. Defelvefal fesrvoorstellen bebben, rovefende deerfe ruier *rvertoon Problemata. ghen, de laetSte tpvee * roverckstucken, te ruveten:

Het irvoorstel, dat de ronden der topec onderfe Drbaelders Venus en Mercurius die byde felders eensroasten Eertcloots inront dragers genoemt.


Het 2 , dattet plat des inronts der roüf Drvaelders Saturnus, Iupiter, Mars,V $\operatorname{enusen}$ ©M ercurius met felling eensrvasten Eertcloots, alt zjt e veboïdich is mettet plat des duysteraers.

Hst 3 , datrovefende trvee even en evevirüdege roxiden, bet een'booger alft ander, de lini tußchen bet middelpuntrvant leeghfe, eneen punt inden omtreck vant hooghste, even en evervidege te fynn mette lini tufchen finn lijcfandich tegenoverpunt int leeghfe, en bet middelpunt rvant booghfle.

Het 4 , dat de © Drpaelders met felling eens ruasten Eertcloots de felve fchünbaer duysteraerbreede ontf angen, diefe bebben met felling eens roerenden Eertcloots.

Het s, ovefende gegeven cens Droaelders meeffe noorder/fbe enzuyderfche breede, te ruindëfjin rovechs afovïcking roanden duyferaer: Oock mede boe rverre de duyferaerfne roanden Eertclootvalt, deur rovifconstighe ruvercking ghegront op felling eens roaften Eertcloots.

Het 6, om te ruindë eens Dvvaelders $\int$ cbünbaer duyferaerbreede opeen


## SUMMARY OF THIS SUPPLEMENT.

In the 19th proposition of the 3 rd book it has been said that it is more convenient to make calculations of the motion in longitude of the Planets on the untrue theory of a fixed Earth than on the true theory of a moving Earth; consequently it might be said for the same reason that similar calculations on the theory of a fixed Earth are also more suitable for the motion in latitude, and that therefore the natural order would require that this Supplement should not be added here, but in the second book, based on the theory of a fixed Earth, as has been done there with the motion in latitude of the Moon. In order to answer this argument, it is to be noted that since thorough knowledge of this subject is derived from the motion in latitude on the theory of a moving Earth, which had not yet been described at that moment, nor should have been described according to the sequence planned by me, this could not be properly inserted there. But now that this motion in latitude has been explained in the third book, we can derive therefrom what is required for the motion in latitude on the theory of a fixed Earth, and that is why I have described it here.

The Supplement is to comprise six propositions, the first four being theorems and the last two being practical problems, to wit:

The 1st proposition, that the circles of the two lower Planets Venus and Mercury, which are called deferents by those who hold the theory of a fixed Earth, are epicycles, and what they call epicycles are deferents.

The 2nd, that the planes of the epicycles of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury on the theory of a fixed Earth are always parallel to the plane of the ecliptic.
The 3rd, that when there are two equal and parallel circles, one higher than the other, the line between the centre of the lower one and a point on the circumference of the higher one is equal and parallel to the line between its homologous opposite point in the lower one and the centre of the higher one.

The 4 th, that on the theory of a fixed Earth the Planets acquire the same apparent ecliptical latitude that they have on the theory of a moving Earth.

The 5th, given a Planet's greatest northerly and southerly latitudes, to find its deferent's deviation from the ecliptic; also how far the line of nodes is from the Earth, by mathematical operations based on the theory of a fixed Earth.

The 6th, to find a Planet's apparent ecliptical latitude at a given time, by mathematical operations based on the theory of a fixed Earth.

Byvovgh des Breedeloops.

## VERTOOCH. IVOORSTEL。

De ronden der tvvec onderfe Dvvaclders Venus en Mercurius die by de felders eens vaften Eertcloots ghenoemt vvorden ${ }^{*}$ inirontdragers, fijninronden: En tge- Defrime ne fy inronden heeten, fijn inrontdraghers.

Tis deur kennis der voorgaende ftelling eens roerenden Eertcloots openbaer, dat de inronden der drie bovenfte Dwaelders met fteling eens vaften Eertcloots niet int wefen en beftaen, dan verfiert worden even te fijn anden Eericloowech, maer t'gaet anders toe mette twee onderfte, want t'ghene men Venus of Mercurius inront noemt, en is niet verfiert noch even anden Eertclootwech, dan om eyghentlick te fpreken bet is hun wech felf daer fy dadelick in loopen, en in ftelling eens vaflen Eertcloots, volghens d'oirden der drie bovenfle, inrontwech behoort te heeten : En daerom alfmen de voorgaende regel der langdeloop vande bovenite met ftelling eens vaften Eertcloots, foude willen ghemeen hebben over de twee onderfe,men foude daer mocten op de felve wijfe freken, te weten inrontwech noemen het cleenfte dat eyghentlick inrontwech is, en inront het grootfe dat verfiert wort even anden Eertclootwech, want daer me dan ghedaen als mette bovenfte, de reghel fal ghemeen fijn. Maer om van fulcke ftelling noch claerder te fpreken ick feghaldus: Angefien yder Dwaelders inront even is anden Eertclootwech, foo moetenfe met malcander al evegtoot fijn, waeruyt wijder volght, dat de weghen vande leegher Dwaelders teghen haer inronden verleken, minder fullen fijn dan de weghen vande hoogher Dwaelders.

Laet tot voorbeelt in defe cerfte volghende form op $A$ als middelpunt, befchrevē worden her rondt $B C$ als Saturnus inroniswech, diens halfmiddellijn A B doet deur de Byeenvouging des 13 voorttels vant 3 bouck 92308 , en op B als middelpunt, het inrondt diens halfmiddellijn $D B$ even anden Eertcloot. wech diens halfmiddellijn doet 10000 .

Ten tweeden fy op A als middelpunt, befchreven het rondt EF als Iupiters inrontswech, diens halfnuiddellijn A E doet deur de Byeenvouging des 13 voorttels $\boldsymbol{y}^{2174}$, en OP E als middelpunt het inront diens halfmiddellijn E G 10000.

Ten derden fy op A als middelpunt befchreven het rondt HIals Marsinrontswech, diens halfmiddellijn A H doet deur de Byeenvouging des 13 voorftels 15190, en Op Hals middelpunt het inront diēs halfmiddellijn H K 10000.

Ten vierden fy op L als middelpunt, befchreven het rondt M N als Venus inrontswech, diens halfmiddellijn ML doet deur de Byeenvouging des 13 voorftels 7194 , en op Mals middelpunt het inront, diens halfmiddellijn MO 10000 , welck inront in hem heeft des inrontwechs middelpunt $L$, anders dan een der drie voorgaende formen : Doch is kennelick dat de reghel des langdeloops voor alle vier ghemeen moet fijn.

Ten vijfden fy op $P$ als middelpunt befchreven het rondt $Q R$ als Mercirtius inrontswech, diens halfmiddellijn $P Q$ doet deur de Byeenvouging des 13 vóorftels 3572 , en op $Q$ als middelpunt het inront, diens halfmiddellijn $Q S$ 10000, welck inront in hem heeft den heelen inrontwech $Q R$, anders dan in een der vier voorgaende formen, doch is kennelick dat de reghel des langde-
loops

## THEOREM

## 1st PROPOSITION.

The circles of the two lower Planets Venus and Mercury, which are called deferents by those who hold the theory of a fixed Earth, are epicycles; and what they call epicycles are deferents.

It is evident from a knowledge of the foregoing theory of a moving Earth that the epicycles of the three upper Planets on the theory of a fixed Earth do not really exist, but are imagined to be equal to the Earth's orbit; but matters are different with the two lower Planets, for what is called Venus' or Mercury's epicycle is neither imagined nor really equal to the Earth's orbit; but, accurately speaking, it is their orbits themselves in which they move in actual practice, and which, on the theory of a fixed Earth, according to the arrangement of the three upper Planets, ought to be called deferents. Therefore, if the foregoing rule about the motion in longitude of the upper Planets on the theory of a fixed Earth should be desired to apply also to the two lower Planets, it would be necessary to speak there in the same way, to wit, call deferent the smallest, which really is a deferent, and epicycle the largest, which is imagined to be equal to the Earth's orbit, for if these are then dealt with in the same way as the upper Planets, the rule will apply generally. But to speak even more clearly of this theory, I say as follows: Since the epicycle of each Planet is equal to the Earth's orbit, they must all be equal to one another, from which it follows further that the orbits of the lower Planets, when compared with their epicycles, will be smaller than the orbits of the upper Planets.

By way of example, in this first subsequent figure let there be described about $A$ as centre the circle $B C$ as Saturn's deferent, whose semi-diameter $A B$ by the Compilation of the 13th proposition of the 3rd book ${ }^{1}$ ) makes 92,308 , and about $B$ as centre the epicycle, whose semi-diameter $D B$, equal to the semi-diameter of the Earth's orbit, makes 10,000 .

Secondly, let there be described about $A$ as centre the circle $E F$ as Jupiter's deferent, whose semi-diameter $A E$ by the Compilation of the 13th proposition makes 52,174 , and about $E$ as centre the epicycle, whose semi-diameter $E G$ makes 10,000.

Thirdly, let there be described about $A$ as centre the circle HI as Mars' deferent, whose semi-diameter $A H$ by the Compilation of the 13th proposition makes 15,190, and about $H$ as centre the epicycle, whose semi-diameter $H K$ makes 10,000 .

Fourthly, let there be described about $L$ as centre the circle $M N$ as Venus' deferent, whose semi-diameter $M L$ by the Compilation of the 13th proposition makes 7,194, and about $M$ as centre the epicycle, whose semi-diameter $M O$ makes 10,000, which epicycle has within it the deferent's centre $L$, unlike anyone of the three foregoing figures. It is obvious that the rule of the motion in longitude must be the same for all four Planets in common.

Fifthly, let there be described about $P$ as centre the circle $Q R$ as Mercury's deferent, whose semi-diameter $P Q$ by the Compilation of the 13th proposition makes 3,572, and about $Q$ as centre the epicycle, whose semi-diameter $Q S$ makes 10,000, which epicycle has within it the entire deferent $Q R$, unlike anyone of the four foregoing figures. It is obvious that the rule of the motion in longitude must be
${ }^{1}$ ) See p. 173 .

loops voor alle vijfgemeen moet fijn, fonder de verkeerde hafpeling te vallen diemen ontmoet anders doende. Dit oude misbruyck heeft lijn bekende oirfaeck, want tewijle d'eerfte onderfouckers des Hemelloops gheen kennisen hadden vandeghedaente des roerenden Eertcloots, foo en conden fy miet beter fchrijven dan van t'ghene voor hemlien uyterlick fcheen te wefen. Noch is oock te anmercken dat de regel des breedeloops(foo wel als des langdeloops) met felling eens vaften Eercloots, hier deur over allen ghemeen is ghelijck
int vol.
the same for all five Planets in common, without the occurrence of the tangle, due to inversion, which we meet with if we do otherwise. This ancient abuse has a well-known cause, for since the first investigators of the Heavenly Motions were not acquainted with the character of the moving Earth, they could merely describe things as they appeared to them. It is also to be noted that the rule of the motion in latitude (as well as of the motion in longitude) on the theory of a fixed Earth is thus common to all, as will become apparent in the sequel.
int volghende blijckenfal. T' s escvyT. De rondendan der twee onderfe Dwaelders Venus en Mercuiius die by de felders eens vaften Eertclootsghenoemt worden inrontdragers, fijn inronden : En t'ghenefy inronden beeten, fijn inrontdraghers, t'welck wy bewijfen moeften.

## VERTOOCH. <br> 2 VOORSTEL Het plat des inronts der vijf Dvvaelders Saturnus, Iupiter, Mars, Venus en Mercurius, is met ftelling eens vaften Eertclootsaltijt evevvijdich mettet plat-desduyfteraers.

Voor al anghefien het inront verfiert is evegroot metten Eertclootwech, en dat den Dwaelder daer inghenomen wort een langdeloop te hebben even en ghelijck metrelangdeloop des Eercloors in haer wech, foo volght daer ghe. nouciràem uyt defer twee ronden evewijdicheyt behooren torgelaten te worden, ghemerckt datter anders gheen volcommen ghelijcke langdeloop fijn en foude, nochtans anghefien de felve evewijdicheytuyt het voorgaẹnde can bewefen worden, foo fal ick die befchrijven als volght : Ick verkies hier toe de form des is voorftels vant 3 bouck, waer meick aldus fegh : Ten eerten foo is deur de ghemeene reghel befchreven int 22 voorftel des 3 boucx, bekent hoe groot dat moet fijn de breede van Mars ter placts des punts N ghefien uyt den toerenden Eertcloot O, maer foo gioot die daer wefen moet, even foogroot moet Mars breede oock lijn ter plaets van I met ftelling eens vaften Fertcloots, dats ghefien uyt A: Ende want A I even is met $O$ N, foo volght daer uyt dat de lini van I rechthouckich opt plat desduyfteraers even moet fijn ande lini van N rechthouckich opt plat des duyferaers. Ten tweedè fegh ick, dat foo lanck als is de lini van $N$ tot opt plat des duyteraers gefien uyt den roerenden Eertcloot an $P$, foo lanck moet oock fijn de lini van $F$ tot opt plat des duyfteraers ghefien uyt dea vaften Eertcloot $A$, om dat $A$ Feven is met $P N$.

Maer elck der twee linien vain $F$ en $N$ rechthouckich opt plat des duyfteraers, aldus even fijnde ande lini van $\mathbf{N}$ totopt plat des duyfteraers, foo moeten die felve iwee linien van $\mathbf{F}$ en $\mathbf{N}$ rechthouckich op t'plat des duyfteraers met malcander even fijn, en vervolgens foo is des inronts heele halfmiddellijn IF evewijdich mettet plat des duyfteraers. Ende op de felve voet ift openbaer te connen bethoont worden de middellijn deur H rechthouckich op F Ifoofe ghetrocken waer, oock evewijdich te wefen mettet plat des duyfteraers, want foo men deur $t^{\prime}$ pune $K$ treckt een middellijn rechthouckich op OP en datmen naem den roerenden Eertcloot te weien ande uyterften van dien (het welck cortheytshalven ghelaten wort) t'bewijs foude daer me fijuals vooren: Nu dan de middellijn F , met d'ander middellijn deur H ,foofe als ghefeyt is getrocken waer, beyde evewijdich fijnde metten duyfteraer, foo volghter uyt het heel plat des inronts F I evewijdich te wefen mettet plat des duyfteraers. Ende fulcx als dit bewijs is wefende het inront met fijn middelpuntaar $H$, alfoo fal derghelijcke bewefen worden tot alle plaetlen. Voort gelijck dit bewijs is ge weeft mette form des is voorftels, dienende voor de drie opperfte Dwaelders, alfoo falt oock fijn mette form des i 6 voorftels dienende voor de ondeıtte.

T' $\operatorname{E}$ S L V Y T. Het plat dan des inronts der vijf Dwaelders Saturnus, Iupiter, Mars, Vcnusen Mercurius, is met felling eens vaften Eertcloots alijit evewijdich mettet plat des duyiteraers, f'welck wy bewijen moeften.

CONCLUSION. The circles of the two lower Planets Venus and Mercury, which are called deferents by those who hold the theory of a fixed Earth, are therefore epicycles; and what they call epicycles are deferents; which we had to prove.

## THEOREM.

2nd PROPOSITION.
The planes of the epicycles of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury on the theory of a fixed Earth are always parallel to the plane of the ecliptic.

First of all, since the epicycle is imagined to be equal to the Earth's orbit and since the Planet is assumed to have therein a motion in longitude equal and similar to the motion in longitude of the Earth in its orbit, it follows sufficiently that the parallelism of these two circles should be admitted, since otherwise there would be no perfectly similar motion in longitude; nevertheless, since this parallelism can be proved from the foregoing, I will describe it as follows. I choose for this the figure of the 15 th proposition of the 3 rd book, with regard to which I say as follows: Firstly, by the common rule described in the 22nd proposition of the 3rd book it is known how great must be the latitude of Mars at the point $N$, when seen from the moving Earth $O$; but as great as it must be there, so great must also be Mars' latitude at $I$ on the theory of a fixed Earth, i.e. when seen from $A$. And because $A I$ is equal to $O N$, it follows that the line from $I$ perpendicular to the plane of the ecliptic must be equal to the line from $N$ perpendicular to the plane of the ecliptic. Secondly, I say that as long as is the line from $N$ to the plane of the ecliptic, when seen from the moving Earth at $P$, so long must also be the line from $F$ to the plane of the ecliptic, when seen from the fixed Earth $A$, because $A F$ is equal to $P N$.

But each of the two lines from $F$ and $I$ 1) perpendicular to the plane of the ecliptic thus being equal to the line from $N$ to the plane of the ecliptic, those two lines from $F$ and $I^{1}$ ) perpendicular to the plane of the ecliptic must be equal to one another, and consequently the epicycle's entire semi-diameter IF is parallel to the plane of the ecliptic. And on the same grounds it is evident that it can be proved that the diameter through $H$ perpendicular to $F I$, if it were drawn, would also be parallel to the plane of the ecliptic, for if through the point $K$ is drawn a diameter perpendicular to $O P$, and if the moving Earth were assumed to be at the extremities thereof (which is omitted for brevity's sake), the proof would be the same as above. The diameter FI, with the other diameter through $H$, if - as has been said - it were drawn, thus both being parallel to the ecliptic, it follows that the entire plane of the epicycle $F 1$ is parallel to the plane of the ecliptic. And such as is this proof when the epicycle is with its centre at $H_{\text {; a similar proof can be given for any place. Further, }}^{\text {a }}$ as this proof has been with the figure of the 15 th proposition, serving for the three upper Planets, so will it also be with the figure of the 16 th proposition, serving for the lower Planets.

CONCLUSION. The planes of the epicycles of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury on the theory of a fixed Earth are thus always parallel to the plane of the ecliptic; which we had to prove.

[^49]
## VERTOOCH. 3 VOORSTEL.

Wefende tovee even en evevvijdeghe ronden het een hoogher als tander, de linituffchen het middelpunt vant leeghfte, en een punt inden omtreck vanthoochfte, is even en evevvijdege mette lini tuffchen fijnlijckftandich teghenoverpuntint leeghfte, en het middelpunt van het hoochite.

T'ghegheyen. Laet A B het hoochfte rond fijn overcant ghefien diens middelpunt C, opperfte punt $A$, onderfe punt $B$, en $D E$ Efy het leeghte rondt, even en evewijdich met A B, diens middelpunt $F$, opperfte punt $D$, ondertte punt $E, e n F B$ fy de linituffchē het middelpunt $F$ vant leeghfte rondt, en eenich punt inden omtreck vant hooghite rondt, daer ick hier toe neem het onderfte punt B:Sghelijex fy D C de linit tuffchen fijn lijck fandich tegenoverpuntint leeghte, dat is het opperfte punt $D$, en het middelpunt C vant hooghfte rondt. Ende is te weten datick D ghenoemt hebbelijckftandich tegenoverpunt van B,uyt oirfaeck dat Eeen lijckftandich punt van $B$ is (als wefende in gin rondt foo het ondertte ghelijck $D$ ine Gije) en $D$ teghenoverpunt van $E$.

T'begheerde., Wy mocten bewijfen dat FB even en evewijdeghe is met DC. T'bewy s. Anghefien C B en D Feven en evewijdeghe halfmiddellijnen fijn deur t'ghegheven, foofija FBen DC tweelinien tuffchen de uyterfen van twee even en evewijdeghe; en daerom fijnfe oock felf even en evewijdeghe : En fulcx als hier bewefen is mettet lijckftandich tegenoverpunt vant onderfte punt $B$, alloo is derghelijcke openbaer mettet lijckftandich teghenoverpunt van alle voorgheftelt punt des omtrecx.
Tbestyyt. Wefende dantwee even en evewijdeghe ronden heteen hoogher als t'ander, de lini tuffchen het middelpunt vant leeghfte, en een punt inden omtreck vant hooghtte is even en evewijdeghe mette lini tuffchen fijn lijckfandich teghenoverpunt int leeghfte, en het middelpunt vant hooghfte, $t$ welck wy bewijfen moeften.

## VERTOOCH. $\quad 4$ VOORSTEL.

De Drvaelders ontfanghen met ftelling eens vaften Eertcloots de felve fchijnbaer duyfteraerbreede, diefe hebben met ftellingeens roerenden Eertcloots.

A nghefien ide Son of Eertcloot nummermeer breede en hebben, foo en valter niet afte fegghen. Angaende de breede der Maen, het is int voorgaen-
deghe-

## THEOREM.

## 3rd PROPOSITION

When there are two equal and parallel circles, one higher than the other, the line between the centre of the lower one and a point on the circumference of the higher one is equal and parallel to the line between its homologous opposite point in the lower one and the centre of the higher one.

SUPPOSITION. Let $A B$ be the higher circle seen transversely, its centre being $C$, the uppermost point $A$, the lowermost point $B$, and let $D E$ be the lower circle, equal and parallel to $A B$, its centre being $F$, the uppermost point $D$, the lowermost point $E$, and let $F B$ be the line between the centre $F$ of the lower circle and some point on the circumference of the higher circle, for which I here take the lowermost point $B$. Similarly, let $D C$ be the line between its homologous opposite point in the lower circle, i.e. the uppermost point $D$, and the centre $C$ of the higher circle. And it is to be noted that I have called $D$ homologous opposite point to $B$ because $E$ is a point homologous to $B$ (as being in its circle the lowermost point just as $D$ is in its circle) and $D$ is the point opposite $E$.

WHAT IS REQUIRED. We have to prove that $F B$ is equal and parallel to $D C$. PROOF. Since $C B$ and $D F$ are equal and parallel semi-diameters by the supposition, $F B$ and $D C$ are two lines between the extremities of two equal and parallel lines, and for this reason they are also equal and parallel themselves. And such as has here been proved for the homologous point opposite the lowermost point $B$, so the same is evident for the homologous point opposite any given point of the circumference.

CONCLUSION. When there are two equal and parallel circles, one higher than the other, the line between the centre of the lower one and a point on the circumference of the higher one is thus equal and parallel to the line between its homologous opposite point in the lower one and the centre of the higher one; which we had to prove.

THEOREM.
4th PROPOSITION.
On the theory of a fixed Earth the Planets acquire the same apparent ecliptical latitude that they have on the theory of a moving Earth.

Since the Sun or Earth never have any latitude, there is nothing to be said about them. As to the latitude of the Moon, it has appeared in the foregoing

DES BREEDELOOPS:
deghebleken die in deen en d'ander ftelling een felve te wefen, fulcx datter alleenelick vande vijf ander verclaring behouff.

T'ghegheven. Laet A B den duyteraer bedien overcant ghefien ghes lijck al d'ander ronden, $C$ D fy den Eertclootwech, diens middelpunt $E$, waer

1 FORM.


2 FORM.
 sinde eerite form dienẽde voor de drie bo. vêtte Dwaelders, of waer buyte alsinde 2 form we fende Mercurius reyckening dienende voor de twee onderfte, getrocke den Dwaelderwech FG, in welcke ick neem den Dwaelder te wefen ant oppertte punt $F$, en den Eertcloor an haer wechs ${ }^{\circ}$ oppertè püt C. Tot hier toe de teyckening gedae fijnde vande ftelling eēs rocrendë Eertcloots, ick fal nu die cens vaften beginnen, tot welckē eynde ick des Eericlootwechs middelpūt E voor vaften Eertcloot neem, want dat ini die ftelling daer tegen fulcke betcyckening heeft deur her is voorftcl des 3 boucx, en FG die eerft was Dwaelderwech, neem ick nu voor inrontwech:Voort anghefien den Dwaelder ghenomen is tewefen an des wechs opperfte punt $F$, foo moet het inrondt t'welck HI fy, met fijn middelpunt wefen an $F$,oock even en èvewijdich mettē Eertclootwech C D deur het 2 voorfel defes Byvoughs. Voort want den rocrenden Ecrtcloot ghenomen wiert an $\mathbf{C}$, foo noct den Dwaelder ghenomen fijn an I als lijckftandich tegenoverpunt van C , waer af de reden blijckt int is voorfeldes 3 boucx. T'begheerde. Wy moeten bewijfen dat den Dwaelder an I, met ftelling des vaften Eertcloots an $F$, de felve fchijnbaer duyteraerbreede ontfangt, die hy heeft an $F$ met ftelling des roerenden Eertcloots an $C$.
 Anghefien $C D$ even en evewijdeghe is met $H I$, foo fijn haer helfren EC, FI oock even en evewijdeghe, en de twee linien daer tufchen $E I$, C F moeten oock evewijdege fijn, en dacrom oock den houck A EI, wefende des Divael-
Ee 2 ders
that it is the same in one theory as well as the other, so that an explanation is required only for the five other Planets.

SUPPOSITION. Let $A B$ denote the ecliptic, seen transversely like all the other circles; let $C D$ be the Earth's orbit, its centre being $E$, through which - as in the first figure serving for the three upper Planets - or alongside of which as in the 2nd figure, which is a drawing of Mercury, serving for the two lower Planets - is drawn the Planet's orbit FG, in which I take the Planet to be at the uppermost point $F$, and the Earth at its orbit's uppermost point $C$. The drawing so far having been made for the theory of a moving Earth, I will now start on one for the theory of a fixed Earth, to which end I take the centre of the Earth's orbit $E$ for the fixed Earth, for in this theory this has the said significance by the 15 th proposition of the 3rd book, and $F G$, which first was the Planet's orbit, I now take for the deferent. Further, since the Planet is assumed to be at the orbit's uppermost point $F$, the epicycle, which shall be $H I$, must be with its centre at $F$, also equal and parallel to the Earth's orbit $C D$ by the 2nd proposition of this Supplement. Further, because the moving Earth was taken at $C$, the Planet must be taken at $I$ as homologous point opposite $C$, the reason of which appears from the 15 th proposition of the 3rd book. WHAT IS REQUIRED. We have to prove that the Planet at $I$, on the theory of the fixed Earth at $E$, acquires the same apparent ecliptical latitude that it has at $F$ on the theory of the moving Earth at $C$.

PRELIMINARY. Let the two lines EI, CF be drawn. PROOF. Since $C D$ is equal and parallel to $H I$, their halves $E C, F I$ are also equal and parallel, and the two lines in between, $E I$ and $C F$, must also be parallel, and therefore also the
ders fchijnbaer duyfteraerbreede ghefien uyt den valten Eertcloot $E$, is even anden houck A C F wefende des Dwaelders fehijnbaer duyfteraerbrecdeghefien uyt den roerenden Eertcloot $C$ : Maer fulcx als hier bethoont is wefende den roerenden Eertcloot en den Dwaelder tot dier rondē hooghfte en leeghfte punt, fal oock alfoo blijcken tot alle plaetfen, om dat ghelijck in defe twee evewijdege ronden CD , H l, de liai EI tuffchen het middelpunt E vant leeghfte rondr, en het punt I inden omtreck vant hooghtte, even en evewijdeghe is mette lini C F, tuffehen fijn lijckftandich teghenoverpunt $C$ int leeghfte, en het middelpunt $F$ vant hooghite,foo fijn alle fulcke linien overal evewijdeghe deur het 3 voorttel defes Byvoughs. T' B ESLVYT. De Dwaclders dan ontfanghen met ftelling eens vaften Eertcioors de felve fehijnbaer duyfteraerbreede diefe hebben met ftelling eens rocrenden Eertcloots, t'welck wy bewijfen mociten.

## 5 VOORSTEL.

Wefendeghegheven eens Dvvaelders meefte noörderfche en zuyderche breede, te vinden fijn vvechs afvvijcking vanden duy fteraer: Oock mede hoe verre de duyfteraerfne vanden Eertcloot valt, deur vvifconftighe vverckingghegront op ftelling eens vaften Eertcloots.

A ngefien deninroniwech der drie bovente Dwaelders deur den Eertcloot ftreckt, of ghenomen wort voor na ghenouch daer deur te ftrecken, maer vande twee onderfedaer buyten, foo fal ick daer aftwee veorbeelden befchrijven,

## I Voorbeelt ruande drie bovenste Drvaelders.

T'ghe gheven. Laet A Bden duyfteraer beteyckenen overcant ghefien, diens middelpunt dats den vaften eertcloot C , wacr deur ghetrocken is Saturnus inrontswech D E, Atreckende C D na de noortfijde, C E na de zuytfijde, fulcx dat detwee houcken A C D, BC E, des inrontwechs afwijcking bedien, en by lijn uyterfe punt $D$ nat'Noorden als middelpunt is befchreven het inront $F G$, evewijdich metten duyteraer $A B$, diens verftepunt $F$, naeftepunt $G$, van tiwelck gerrocken fy de lini $G$ C,en den houck $A C G$, doet als bevonden wiert inde ervaring des 20 voorftels des 3 boucx 3 tr. 2 (1) : Sghelijex is opt uyterlte punt E na het Zuyden als middelpunt, befchreven het inront $H \perp$, evewijdich metren duyfteraer A B , diens verftepunt $I$, nacftepunt $H$, van t'welck getrocken fy de lini HC, en den houck B C H doet als bevonden wiert inde ervaring des voorfchreven 20 voorftels 3 tr $\boldsymbol{y}$ (1). T'bEGHEERDE. Wy moeten vinden des inrontwechs $\mathrm{D} E$ afwijeking vanden duyfteraer, dats den houck ACD.

## T' WERCK.

De driehouck C D G heeft drie bekende palen, te weten D G 10000 deur r'geftelde, $\mathbf{C G}$ foo veel als ten tijde der ervaring dede de lini vanden Eerscloot tottet inronts nactepunt, twelck deur t'vervolgh van het 13 voorftel des 3 boucx int gbemeen bekent wort, en befonderlick bevonden is int 21 voorftel des 3 boucx van 88718 , of anders om gherieviger wercking machmen nemen delinj
angle $A E I$, being the Planet's apparent ecliptical latitude when seen from the fixed Earth $E$, is equal to the angle $A C F$, being the Planet's apparent ecliptical latitude when seen from the moving Earth $C$. But such as has here been proved when the moving Earth and the Planet are at their circles' uppermost and lowermost points, the same will also be apparent in any place, because just as in these two parallel circles $C D, H I$ the line $E I$ between the centre $E$ of the lower circle and the point $I$ on the circumference of the higher circle is equal and parallel to the line CF between its homologous opposite point $C$ in the lower and the centre $F$ of the higher circle, thus all such lines are always parallel by the 3rd proposition of this Supplement. CONCLUSION. On the theory of a fixed Earth the Planets thus acquire the same apparent ecliptical latitude that they have on the theory of a moving Earth; which we had to prove.

## 5th PROPOSITION.

Given a Planet's greatest northerly and southerly latitudes, to find its deferent's deviation from the ecliptic; also how far the line of nodes is from the Earth, by mathematical operations based on the theory of a fixed Earth.

Since the deferent for the three upper Planets passes through the Earth, or is assumed to pass through it approximately, but for the two lower Planets outside it, I will describe two examples thereof.

## 1st Example of the Three Upper Planets.

SUPPOSITION. Let $A B$ denote the ecliptic, seen transversely, whose centre is the fixed Earth $C$, through which is drawn Saturn's deferent $D E, C D$ tending towards the north side, $C E$ towards the south side, so that the two angles $A C D$, $B C E$ denote the deferent's deviation, and about its extremity $D$ towards the North as centre has been described the epicycle $F G$, parallel to the ecliptic $A B$, its apogee being $F$, its perigee $G$, from which let there be drawn the line $G C$; then the angle $A C G$, as was found in the experience of the 20th proposition of the 3 rd book, makes $3^{\circ} 2^{\prime}$. Similarly, about the extremity $E$ towards the South as centre has been described the epicycle $H I$, parallel to the ecliptic $A B$, its apogee being $I$, its perigee $H$, from which let there be drawn the line $H C$; then the angle $B C H$, as was found in the experience of the aforesaid 20th proposition, makes $3^{\circ} 5^{\prime}$. WHAT IS REQUIRED. We have to find the deviation of the deferent $D E$ from the ecliptic, i.e. the angle $A C D$.

## PROCEDURE.

The triangle $C D G$ has three known terms, to wit, $D G=10,000$ by the supposition, $C G$ as much as the line from the Earth to the epicycle's perigee was at the time of the experience, which by the sequel of the 13th proposition of the 3rd book becomes known generally and has been found in particular in the 21 st proposition of the 3 rd book to be 88,7181 ), or otherwise, with a view

[^50]de lini CD, doende na ghenouch 10000 meer, dats 98718 , en den houck D G C 176tr. 58 (1);als even fijnde metten houck G C B, die halfrontfchil is der bekende grootfe breede A C G 3 tr. 2 (1): Hier me gefocht den houck C D G, wort bevonden deur het $s$ voorftel der platte drichoucken van 2 tr. 43 (1), twelck oock is voor den houck A C D begheerde afwijcking des.wechs vanden duyftetaer, overcencommende mette 2 tr. 43 (1) die int 22 voorftel des 3 boucx ghevonden wierden. Ick doe daer na derghelijcke wercking over d'ander fijde,fouckende den houck B C E , tot dien eynde aldus regghende : Dedriehouck C HE heeft drie bekende palen, te weten EH 10000 deur t'gheftelde, CH 752 Iodeur t'vervolgh van het 13 voorftel des 3 boucx,en den houck CH E 176 tr. ss (1), als even fijnde mettē houck A CH, die halfrontfchil is vande bekende grootfte breede 3 tr. s (1): Hier me ghefocht den houck HEC, wort bevonden deur het 6 voorfel der platte driehouckē van 2 tr. 43 (1), t'welck oock is voor den houck B C E,even vallende mettë bovefchreven houck AC D oock van 2 tr. 43 (1), fulcx dat volghens defe rekening GH deur den valten Eertcloot C ftreckt. Maer by aldien foodanighe evenheyt niet ghecommen en waer, ghelijckt mette twee onderne Dwaelders ghebeurt, men foude dan volghen de wijfe des nabefchreven 2 voorbeelis.

## I MERCK

Noch is teweten dat Saturnus inrontwechs af: wijcking vanden duyfteraermet ftelling eens vaften Eericloots can gevonden worden opeen ander wijfe, welcke alfoofe noch opentlicker verclaert de ghemeenfchap der twee fellinghen eens vaften en roerenden Eertcloots, foo fal ick die met een befchrijven. Lact als by manier van bereytfel ghetrocken worden DK, even en evewijdeghe met G C: Sghelijex E L, even en evewijdeghe met H C; ${ }^{\prime}$ 'welck foo fijnde de cruyfvierhouck K D E L, is even en ghelijck metten crayfvierhouck A D E B des 22 voorftels vant 3 bouck, daerom hier me ghefocht des inrontwechs $C D$ afwijcking vanden duyfteraer na de manier des felven 22 voorftels, t'ghene daer uyt comt is t'begeerde, en moet noorfakelick even fijn mettet befluyt vande voorgaende eerfte wercking. En blijckt hierme fichtbaerlick hoe deform der ftelling eens roerenden Eertcloots, te weten den cruyfivierbouck K D EL,metten Fertclootwech K L, een felve belluyt voortbrengt als de formder felling eens vallé Eertcloots C, en haer inront ter cender fijde G D F, ter ander HE 1 , want den driehouck CD G is even en gelijck metten driehouck DCK, alfoo oock is CE H met ECI, waer uyt volght dat alfulcken afwijcking als van C $D$ bevonden wort deur de bekende palen des driehoucx DCK, foodanighe moeter oock bevonden worden deur de bekende palen des driehoucx CD G. Oock is Ee $_{3}$ fghe-
to a more convenient procedure, the line $C D$ may be taken, which is approximately 10,000 more, i.e. 98,718 ; and the angle $D G C=176^{\circ} 58^{\prime}$ as being equal to the angle $G C B$, which is the supplement of the known greatest latitude $A C G=3^{\circ} 2^{\prime}$. When the angle $C D G$ is sought therewith, it is found by the 5 th proposition of plane triangles to be $2^{\circ} 43^{\prime}$, which is also the value of the angle $A C D$, the required deviation of the deferent from the ecliptic, corresponding to the $2^{\circ} 43^{\prime \prime}$ found in the 22nd proposition of the 3 rd book. I then perform a similar operation on the other side, seeking the angle $B C E$, saying to this end as follows. The triangle CHE has three known terms, to wit, $E H=10,000$ by the supposition, $C H=75,210$ by the sequel of the 13 th proposition of the 3 rd book, and the angle $C H E=176^{\circ} 55^{\prime}$, as being equal to the angle $A C H$, which is the supplement of the known greatest latitude $3^{\circ} 5^{\prime}$. When the angle HEC is sought therewith, it is found by the 6th proposition of plane triángles 1) to be $2^{\circ} 43^{\prime}$, which is also the value of the angle $B C E$, which is equal to the above-mentioned angle $A C D$, also $2^{\circ} 43^{\prime}$, so that by this calculation $G H$ passes through the fixed Earth C. But if such equality had not resulted, as is the case with the two lower Planets, the method of the following (2nd) example would have to be used.

## NOTE.

It is also to be noted that the deviation of Saturn's deferent from the ecliptic on the theory of a fixed Earth can be found in a different manner, and since this makes the similarity of the two theories of a fixed and a moving Earth even clearer, I will describe it at the same time. By way of preliminary let there be drawn $D K$, equal and parallel to $G C$. Similarly $E L$, equal and parallel to $H C$. This being so, the crossed quadrilateral $K D E L$ is equal and similar to the crossed quadrilateral $A D E B$ of the 22 nd proposition of the 3rd book. Hence, when the deviation of the deferent $C D$ from the ecliptic is sought therewith in the manner of the said 22 nd proposition, the result is the required value and must needs be identical with the result of the foregoing first procedure. And thus it is clearly evident that the figure of the theory of a moving Earth, to wit, the crossed quadrilateral $K D E L$, with the Earth's orbit $K L$, leads to the same result as the figure of the theory of a fixed Earth $C$, and its epicycle on one side GDF, on the other side $H E I$, for the triangle $C D G$ is equal and similar to the triangle $D C K$, and so is CEH to ECL, from which it follows that the same deviation that is found for $C D$, from the known terms of the triangle $D C K$, must also be found

[^51]fghelijex te vertaen met d'ander twee drichoucken. En fulcx als hier gheweeft is het voorbeelt met Saturnus, alfo ift kennelick te fullen fijn met d'ander twee bovenftelupiter en Mars.

## ${ }^{2}$ Voorbeel ruande tvoee onderste Dovaelders.

Hoewel al de letters inde form defes 2 voorbeelts van fulcke beteyckening fijn als die des eerften voorbeelts, en dat yemant achten mocht de meyning van dit deur t'eerftegenouch bekent te wefen, nochtans infiende de verfcheydenheyt der uyterlicke form, te weten dathier den inrontwech veel cleender is dan het inront, daer int I voorbeelt de wech veel grooter was, en dat bové dien defe wech niet deur dē Eertcloot en ftreet, fo befchrijfick noch dit 2 voorbeelt. T'GEGEYEN.Laet de deelen der volgende form ABCDEFGHIKL fijn van Mercurius, met fulcke beteyckening als de deelen der form des eerften voorbeelis van Saturnus; doch daer in verfchillende, dat defen inrontswech DE die ghevonden fy gheweeft na de manier vant werck befchreven int 1 voorbeelt, niet en frecke deur den Eertcloot C, maer fniende den duyfteraer int punt $M$ : Ten anderen daer het inront van Saturnus veel cleender viel dan fijn wech, in die placts if ift hier veel grooter, te weten $F$ G in fulckē reden tot D F, als inde form des i voorftels defes Byvoughs de lini P Qtot QR, voort doet den houck BCGI tr. 45 (1), en A CH 4 tr. 5 (3) als bevondè wiert inde ervaring van Mercurius breede achter het 25 voorfel des 3 boucx. T'begheerde. Wy moeten vinden des inrontwechs $\mathrm{D} E$ afwijcking vanden duyleraer, dats den houck A M D.

## T'W ERCK.

Deur des driehoucx DC G drie bekende palen, wort als op de wijfe des 1 voorbeelts ghevonden den houck

CDG.
En den houck DCG.
Daer toe den ghegheven houck BC G.
Comt den houck BCD.
Die ghetrocken van 180 tr. blijft den houck. D CK.
Daer toe vergaert den ghegheven houck
KCH.
Comt den houck
DCH.
Deur des driehoucx ECH drie bekende palen wort als op de wijfe des a voorbeeles, ghevonden den houck
Die vergaert tot DCH fevende in d'oirdë, comtden houck

HCE.

De driehouck D C E heeft drie bekende palen, te weten dien houck DC Eneghende in d'oirden, en de twee linien C D, CE, vanden Eertcloot tot des inronts middelpunt, die bekent worden
deur
from the known terms of the triangle $C D G$. The same is also to be understood for the other two triangles. And such as has here been the example with Saturn, the same will it obviously also be with the other two upper Planets Jupiter and Mars.

## 2nd Example of the Two Lower Planets.

Although all the letters in the figure of this 2nd example have the same denotation as those of the first example, and it may be considered that the meaning of this example is sufficiently clear from the first, nevertheless, recognizing the difference of outward appearance, to wit, that here the deferent is much smaller than the epicycle, whereas in the 1st example the deferent was much larger, while moreover this deferent does not pass through the Earth, I will also describe this 2nd example.

SUPPOSITION. Let the parts of the following figure $A B C D E F G H I K L$ be of Mercury, with the same denotation as the parts of the figure of the first example of Saturn, but differing in that this deferent $D E$, which shall have been found in the manner of the procedure described in the 1st example, does not pass through the Earth $C$, but intersects the ecliptic in the point $M$. Secondly, whereas the epicycle of Saturn was much smaller than its deferent, it is much larger here instead, to wit, $F G$ in the same ratio to $D E$ as in the figure of the 1st proposition of this Supplement the line $P Q$ to $Q R$. Further the angle $B C G$ makes $1^{\circ} 45^{\prime}$ and $A C H 4^{\circ} 5^{\prime}$, as was found in the experience of Mercury's latitude, after the 25th proposition of the 3rd book. WHAT IS REQUIRED. We have to find the deviation of the deferent $D E$ from the ecliptic, i.e. the angle $A M D$.

## PROCEDURE.

From the three known terms of the triangle $D C G$ is found, in the same manner as in the 1st example, the angle
$C D G$.

## And the angle

DCG.
When to this is added the angle . BCG,
We get the angle
When this is subtracted from $180^{\circ}$, there is left the angle $D C K$.
When to this is added the given angle
We get the angle
From the three known terms of the triangle $E C H$ there is found, in the manner of the 1st example, the angle

When this is added to $D C H$ (the seventh in this list), we get the angle
The triangle $D C E$ has three known terms, to wit, that angle $D C E$ (the ninth in the list) and the two lines $C D, C E$, from the Earth to the
deur t'vervolgh van het 13 voorftel des 3 boucx: Hier me wort ghevonden den houck

CDE.
Daer toe vergaert dê houck CD G eerfte in d'oirden, comt dê houck E DG,dats oock dē houck M D G, welcke evẽ fijnde met A M D, om dat $M D$ is tuffchen de twee evewijdege $K M, D$ G, foo is daer bekent de begheerde afwijcking

AMD.
Tis oock kennelick hoe ghevonden fal worden de langde der lini M C, dat is foo verre de duyfferreerfae vanden Eetcloot valt, want den driehouck DC M heeft drie bek ende palē, te weten dē houck CD M, als wefende den houck C D Eachtfec in d'oirden; voort den houck MCD, als even fijnde metten houck $C D G$ eerfte in d'oirden, om dat $C$ D istuffchen de twee evewijdeghe K C,DG, ten derden de fijde $C D$, met welcke drie palen als ghefeyt is bekent wortde lini

MC:
Noch is te weten dat Mercurius inrontwechs afwijcking vanden duyfteraer met felling eens vaften Eertcloots can gevonden worden op een ander wijfe, welcke alfoofe noch opentlicker verclaert de gemeenfchap der twee ftellinghen eens vaften en roerenden Eertioloots, foo fal ick die met een befchtijven. Laet als by manier van bereytfel ghetrocken worden D K ; even en'evewijdeghe met GC: Sghelijex E Leven en evewijdeghe met $H$ C, twelck foo fijnde, de cruyfvierhouck K D E L, is even en ghelijck metten cruyfvierhouck L O M P int 3 lidt van Mercurius breede achter het $2 s$ voortel des 3 boucx, daerom hier me ghefocht des inrontwechs $M$ Dafivijcking vanden duyferacr na de manier des felven 3 lids, t 'ghene daer uyt comt is t 'begheerde, en moet nootakelick even fijn mettet belluyt vande voorgaende cerfte wercking. En blijckt hier me fichtbaerlick hoe de form der felling cens roerenden Eertcloots, een felve befluyt voortbrengtals de form der felling eens vaAê Eertcloots, alfo van dergelijcke wat breeder gefeyt is achter het I voorbeclt.

En fulcx als hier gheweeflis het voorbeelt met Mercurius, alfoo ift kennelickte fullen fijn met dander onderfe Dwaelfer Venus. T bes iv yt. Werende dan ghegheven eens Dwaelders meefte noorderfche en zuyderche breede, wy hebben gevonden fijn wechs afwijcking vanden duyfteraer: Oock mede hoe verre de duyfteraerfne vanden Eertcloot valt, deur wifconftighe wercking ghegront op ftelling eens vaften Fercloots, na den eyfch.

## 6 VOORSTEL.

## Tevinden eens Dvvaelders fchijnbaerduyfteraerbreede opeen ghegheven tijt,deur vvifconftige vverckinggegront op ftelling eens vaften Eertcloots.

Cm ibegheerde te crijghen, wy fullen eerft vinden de lini vanden Dwaelder int inront rechthouckich op den dayfteraer. Als bygelijckenis inde form des $\varsigma$ voorftels defes Byvoughs, de verdochte lini van $F$ rechthouckich opt plat des duyfieraers A B: Maer fulcke lini is tot allen plaetfen des inronts, even ande lini van des inronts middelpuntals $D$, rechthouckich op A B, deur dié DF evewijdeghe is met $A B$, en daerom falmen defe altijt vinden in plaets van die, $t^{t}$ welck doende foo en fal de manier van t'vinden der felvegeen verfchil hebben,mette vinding van derghelijcke lini in fecling ecns roerenden Eertcloots

Ec 4: befchre-
epicycle's centre, which become known from the sequel of the 13th proposition of the 3rd book.

Herewith is found the angle
CDE.
When to this is added the angle $C D G$ (the first in the list), we get the angle $E D G$, i.e. also the angle $M D G$, and since this is equal to $A M D$, because $M D$ is between the two parallel lines $K M, D G$, there is known. the required deviation
$A M D$.
It is also obvious how the length of the line $M C$ has to be found, i.e. as far as the line of nodes is from the Earth, for the triangle $D C M$ has three known terms, to wit, the angle $C D M$, which is also the angle $C D E$ (the eighth in the list); further the angle $M C D$, which is equal to the angle $C D G$ (the first in the list) because $C D$ is between the two parallel lines $K C, D G$; thirdly, the side $C D$, by means of which three terms, as has been said, is found the line
It is also to be noted that the deviation of Mercury's deferent from the ecliptic on the theory of a fixed Earth can be found in a different manner, and since this makes the similarity of the two theories of a fixed and a moving Earth even clearer, I will describe it at the same time. By way of preliminary let there be drawn $D K$; equal and parallel to $G C$. Similarly $E L$ equal and parallel to $H C$. This being so, the crossed quadrilateral $K D E L$ is equal and similar to the crossed quadrilateral LOMP in the 3 rd section of Mercury's latitude, after the 25 th proposition of the 3rd book 1). Hence, when the deviation of the deferent $M D$ from the ecliptic is sought therewith after the manner of the said 3rd section, the result is the required value and must needs be identical with the result of the foregoing. first procedure. And from this it is clearly evident that the figure of the theory of a moving Earth leads to the same result as the figure of the theory of a fixed Earth, as has been said somewhat more fully in a similar case after the 1 st example.

And such as has here been the example with Mercury, the same will it obviously be with the other lower Planet Venus. CONCLUSION. Given a Planet's most northerly and southerly latitudes, we have thus found the deviation of its deferent from the ecliptic; also how far the line of nodes is from the Earth, by mathematical operations based on the theory of a fixed Earth; as required.

## 6th PROPOSITION.

To find a Planet's apparent ecliptical latitude at a given time, by mathematical operations based on the theory of a fixed Earth.

In order to get the required value, we first have to find the line from the Planet in the epicycle perpendicular to the ecliptic; for example, in the figure of the 5 th proposition of this Supplement, the imagined line from $F$ perpendicular to the plane of the ecliptic $A B$. But such a line is in any place of the epicycle equal to the line from the epicycle's centre ( $D$ ) perpendicular to $A B$, because $D F$ is parallel to $A B$, and therefore the one will always be found instead of the other. When doing so, the method of finding it will not be different from the finding of a similar line, described in the theory of a moving Earth in the 24th proposition of the 3 rd book. The cause of this similarity is even more
${ }^{1}$ ) In the figure on page 248 .
befchreven int 24 voorftel des 3 boucx : De oirfaeck defer ghelijckheyt is daer deur noch kennelicker, dat den Dwaelder met ftelling eens roerenden Eartcloots, comt ter plaets van des inronts middelpunt met ftelling eens vaften Fertcloots. Nu dan fulcke lini alfoo bekent wordende, en daer benevens deur t'vervolgh vant 13 voorftel des 3 boucx de lini vanden vaften Eertcloot totten Dwaclder, foo heeft den rechthouckighen drichouck begrepen onder de felve Hypothenufe twee linien, en de derde * fchoenfche drie bekende palen, waer me opnbaerlick ghevonden wort de beghecrde breede als int 25 voorftel des 3 boucx met ftelling eens roerenden Fericloots, fulcx dat my onnoodich ghedocht heeft het felve hier andermacl int langhete befchrijven. T'beslvy i. Wy hebben dan ghevonden eens Dwaelders fchijpbaer duyfleraerbreede op een ghegheven tijt, deur wifconftighe wercking ghegront op felling ceas vaften Eertcloots, na den eyfch.

## SAMING

Van ettelicke overeencommingen en verfchillen tuffchen de befchrijving des breedeloops defes Byvoughs, mette breedeloop van Prolemeus.

Alfoo my inde voorgaende befchrijving defer ftof des breedeloops,fomwijJen vootvielen eenighe verfcheydenheden tuffehen de felve en de breedeloop by Piolemess befchreven, foo heefi my bequamer ghedocht die hier by den anderen te verfamen, dan inde voorgaende leering te vermenghen, fulcx dat ick daer af fellen fal de voighende leden.

## 1 LID T.

Anghefien d'oirfaeck des breedeloops der Dwaelders ghetrocken wort uyt felling eens roerenden Fertcloots die tot Ptolemeus tijt onbekent fcheen, foo heeft hy nochtans int veroirdenen der fpiegheling vande drie bovenfte, de fake al feer na ghecommen, fellende het inront te wijle het loopt altijt bycans evewijaichvanden duyfteraer te biji ven, want foo hy dat gelijck de fake vereyfcht, enint 2 voortel des Byvoughs bewefen is te moeten fijn, voor heel evewijdich ghenomen hadde (t'fchilde als blijckt int 3 Heofiftick fijns 13 toucx in Saturnusloopalleenelick 2 tr. 4 (i), dat den houck gemaeckt vant inront mette wech, ten alderhoochiten grooter was dan den houck gemacckt vande wech metten duyfteraer: In lupiter was fulck verchil alleenelick van Itr. 6 (1), in Mars vani tr. is (1), ja het inront anden duyfteraer fijnde, $t$ 'waffer volgens aijn ftelling teenemael in fonder foyen, ghelijck na de velcommen fpiegheling fijn moet) foo en waer de taftende onfeker wercking int foucken vande afwijcking der inrontswegen befchreven int felve 3 Hoofffick niet noodich gheweef, en fouden d'ander rekeninghen van der Dwaelders breeden, dan deurgaens overeenghecommen hebben met defe, fonder daer af indereft foo te verfchillen als int volghende 2 lidt ghefeyt fal worden.

## 2 L I D T.

Prolemcss tafel van Saturnus breedeloop int 5 voortel fijns 13 boucx, en fchijntgeen genouchfaem overeencomming ie hebben met fijn fpiegheling. Om van t'welck breeder verclaring te doen, foo is te weten dat hy int 4 yoorftel
obvious from the fact that on the theory of a moving Earth the Planet comes at the place of the epicycle's centre on the theory of a fixed Earth. Hence; this line thus becoming known, and in addition, from the sequel of the 13th proposition of the 3 rd book, also the line from the fixed Earth to the Planet, the right-angled triangle contained between these two lines and the third (the hypotenuse) has three known terms, with which the required latitude is evidently found, as in the 25th proposition of the 3rd book on the theory of a moving Earth, so that I deemed it unnecessary to describe this here once more at length. CONCLUSION. We have thus found a Planet's apparent ecliptical latitude at a given time, by mathematical operations based on the theory of a fixed Earth; as required.

## COLLECTION.

Of some similarities and differences between the description of the motion in latitude according to this Supplement and the motion in latitude according to Ptolemy.

Since in the foregoing description of this subject matter of the motion in latitude I sometimes came across some differences between it and the motion in latitude described by Ptolemy, it seemed more suitable to me to collect them here with the others than to mix them with the foregoing subjects, so that I will give thereof the following sections.

## 1st SECTION.

Since the cause of the motion in latitude of the Planets is derived from the theory of a moving Earth, which seemed unknown in Ptolemy's time, nevertheless in framing the theory of the three upper Planets he came very near to the matter, assuming the epicycle, while moving, to remain always nearly parallel to the ecliptic; for if - as the matter requires and has been proved to be true in the 2nd proposition of the Supplement - he had taken it to be perfectly parallel (as appears in the 3rd Chapter of his 13th book, the difference for Saturn's motion was only $2^{\circ} 4^{\prime}$ by which amount the angle made by the epicycle with the deferent was greater at most than the angle made by the deferent with the ecliptic; with Jupiter this difference was only $1^{\circ} 6^{\prime}$, with Mars $1^{\circ} 15^{\prime}$, nay, when the epicycle was in the ecliptic, according to his assumption it fell altogether in it, without intersecting it, as it must be according to the perfect theory), the tentative, uncertain procedure in the seeking of the deviation of the deferents, described in the said 3rd Chapter, would not have been necessary, and the other calculations of the Planets' latitudes would generally have agreed with the present calculations, without further differing therefrom as much as is to be mentioned in the following (2nd) section.

## 2nd SECTION.

Ptolemy's table of Saturn's motion in latitude in the 5 th chapter ${ }^{1}$ ) of his 13th book seems not to be sufficiently in agreement with his theory. To explain this more fully, it is to be noted that in the 4 th chapter of the said 13th book he takes the deferent's deviation from

[^52]vant felfde 13 bouck, des inirontwechs afwijcking vanden duyfteraer, die inde eeffe form vant $s$ voortel defes Byvoughs beteyckent fy metten houck $A C D$ neemt op

2 tr. 26 (1).
Den houck CDGop 4 tr. 30 (1). Het halfrontichil van dien doet voor den houck. CD F 175 tr. 30 (1).
By aldien nu vanden Eerctcot $C$, totdes inronts verflepunt $F$,wefende mettet middelpunt an fijn wechs verfepunt $D$, getrocken waer de liniC F, fy fonde doen deur de Byeenvouging des is voorftels vant 3 bouck
108718.

Waer me fulcke drichouck C.D F drie bekende palen foude hebbë, te weten dē houck C DF 175 tr. 30, derde in d'oirden, DF 10000, en CF 108718 vierde in d'oirden : Hicr me ghefochtden houck DCF,wort bevondē deux her s vooritel der platte driehouckē vă

25 (1).
Die gherrocken vanden houck ACD 2 tr. 26 (1) ecrfle in d'oirden, blijf voor den houck A CF:

2ti. 1 (1).
En foo vecl moet volghens Prolemeus fpiegeling wefen Saturnus breede als hy is an des inronts verflepunt $F$, met desinronts middelpunt an fijn wechs verftepunt D . Maer volgens t'gebruyck der bovéchrevé tafcls, fo is hy dan fonder breede, waer deur die tafels foo veel van haer fiegheling verfchillen.

En doēde dergclijcke op d'ander fijde als Saturnus is ant iniōts verftepunt1, men fal fijn breede bevinden van 1 tr. 98 (1), in welcker plaets hy volghens de tafels fonder breede bevonden worr. Inder vougen dat, volghens ighene ick voorgenomen hadde te verclarē, Ptolemeus rafel van Saturnus breedeloop geē genouchfaem overeencomming en fchijntie hebbé met fijn fpiegelingen. Eñ dergelijcke is oock te verftaen vande tafelsen fpiegelingé der Dwaclders Iupiter en Mars. Maer hoe groor foodanighe breeden vallen met felling cens rocrenden Eertcloots, dats openbaer deur het 25 voorfteldes 3 boucx.

## 3 LID T.

Int I lidt is gefeyt dat trolemerus niet verre vande rechte fpiegheling en was; ftellende de inronden vande drie bovenfle Dwaelders alijit bycans evewijdich vanden duyferaer te blijven, maer fulcx en is mette twee onderfe foo na niet geluckt, waer af hy uyt din gage flagen ervaringen niet fulcken wijfe van ficegeling trecken en conde, als hy uyt de drie bovenflegedaen hadde: De voorna-: melicfte oorfaeck die hem verhinderde fchijnt tweederley, d'eerfte dufdanich: Tgene hy Mercurius inropt noenide en daer voor gebruycteen waft niet deur het I voortel defes Byvoughs, maer veel cleender dan na t'behooren, fulcx dat als hy t'flve al prouvende annam voor altijt byeans evewijdich vanden duyftesaer te blijpen, gelijck hy mette inronden der drie boventte dede, daten hadde meut ervaringen geen gemeenfchap, want het wast'ander groot ront darmen daer toe nemen moeft. D'ander oirfack te weten die hem de waggeling des in-: rontwechs dede befuyten, en de duyfteracffe op cen verkeerde lijde nemen, fchijnt dat du\{danich was: Hy heeff fich in gebeeltalle gerieene fneen der in. zontwegen en des duyfteraers deur den Eericloot te ftrecken: Als by voorbeelt dē inronwech DE, die inde form des s voorflels defes. Byvoughs dé duyfteraer eygenulick in Mdeurfnijt, heeft by ghemeent te ftreckerdeurden vafen Eertcloot C , waer op hy fijn rekeningē makende, foo iffer uyt gevolght dat doen hy meende het inronis middelpunt gecommé te wefen van D tot C, en alddan behopiten inden duyfleraer A B te wefen fonder breede, foo bevant hijt meter
the ecliptic, which in the first figure of the 5 th proposition of this Supplement 1) is denoted by the angle $A C D$, to be

The angle $C D G$ to be
The, supplement thereof (the angle $C D F$ ) makes
Hence, if from the Earth $C$ to the epicycle's apogee $F$, being with the centre at its deferent's apogee $D$, the line CF were drawn, by the Compilation of the 13th proposition of the 3rd book it would make ${ }^{2}$ )

Thus, this triangle $C D F$ would have three known terms, to wit, the angle $C D F=175^{\circ} 30^{\prime}$ (the third in the present list), $D F=10,000$, and $C F=108,718$ (the fourth in the list). When the angle $D C F$ is sought therewith, by the 5 th proposition of plane triangles it is found to be
When this is subtracted from the angle $A C D=2^{\circ} 26^{\prime}$ (the first in the list), there is left for the angle $A C F$ $2^{\circ} 1^{\prime}$.
And this, according to Ptolemy's theory, must be the amount of Saturn's latitude when it is at the epicycle's apogee $F$, with the epicycle's centre at its deferent's apogee $D$. But according to the use of the above-mentioned tables it is then without latitude ${ }^{3}$ ), owing to which these tables differ so much from the theory.

And when we do the same on the other side, when Saturn is at the epicycle's apogee $I$, its latitude will be found to be $1^{\circ} 58^{\prime}$, whereas according to the tables it is found without latitude, so that, in accordance with what I had intended to explain, Ptolemy's table of Saturn's motion in latitude seems not to be sufficiently in agreement with his theories ${ }^{4}$ ). And the same is also to be understood for the tables and theories concerning the Planets Jupiter and Mars. But the amounts of these latitudes on the theory of a moving Earth are evident from the 25th proposition of the 3rd book.

## 3rd SECTION.

In the 1st section it has been said that Ptolemy was not far from the true theory in assuming the epicycles of the three upper Planets to remain always nearly parallel to the ecliptic, but he did not succeed as well with the two lower Planets, for which he could not deduce from his observational experiences the same kind of theory as he had done for the three upper Planets. The chief cause that prevented him from doing so seems to be of a twofold nature, the first being as follows. What he called Mercury's epicycle (and used as such) was not so by the 1st proposition of the present Supplement, but much smaller than it ought to be, so that when, testing it, he assumed this to remain always nearly parallel to the ecliptic, as he did with the epicycles of the three upper Planets, this did not agree with the experiences, because it was the other greater circle that ought to be taken for it. The other cause, to wit, the one that made him deduce the oscillation of the deferent and take the line of nodes on the wrong side, seems to have been as follows. He imagined all the intersections of the deferents and the ecliptic to pass through the Earth. For example, he thought

[^53]
## 330 <br> BYVOVGHDES BREEELOOPS.

daet daer buyten an $N$ (welverftaende dat $D$ N even geteyckent is an $D C$ ) met foo veel breede als veroirfaeckt wort deur de verheyt van Ctot N,welcke mifgrijping hem heeft doē des inrontwechs waggeling verfieren, die befchreven is int a lidt van Mercurius breede achter het 25 voorltel des 3 boucx.

## 4 LID T.

Maer angefien Piolemeses de voorfchreven waggeling des Dwaelders van C tot N , feyde déur ervaring in Mercurius bevondé ie hebben van 45 (1), foofullë wy nu onderfouckē hoe fulcx hier me overeencomt: Tor dien einde legh ick dat de verheyt van C tot N , anghewefen wort mette lini $\mathrm{N} R$ inde form des 3 lidts van Mercurius loop achter het 25 voorftel des 3 beucx, diens langde ick aldus vinde : De driehouck $Q N R$ heeft dric bekende palē, te weten dē houck NQR; tr. 3 亿 (1), als even finde met OQL str. 32 (1) deur desvoorfchreve 3 lidts vierde in dooirden, $\mathrm{QN}_{13} 6_{4}$ deur des felfden lidts vijfde in d'oirden, en den houck $Q N R$ recht: Hicr me ghefocht delini NR, wort bevonden deur het 4 voorftel der plate driehoucken van 132 .

By aldien my Piolemess verclaert hadde, tot wat plaets de Son was ten tijde van fijn dadelicke ervaringe doen hy de afweging van 45 (1) vandr, wacr deur ons met ftelling eens roerenden Eericloorsbekent foude fijn des félven Eertcloots plaers,foo mochien wy na die overeencommingen met meerder fekerheyt trachien, maer dat niet ghefchiet fijnde, wy fullen de twee uyterfte afwijckinghen foucken om te fien ofter de 45 (1) oock tufichen vallen, als volght:

Doende de lini NR als vooren 132,endatmen daer an vervought na de manier des is voorftels int 3 bouck de meefle verheyt van Mercurius totten Eertcloor, doende deur de Byeenvouging des 13 voorfels vant 3 bouck 14519, 100 wori deur de gemeene regel des felfden 25 voorftels Mercurius breede daer me bevonden van 31 (1): Maer van 1 tr. 21 (1) op de minfte verheyt 5481 , tuffchen welcke 1 tr. 21 (1) en 31 (B), de bovefehreven 45 (1) der ervaring lijn. Soo nu bekent waer de lini vanden Eertcloot tot Mercurius ten tijde der ervating, mé foude als gefeyt is van defe overeencomming noch eygentlicker conne fpreke.

Angaende Venus afweging welcke Ptolemeus ftelt op 10 (1), die foude na de voorgaende wijfe van Mercurius ten cleenften bevonden worden van 20 (1): Watter eyghentlick af is, daer foudemen deur nieuwe dadelicke gallaginghen nauwer afconnen oordeclen.

## BESLVYT DES <br> BREEDELOCPS.

Tot hier toe is vande breedeloop der vijf Dwaelders Saturnus, Inpiter, Mars, Yenus en Mercurins, befchreven t'ghene iek voor my ghenomen hadde, wace me ickoock meyne de felve niet meet voor foo een onbekent roerfel behooren ghenomien te worden ghelijckmen ghedaen heeft, als bljickende deur des Eertcloorsloop fulcke verfcheydenheden nootfakelick te moeten vallen, en eldk Dwaclders hemel eenvoudelick te draeyen op haer as, fonder datmen be- $^{\text {en }}$ houff eenich onnatuerlick roetfel daer by te verfieten, en daímen al die voorgaende ijithlijtigho hafpeling fal moghen verlaten, oogk met oirfakelicker kenaisfich yoontarndzer in ocffenen.
that the deferent $D E$, which in the figure of the 5 th proposition of the present Supplement really intersects the ecliptic in $M$, passes through the fixed Earth $C$, and when he based his calculations thereon, it followed that when he thought the epicycle's centre had moved from $D$ to $C$, and then ought to be in the ecliptic $A B$, without any latitude, in actual fact he found it outside, at $N$ (it being understood that $D N$ has been drawn to be equal to $D C$ ), with so much latitude as is caused by the distance from $C$ to $N$; this misconception made him imagine the deferent's oscillation, described in the 2nd section of Mercury's latitude, after the 25 th proposition of the 3 rd book.

## 4th SECTION.

But since Ptolemy said that for Mercury he had found the aforesaid oscillation of the Planet from $C$ to $N$ by experience to be $45^{\prime}$, we will now examine how this agrees therewith. To this end I say that the distance from $C$ to $N$ is denoted by the line $N R$ in the figure of the 3rd section of Mercury's motion, after the 25 th proposition of the 3rd book, whose length I find as follows. The triangle $Q N R$ has three known terms, to wit, the angle $N Q R=5^{\circ} 32^{\prime}$, as being equal to $O Q L=5^{\circ} 32^{\prime}$, by the fourth in the list of the aforesaid 3rd section, $Q N=$ 1,364 by the fifth in the list of the said section, and the angle $Q N R$ being a right angle. When the line $N R$ is sought therewith, by the 4 th proposition of plane triangles it is found to be 132.

If Ptolemy had told me at what place the Sun was at the time of his practical experiences, when he found the deviation of $45^{\prime}$, from which on the theory of a moving Earth we should know the place of the said Earth, we might try with greater certainty to find those correspondences, but since this has not happened, we have to seek the two extreme deviations, to see whether the $45^{\prime}$ fall in between, as follows: When the line $N R$ makes, as above, 132 and to this is added, after the manner of the 25 th proposition in the 3 rd book, the greatest distance from Mercury to the Earth, which by the Compilation of the 13th proposition of the 3rd book makes 14,519, by the common rule of the said 25th proposition Mercury's latitude is therewith found to be $31^{\prime}$. But this would be found to be $1^{\circ} 21^{\prime}$ at the smallest distance 5,481 , and between this $1^{\circ} 21^{\prime}$ and $31^{\prime}$ lie the aforesaid $45^{\prime}$ of the experience. If now the line from the Earth to Mercury at the time of the experience were known, it would be possible, as has been said, to speak more truly of this correspondence.

As to Venus' deviation, which Ptolemy takes to be $10^{\prime}$, by the foregoing method for Mercury this would be found to be at least $20^{\prime}$. The true state of affairs might be judged more accurately by means of new practical experiences.

## CONCLUSION OF THE MOTION IN LATITUDE.

Up to this point that part of the motion in latitude of the five Planets Saturn, Jupiter, Mars, Venus, and Mercury which I had intended has been described, and therefore I am also of opinion that this should no longer be considered such an unknown motion as it has been done, since it appears that from the Earth's motion such differences are inevitable, and that the Heaven of each Planet simply turns about its axis, without our having to invent any unnatural motion, and that all the foregoing time-devouring complications can be abandoned, and the matter can henceforth be practised with better knowledge of the causes.

# A NHANGH DES HEMELLOOPS 

VANDERDWAELDERS onbekende roerfels by $P$ tolemeus gage-<br>flagen : En vande fpieghelingen by hem en Copernicus daer uyt beffrecen.

## CORTBEGRYP DE-

## SESANHANGS.

Adien Ptolemeus terbandt ghecomnien topas bet Hemelloopf Chrift met Selling eens raafen Eerclloots, eernoudich geLijckt int voorgaende verchert is. 5oo beeff by der Dopaelders platfen en loopenjeer neerfelicicern gageflagen en onderfocht,om te fien boefe daer me overeenquamé: De bef bobrijing des lops der Son (daer Hypparchus an tbviffelde) docht bem recht, maer niet vaans "d'ander fes Dovaelders, ovant boervel hemlien middelloop op Seerlanghe tyit effen genouch uyt quam, foo oordeelde hy nochtans inde befonder keeren rverf cheydenbeyt tervosfen, Julx dat by daer affinn pivegbeling bef chreef, en die ruermengde onder de rvoornoemde eernoudige loop mette felling eens ruaften Eertcloots. En dergelijchervermenging beefi daer na Copernicus rvan finn /piegeling oock gedaen mette feling censrocrendë Eertcloots. Maer ropant deplaet en der Dvoaelders daer na gaghe/agen sniet bevonden ers roorden met die regels opereen te commen, en dat daerom die roerfels als noch onbekent fhïnen, foo bebickfe int voorgaende ind'een en dander felling vocerom uyt be bekende ghefcheyden : Waer op datmen evgbenenticker roveten Sunde boedanicb die uytghef beyden byrouging ropars foo is om deSe redenen en nochander die int rvoorgaende breeder rverclaert fÿn, daer -af defen Anbang gemaect, die derthien Tvoorztellen falhebben, rvefende de Seven van, Prolemeus bygevoughde fiegbbling, te erveten d'eerfte rüff rvande Maen. Hetfeste van Saturnus, fupiter, OM ars en V enus. Hett fevende roan SMercurius: D'ander ruïf fyin rvan Copernicushygevoughde Piegegling tervoeten bet 8 varde Maen. Het groan Saturnussiupiteren Mars. Het io roan Venus. Het IIen ia van $\operatorname{MMercurius.~Het~} 1_{3}$ een reverbael op der ferreroonbekende lopp, en des duysieraers onbekende.aforojcking roandere everacr.

EERST

# APPENDIX <br> TO THE HEAVENLY MOTIONS <br> OF THE PLANETS' UNKNOWN MOTIONS <br> observed by Ptolemy; and the Theories <br> derived therefrom by him and Copernicus 

## SUMMARY OF THIS APPENDIX

After the description of the Heavenly Motions on the assumption of a fixed Earth had come into the hands of Ptolemy, in the simple form in which it has been set forth in the foregoing, he very industriously observed and investigated the Planets' positions and motions, so as to see in how far they agreed therewith. The description of the motion of the Sun (which Hipparchus doubted) appeared to him to be correct, but not that of the other six Planets, for though their mean motion accorded well enough in a very long time, yet he was of opinion that there was some difference in the separate revolutions, so that he described his theory about this and combined it with the aforesaid simple motion on the assumption of a fixed Earth. And a similar combination was also made thereafter by Copernicus for his theory on the assumption of a moving Earth. But because the positions of the Planets observed thereafter are not found to agree with those rules, so that those motions still seem unknown, I have separated them again from the known motions in the foregoing, on one as well as the other assumption. But in order that the reader might know more truly of what nature those separated additions were, for this reason as well as for others, which have been set forth more fully in the foregoing, this Appendix has been made about them. It is to comprise thirteen propositions, seven of them relating to the theory added by Ptolemy, to wit, the first five of the Moon, the sixth of Saturn, Jupiter, Mars, and Venus, the seventh of Mercury. The other five relate to the theory added by Copernicus, to wit, the 8th of the Moon, the 9th of Saturn, Jupiter, and Mars. The 10th of Venus. The 11th and 12th of Mercury. The 13th is an account of the stars' unknown motions and the ecliptic's unknown deviation from the equator.

# EERSTPTOLEMEVSBTGHE- <br> vougbde ßieghbeing des Dvoaelders met <br> felling censroaften Eertcloots. 

## t VOORSTEL.

Wefende cen Dvvaeldergeftelt in een uytmiddelpuntichront, of anders in een intont diês halfmiddellijneven is an defe uytmiddel puntichronts uy tmiddelpunticheytlijn, en dat inront in een middelpuntichront, even in grootheyten loop ant uytmiddelpuntich,en des Drvaeldersloopintinrontghelijek metten loop des inronts int middelpuntichront, doch op een verkeerde fijde : Die tvvee fellinghengheven den Dvvaelder een felve plaets.
Anghefien de felling der Maen in een uytmiddelpuntighe wech na de manier inde voorgaende twee boucken befchreven, en volghessi'ghene inde natuer fchijnt te beftaen, heur de felve plaets gheeft diefe crijcht met een middel. puntich inront op de wijfe defes voorftels, die Ptolemeus vercoos om fijn ghevonden tweede oneventheden bequamelickerte verclaren, en dat ick de felvè oneventheden hier befchrijven wil, foo heefi my voughelick ghedocht cert ie bewiffen (ghelijck Prolemeres oock gedaen heeft int 9 Hooftfick fijns 4 boucx) fulcke twee ftellingen alfoo te overcommen, twelck dooirfaeck is der befchrijvinghen van dit voorftel tot defe plaets.

T'GHEGHEVEN. Laet voor cerfte ftelling het uytmiddelpuntichront ABC de Dwaelderwech beteyckenen, diens middelpunt $D$, en Eden vaften Eertcloot, $t^{\prime}$ punt $A$ fy den Dwaclder ten eerften ant verftepunt, welcke daer na ghedaen bebbe een Joop van A tot B,datsoock den houck A D B.
Laet nu voor tweede felling op E als middelpunt, befchreven worden het middelpuntichront $F G H$, even an $A B C, e n ~ o p F$ mette halfmiddellijn $F A$ (die even moet vallen met ED) het inront


A I, diess verftepunt $A$, daer na fy het inionts
A I middelpunt $F$ ghecommen an $G$, fulcx dat fijn loop F G, of houck FE G, even fy anden loop der eerfter ftelling A D B, en het inront befchrevE opt middelpunt $G$, fy $B K$, waer in van $\mathbf{E}$ deur $\mathbf{G}$ ghetrocken fo $\mathbf{E} \mathbf{G K}$, foo dat K des inronts verftepunt beteyckent, van t'welck den Dwaelder daerentuffichen gheloopen heb na B (tegen d'eerfte loop van Fina G) cen booch ghelijck met FG, of anders gefeyt fulcs dat den houck begrepen tuffchen de lini K Gen de lini van $G$ na $B$ tot inden omtreck des inronts, welcke lini men crijcht treckende $\operatorname{van} G$ een evewijdeghe met EF. TbEGHEERDE. Wy moeten bewijfen dat dé Dwaelder in defe tweede felling int felve punt $B$ valt,
daer

# FIRST THE THEORY OF THE PLANETS, ADDED BY PTOLEMY, ON THE ASSUMPTION OF A FIXED EARTH 

## 1st PROPOSITION.

When a Planet is placed on an eccentric circle or otherwise on an epicycle whose semi-diameter is equal to the line of eccentricity of this eccentric circle, while that epicycle is on a centric ${ }^{1}$ ) circle, equal in magnitude and motion to the eccentric circle, and the Planet's motion on the epicycle is equal to the motion of the epicycle on the centric circle, but in an opposite direction, those two locations give the Planet the same place.

Since the location of the Moon in an eccentric orbit, after the manner described in the foregoing two books and in accordance with what seems to exist in nature, gives it the same position it gets with a centric epicycle ${ }^{2}$ ) in the manner of the present proposition, which Ptolemy chose in order to explain more conveniently the second inequalities found by him, and since I here wish to describe these inequalities, it seemed appropriate to me first to prove (as Ptolemy has also done in the 5th Chapter of his 4th book) that these two locations agree, which is the cause of the descriptions of this proposition in this place.

SUPPOSITION. For the first location let the eccentric circle $A B C$ denote the Planet's orbit, its centre being $D$, and $E$ the fixed Earth; let the point $A$ be the Planet first at the apogee, which thereafter shall have moved from $A$ to $B$, that is also the angle $A D B$.

Now for the second location let there be described about $E$ as centre the centric circle $F G H$, equal to $A B C$, and about $F$ with the semi-diameter $F A$ (which has to be equal to $E D$ ) the epicycle $A I$, its apogee being $A$. Thereafter let the centre $F$ of the epicycle $A I$ have reached $G$, so that its motion $F G$, or the angle $F E G$, be equal to the motion of $A D B$ in the first location. And let the epicycle described about the centre $G$ be $B K$, in which let there be drawn from $E$ through $G$ the line $E G K$, so that $K$ denotes the epicycle's apogee, from which let the Planet meanwhile have moved to $B$ (contrary to the first motion from $F$ to $G$ ) through an arc equal to $F G$, or, in other words, equal to the angle contained between the line $K G$ and the line from $G$ to $B$ as far as the circumference of the epicycle, which line is obtained by drawing from $G$ a line parallel to EF. WHAT IS REQUIRED. We have to prove that in this second location the Planet falls

[^54]daer hy in d'eẻrte ftelling was. T'b Ewy $s$. Anghéfien D.B, E G twice even en evewijdeghe halfmiddellijnen fijn, tuffchen welcke E $D$ comt,en dat de lini van $G$ na $B$ even en evewijdeghe met $E D$ is, deur r'gegeven,foo moet de form begrepen tufichen de vier linien B D, D E, E G, en de lini van $\mathcal{G}$ na $B$ evewijdeghe met ED, dats de form B D E Geen * evewijdich vicrhouck fijn, en ver- parallelovolgherst'punt B, te weten den Dwaelder, is foo wel uyterfte der lini G B int grammum. inront $K B$ na d'eerfte ftelling, als uyterffe der lini $D$ B int uytmiddelpuntichront $A B$ na deerfte ftelling, en vervolgensden Dwaelder gefien vanden Eertcloot E an B int inront fonder uytmiddelpuntichront, of an B int uytmiddelpuntichront fonderintont, het is hem al tot cen felve plaets ghefien. т'веslvy i. Wefende dan cen Dwaelder gheftelt \&c.

MERCKT.

Hoewel defe manier de Manens ware placts oock anwijf,foo fchijnt nochtans datmenfe niet en behoott te ghebruycken, ecnideels om dat haer duyfter plecken die altijt na den Eertcloot ghekeert ftaen, betuyghen datfe in geen inront en dracyt, ten anderen om datmen met meer hafpeling twee ronden felt dact deur een can ghedaen worden: En daerom is by Ptolemeus int ftellen des Sonloops, en by Copernicus des Eertclootloops, met reden het uyimiddelpuntichront vercoren, t'welck Ptolemeus int ftellen des Maenloops oock foude genomen hebben; ten waer dat, foo hy feght int 5 Hoofttick fijns 4 boucx, de fielling des inronts hem bequamer viel om dacr deur fijn voornenen der navolghende tweede oneventheden te verclaren.

## $2 . V O O R S T E L$

## Te verclaren d'oirfaeck die Ptolemeus be vveeghde tot-

 tet onderfoucken van fijn trveede oneventheden der Maen, metfgaders deghedaente van fijn byghevoughde fpiegheling int ghemeen.Alfoo Ptolemeus gheduerlick en feer ernftelick ganlouch de Manens fchijnbaer duyfteraerlangden, heeft dickwils bevonden die te verfchillen mette regelen hier vooren befchreven, en hem van fijn voorganghers naghelaten, welck hy d'ccrite oneventheden noemt, fulcx dat by daer af na fijn goetduncken verbetering ghedaen heeff, ende een tweede onevenheyi daer by vervought. Om hier af fijn meyning te verclaren ick fegh aldus: Hy heeft bevonden dat hacr uyterfte voorofachtringhen in faminghen en regeftanden der Son altijt waren van $s$ tr. ghelijck int 30 voorftel des 2 boucx d'eerfte oneventheyt mebrengt, maer daer buyten vielder verandering, en dat ten grootfen in vierdefchijn, alwaerfe conde vallen van 7 tr. 40 (1), dats 2 tr. 40 (1) meer als d'ander, en foo veel mochte int oirdeel der toccommende Maenplatien feyl vallen, alfmē int rekenen alleenelick fach na d'eerfte oneventheyt. Om nu te verclaren d'oirfaeck die hy felt van dit verfchil, foo is vooral te weten dat hy totte bequaemfte uytlegging fijns voornemens (ghelijck hy feght int $s$ Hooft仿k fijns 4 boucx) eerficlick ghenomen heeft de felling der Maen niet in een uytmiddelpuntighe wech, ghelijck wy die hier vooren befchreven hebben, maer in cen * middel- Concentrepuntichinront, dat is te loopen in een inront, en t'felve in een middelpuntighe pigerlo. wech, na de manicr befchreven int 1 voortel defes Anhangs.
in the same point $B$ where it was in the first location. PROOF. Since $D B$ and $E G$ are two equal and parallel semi-diameters, between which $E D$ comes, and since the line from $G$ to $B$ is equal and parallel to $E D$, by the supposition, the figure contained between the four lines $B D, D E, E G$, and the line from $G$ to $B$ parallel to $E D$, i.e. the figure $B D E G$, must be a parallelogram, and consequently the point $B$, to wit, the Planet, is the extremity of the line $G B$ on the epicycle $K B$ according to the second ${ }^{1}$ ) location as well as the extremity of the line $D B$ on the eccentric circle $A B$ according to the first location, and consequently whether the Planet is seen from the Earth $E$ at $B$ on the epicycle without eccentric circle or at $B$ on the eccentric circle without epicycle, it is always seen in the same place. CONCLUSION. When therefore a Planet is placed, etc.

## NOTE.

Although this method also indicates the Moon's true position, nevertheless it seems it ought not to be used, in the first place because the Moon's obscure portions, which are always turned towards the Earth, show that it does not revolve in an epicycle, secondly because it is a greater complication to assume two circles if it can be done with one. And for this reason, when Ptolemy framed the theory of the Sun's motion and Copernicus that of the Earth's motion, the eccentric circle was rightly chosen, which Ptolemy would also have taken. when framing the theory of the Moon's motion if it were not for the fact, which he mentions in the 5th Chapter of his 4th book, that the assumption of the epicycle was more convenient to him for explaining by this means his intention with regard to the subsequent second inequalities.
[The propositions 2-5, not reproduced bere, concern the Moon's motion]
${ }^{1}$ ) For eerste in the Dutch text read tweede.

De driehouck E B F heeft drie bekende palen, te weten E B 48 deel 31 (1) eertte in d'oirden, E F iodeel 19 (1) denr het 3 voorftel defes Anhangs, en de houck B EF 89 tr. 30 (1) , als halfrontfchil des gegeven houcx D E B 90 tr. 30 (1): Hier me ghefocht den houck EB F , wort bevonden deur het 6 voorftel der platte drichouc. ken van
Vande booch H I G K doende deart'bereytrel 333 tr. 12 (1), getrocken de booch H G i8otr. blijft de booch G K, of houck GBK 153 tr. 12.
Daer toe den houck E B F 12 tr. I (1) tweede in d'oirden, comt voor den houck E BK
De driehouck E B K heeft drie bekende palen, te weten den houck EBK 165 tr. 13 (1) vierde in d'oirdé, EB 48 decl 31 (1) eerfle in doirden, en des inronts halfmiddellijn B K s deelen is (3) : Hier me ghefocht den begheerden houck der voordering B E K, wort bevonden deur het 6 voorftel der platte driehoucken van 1 tr. 25 (1), latet fijn
T'beslvyt. Wyhebben dan ghevonden opeen ghegeven tijt de Manens voorofachtring, deur wercking gegront op ftelling van Ptolemetse bygevough.: de fpiegheling, na den eyfch.

## VERVOLGH.

Deurdit vinden der voorofachtring is openbaer hoe bekent fal worden de Manens fchijnbaer duyfteraerlangde op een ghegeven tijt, want totte Middelmanens duyfteraerlangde vervought de voorofachtring men heeft t'begeerde. Merckt noch dat deur Prolemeus en anderen verfcheyden tafels ghemaed fijn, om met lichticheyt te vinden t'ghene hier boven deur rekeninghen der platte drichoucken met meerder moeyte ghevonden wort, welcke tafels wy hier onbefchreven laten, als totte kennis vande gedaente defer tweede oneventheden of byghevoughde fiegheling der Maen van Ptolemeus niet voorderlick. Dit dan t'ghene fijnde t'welck wy vande felve tweede oneventheden voorghenomen haddente fegghen, fullen nu commen tot fijn onbekende oneventheden van d'ander Dwaelders.

## 6 VOORSTEL.

Te verclaren de fomme van Ptolemens byghevoughde fpiegheling des langdeloops van Saturnus, lupiter, Mars en Venus.

Anghemerckt wy defer Dwaelders eenvoudighe loop ghelijckfe Ptolemeus ter handt quam voor bekent nemen, als int eerfte en iweede bouck befchreven fijnde, foo fal t'verclaren van fijn byvouging hier cort en licht vallen.

Voor al iste weten dat hy defer vier Dwaelders fchijnbaer duylteraerlangden, in faminghen en tegheftanden der Middelion als des inronts middel punt wasan fijn wechs verftepunt of naeftepunt, altijt bevant ghelijck me brocht de rekening des cenvoudighen loops foofe hem eerft ter handr ghecommen was, want hy in yder Dwaelder op fulcke ftelling vant en berekende de langde der nytniddelpunticheytlijn;en des inronts halfmiddellijn, maer daer bayten vielder verandering.

Omdan

## 6th PROPOSITION.

To expound the sum of the theory of the motion in longitude of Saturn, Jupiter, Mars, and Venus, added by Ptolemy.

Since we assume the simple motion of these Planets, as it was handed down to Ptolemy, to be known, as having been described in the first and the second book, the explanation of his addition will here be short and easy.

First of all it is to be noted that he always found the apparent ecliptical longitudes of these four planets, in conjunctions with and oppositions to the Mean Sun, when the epicycle's centre was at its deferent's apogee or perigee, to be as resulted from the calculation of the simple motion as it had first been handed down to him; for he found and calculated for each Planet, in such a location, the length of the line of eccentricity and of the epicycle's semi-diameter; but for other points he found differences.

Om dan totte faeckete commen laet $A B C D$ den inroatswech fijn, diens middelpunt $E$, verfepunt $A$, uytmiddelpuntichpunt of den Eertcloot $F$,des inronts middelpunt $B$, waer op berchreven is het inront $G H I K$,daer na van $E$ en Fdeur Bgherrocken fijnde de twee rechte linien E L, FK, fy finen het inront in $H$ en $I$,foo dat $H$ is 'naeflepunt, $K$ t'verftepunt, I middeloaeftepunt, $L$ middelverttepunt : Voort neem ick dat den Dwaelder na uytwijfen der rekening des tweeden boucx, dat is volghens den eenvoudigen loop foof Ptolemeus cert

ter handi quam, moeft fijn an $\mathbf{G}$, foodat fijn inronts middellangde I $\mathbf{G}$ doet 150 tr. en fijn Cchijnbaer verheyt van 'verftepunt A ghefien uyt den Eertcloot F, roude hebben moeren fijn den houck A F G: Maer hy bevant fulckē houck metter daet cleender, als neem ick $A F M$,inder voughen dat den Dwaelder int inront wefentlick was an $M$,en niet volghens de rekening an $G$.
Hier uyt heeft hyaldus gedocht, nadien vanden Dwaelder rottet middelverftepunt moet wefen 1 sotr. gelijck eerft geftelt wiert de booch L G,en dat den Dwaelder int inront foo veel voorder is dan $\mathbf{G}$, als van $\mathbf{G}$ tot $M$, foo moet het middelverftepunt oock even foo veel voorder fijn van $L$, twelck fy an $N$, en hier me is $N$ M van 1 sotr ghelijck L. .
Nu dan N ghenomen fijinde als voor middelvertepunt, van daermen des Dwaelders middelloop begint te tellen, hy heeft van Ndeur Bghetrocken een rechte lini fnyende de middellijn AC in O : Heeff daer na ghefocht hoe lanck de lini $\mathrm{E} O$ viel, en want alle noodige palen hem daer toe bekent waren, heeffice even bevonden met $E F$, en dat nier alleen in dit voorbectr, maer in allen ande-

Therefore, to come to the matter, let $A B C D$ be the deferent, its centre being $E$, its apogee $A$, the point of eccentricity or the Earth $F$, the epicycle's centre $B$, about which has been described the epicycle GHIK. If thereafter from $E$ and $F$ through $B$ there are drawn the two straight lines $E L, F K$, they intersect the epicycle in $H$ and $I$, so that $H$ is the perigee, $K$ the apogee, $I$ the mean perigee, $L$ the mean apogee. Further I assume that, as shown by the calculation of the second book, i.e. according to the simple motion as it was first handed down to Ptolemy, the Planet should be at $G$, so that its epicycle's mean longitude $L G$ makes $150^{\circ}$, while its apparent distance from the apogee $A$, as seen from the Earth $F$, ought to have been the angle $A F G$. But he found this angle in reality to be smaller - I take AFM - so that the Planet on the epicycle was in reality at $M$ and not, as according to the calculation, at $G$.

From this he concluded as follows: Since from the Planet to the mean apogee there must be $150^{\circ}$, as the arc $L G$ was first assumed to be, and since the Planet on the epicycle is as much in advance of $G$ as the distance from $G$ to $M$, the mean apogee must also be as much in advance of $L$; let this be $N$, then herewith $N M$ is $150^{\circ}$, like $L G$.

If therefore $N$ is assumed to be the mean apogee, from which we begin to count the Planet's mean motion, Ptolemy drew from $N$ through $B$ a straight line intersecting the diameter $A C$ in $O$. Thereafter he sought the length of the line $E O$, and because all the necessary terms were known to him, he found it to be equal to $E F$, such not only in the present example, but in all others, in whatever
ren tot wat plaets het inrontsmiddelpunt in fijn weeh, en den Diwaelder int inront wefen mochten: Sulcx dat hy hier af willende fijn (piegheling befchrijven, heeft Ogenoemt het * onevenheyts punt, an t'welck genomen fijnde het Punfumt oogh geffelt te wefen, men fiet het inronts middelpunt B inden inrontswech inaqualisdA B CD, en den Dwaelder an G oirdentlick dracyen, waer uyt volght de ${ }_{P}^{\text {tis. }}$ voornomde twee punten B en M onoirdentlick te draeyen ghefien uyt des in Purbachiw rontwechs middelpunt $E$, of anders gefeyt dattet inrons middelpunt $B$ in fijn equamtu. wech, en den Dwaelder Mintinront, d'een tijt raffcher als d'ander moetẽ loopen, teghen de ghemeene natuerlicke oirden, en volghens fulcke ftelling ghevonden wefende der Dwaelders voorofachtringen, en fchijnbaer duyfteraerlangde, foo beftaet hier in Ptolemens voorfchreven vondr en fpiegeling die hy vermengt heeft by den loop hem van fijn voorgangers ter handt gecommen. T' B E SL V Y T. Wy hebbẽ dan verclaert de fomme van Psolemeus bygevoughde fiegheling des langdeloops van Saturnus, Iupiter, Marsen Venus, na den eyrcti.

## 7 VOORSTEL.

## Te verclaren de fomme van Ptolemeus byghevoughde fpiegheling des langdeloops van Mercurius.

Alfoo Ptolemeus dickwils gaflouch Mercurius plaetfen, en daer benevens noch acht nam op de gallaginghen fijnder voorganghers, heeft be vonden dat hy in elcken keertweemael ten naeften by den Eertcloot quam (ghelijck de Maen, die in elck Maenfchijn na fijn fegghen tweemael ten naeften comt) het welcke t'elckens ghebeurde doen fijn inronts middelpunt fchijnbaerlick was 120 tr. over weder fijden vant fchiinbaer verftepunt, dat hy bevant in des duyfleraers 190tr. D'oirfacek hier affelde hy te wefen dattet inronts middelpunt totte twee voorfehreven plaetfen altijt den Eertioot ten naeften was. Dit int ghemeen ghefeyt fijnde, wy fullen nu tote befonder verclaring van lijn meyning commen.

Laet in de volgendeeerfte form $A B C D$ dẽ wech des inronts fijn, diess middelpunt is $E$, verftepunt $A$, uyımiddelpunticheytpunt of den Eericloot $F$, des inronis middelpunt $A$, waer op befchrevē is het inront GHIK, diens verttepunt $G$, naeftepunt $I$, voort fy Mercurius ant verftepunt $G$, endit alles ghenomen na den eenvoudigen loop foofe Ptolemeus ter handt quam, en befchreven is int 2 bouck, met welcke gheftalt Ptolemews gheen feyl en vandt, want hier me heeft hy int 8 Hoofftick fijns 9 boucx ghefocht de reden der uytmiddelpuntichcytlijn; en des inronts halfmiddellijn tot des inrontwechs halfmiddellijn : Maer Mercurius buyten des inronts verftepunt of naeftepunt wefende, of des inronts middelpunt buyten fijn wechs verftepunt of naeftepunt, foo vielder verfchil, r 'welck $P$ tolemeus na verfcheyden raftinghen en onderfouckinghen int 9 Hoofttick fijns 9 boucx verbererde, en in form van fpiegheling brocht als volght : Hy heeft opt middelpunt $E$ des wechs in defe geftalt fijnide, befchreven een rondeken $L M N$, fnyende $A C$ in $L$ en $N$, wefende des felfden rondekens halfmiddellijn $\mathbf{E} \mathbf{N}$ den helft der uytmiddelpunticheydijn EF, hier in heeft hy t'punt $L$ anghefien als voor middelpunt des inrontweehs, hoe wel het in dees form eyghentlick $E$ is, en $t^{\prime}$ 'elve middelpunt $L$ ghefeyt te dracyen int iondeken van Lu tegē het vervolgh der trappé na $M$, doendedaer in
place the epicycle's centre might be on its deferent and the Planet on the epicycle: Thus, wishing to describe hereof his theory, he called $O$ the point of inequality; and if the eye is taken to be situated in this point, the epicycle's centre $B$ is seen to move regularly on the deferent $A B C D$ and the Planet to move regularly at $G$, from which it follows that the aforesaid two points $B$ and $M$ are seen from the deferent's centre $E$ to move irregularly or, in other words, that the epicycle's centre $B$ on its deferent and the Planet $M$ on the epicycle must move faster at one time than at another, contrary to the common natural order of things; and when according to this assumption the Planets' advance-or-lag and apparent ecliptical longitudes are found, this constitutes Ptolemy's aforesaid discovery and theory, which he combined with the motion that was handed down to him by his predecessors. CONCLUSION. We have thus expounded the sum of the theory of the motion in longitude of Saturn, Jupiter, Mars, and Venus, added by Ptolemy; as required.

## 7th PROPOSITION.

To expound the sum of the theory of the motion in longitude of Mercury, added by Ptolemy.

Since Ptolemy frequently observed Mercury's positions, and in addition also noted the observations of his predecessors, he found that twice in each revolution it came as near as possible to the Earth (just as the Moon, which according to him comes as near as possible twice in each lunation), which happened whenever its epicycle's centre was apparently at $120^{\circ}$ on either side of the apparent apogee, which he found to be at $190^{\circ}$ of the ecliptic. He assumed that the cause of this was that the epicycle's centre was always as near as possible to the Earth in the two aforesaid places. This having been said in a general way, we shall now come to the separate exposition of his view.

In the subsequent first figure let $A B C D$ be the deferent, whose centre is $E$, its apogee $A$, the point of eccentricity or the Earth $F$, the epicycle's centre $A$, about which has been described the epicycle $G H I K$, whose apogee shall be $G$, its perigee $I$. Further let Mercury be at the apogee $G$, all this being taken according to the simple motion as it was handed down to Ptolemy and has been described in the 2nd book. With this disposition Ptolemy found no fault, for herewith he sought in the 8th Chapter of his 9th book the ratio of the line of eccentricity, and of the epicycle's semi-diameter, to the deferent's semi-diameter. But when Mercury was outside the epicycle's apogee or perigee, or the epicycle's centre was outside its deferent's apogee or perigee, there was a difference, which Ptolemy after several tentative efforts and investigations corrected in the 9th Chapter of his 9 th book and cast into the form of a theory, as follows. About the centre $E$ of the deferent in this disposition he described a small circle $L M N$, intersecting $A C$ in $L$ and $N$, the semi-diameter of this small circle $E N$ being one half of the line of eccentricity $E F$; in this he took the point $L$ for the centre of the deferent, though in this figure it is really $E$, and said that this centre $L$ moved on the small circle from $L$, against the order of the degrees, to $M$, performing therein one

een keer, op den felventijt dattet inronts middelpunt in fijn wech een keer doet, op d'ander fijde na r'vervolgh der trappen, dats van A na B, en alfoo met hem draghende den heelen inrontwech.

Maer anghefien $\mathbf{A} L$ hier genomen is voor wechs halfmiddellijn defer bygevoughde fpiegeling van Ptolemerus,foo moet des felven wechs omtreck cleender fijn dan A B C D na felling des eenvoudighen loops foofe Ptolemeus ter handt quam, daerom laet ons op L als middelpunt befchrijven den inrontwech der fpiegheling van Ptolemeus A OP: En hoe wel die nu cleender is dan d'eerfte, foo bliff hier nochtans de verheyt vandē Eertcloot Fiot A de felve, en vervolghens foo blijfroock des inronts grijphouck defelve: En alsdes wechs middelpunt L ghecommen fal fijn van Lover M tot N, foo fal volghens dit geftelde des inronts middelpunt A ghecommen fijn over d'ander fijde an C , enfal aldan de verheyt vanden Eertcloot $F$, tot des inronts middelpunt, en vervolghens des inronts grijphouck oock de felve fijn als na de cenvoudige loop foofe Ptolemeus ter hande quam : Sulcx dat defe fpiegeling van Ptolemeus geen verandering en gheeft int voorfchreven foucken der reden vande uytmiddelpunticheytlijn, en inronts halfmiddellijn, totte linituffchen den Eertcloot en t'verAtepunt.

Defe ghedaente aldus verclaert fijade, wefende des intonts middelpunt an t'punt
revolution in the same time in which the epicycle's centre performs one revolution on its deferent - to the other side, in the order of the degrees, i.e. from $A$ to $B$ while carrying with it the whole deferent.

But since $A L$ has here been taken for the deferent's semi-diameter according to this additional theory of Ptolemy, this deferent's circumference must be smaller than $A B C D$ (which followed from the simple motion as it was handed down to Ptolemy); therefore let us describe about $L$ as centre the deferent of the theory of Ptolemy AOP. And though this is now smaller than the first, nevertheless the distance from the Earth $F$ to $A$ remains the same here, and consequently the epicycle's angular diameter also remains the same. And when the deferent's centre $L$ has moved from $L$ via $M$ to $N$, according to this supposition the epicycle's centre $A$ will have moved on the other side to $C$, and then the distance from the Earth $F$ to the epicycle's centre, and consequently the epicycle's angular diameter, will also be the same as according to the simple motion as it was handed down to Ptolemy, so that this theory of Ptolemy does not bring about any change in the aforesaid seeking of the ratio of the line of eccentricity and the epicycle's semi-diameter to the line between the Earth and the apogee.

This disposition thus having been explained with the epicycle's centre at the
tpunt A,vert vanden Eertcloot F,en oock an fijn teghenoverpunt $C$, foofullen wy bu noch voorbeelt ftellen wefende des inronts middelpunt tot cen ander plaets, als neem ick 60 tr. middelloops vant verflepunt $A$, en Mercurius met icotr, inrontlangde. Laet tot dien eynde in defe tweede form de licil A B ftrecken deur t'verftepunt A (i'welck Ptolemess vandt onder des duyiteraers 190tr.) en fijn teghenoverpunt fy B , den Eertcloot C , des rondekens middel. punt $D$, waer op befchreven is t'felve rondeken $F$ GEH (in plaets vant ronde. 2 FORM.

ken L M Nder eerfteform) wefendedes felfden verttepunt F , naeftepunt $\mathrm{E}, \mathrm{en}$ halfmiddellljn DE even met E C : Voort fy gheteyckent t'punt G, loo dat de booch van $\mathcal{F}$ tot $G$ teghen tivervolgh der trappen doe de ghegeven 60 tr, en op $G$ als middelpunt fy befchreven den inrontwech $I K L$, daer na treck ick $D K$, foo dat den houck A DK, even is met F D G 60 tr. welverfaendedat van 1 tot $K$ is na t'vervolgh der trappen, ghelijickt van $F$ tot $G$ daer tegen is, alles foo de bovefchteven ftelling verey\{cht:Ick befchrijfdaer na op K als middelpunt het inront M NO P, treck voort van $G$ deur $K$ de lini $G K M$, fodat $M$ des inronts middelverftepunt beteyckent, ick neem daer na N te fijn Mercurius plaets, en de booch M Nte doen de ghegheven 100 ir. en treck K N, NC, © K, fnyende het inront in O, daer naEK, EG, DK, D G, en neem het infont van $G$ K gefreen te worden in Palsmiddelnaeftepunt.
Merckt nu noch dat Ptolemeeus des inronts middelpunt $K$ neemt oirdentlick te draeyen gefien uyt E , en daeromloopet onoidentlick gefien uyt fijn wechs

Gg middel-
point $A$, furthest away from the Earth $F$, and also at its opposite point $C$, we will now also give an example with the epicycle's centre at another place I assume at $60^{\circ}$ of the mean motion from the apogee $A$ - and Mercury at a longitude in the epicycle of $100^{\circ}$. To this end, in this second figure let the line $A B$ pass through the apogee $A$ (which Ptolemy found at $190^{\circ}$ of the ecliptic), and let its opposite point be $B$, the Earth $C$, the centre of the small circle $D$, about which has been described this small circle $\dot{F} G E H$ (instead of the small circle $L M N$ of the first figure), the apogee thereof being $F$, the perigee $E$, and the semi-diameter $D E$ being equal to $E C$. Further let there be marked the point $G$ such that the arc from $F$ to $G$, against the order of the degrees, makes the given $60^{\circ}$, and about $G$ as centre let there be described the deferent $I K L$. Thereafter I draw $D K$ so that the angle $A D K$ is equal to $F D G=$ $60^{\circ}$, it being understood that from $I$ to $K$ it is, in the order of the degrees, just as it is from $F$ to $G$ against this order, all this as required by the above supposition. I describe thereafter about $K$ as centre the epicycle MNOP; further I draw from $G$ through $K$ the line $G K M$, so that $M$ denotes the epicycle's mean apogee. Then I take $N$ to be Mercury's position and the arc $M N$ to make the given $100^{\circ}$, and I draw $K N, N C, C K$, intersecting the epicycle in $O$, thereafter $E K, E G$, $D K, D G$, and I take the epicycle to be intersected by $G K$ in $P$ as the mean perigee.

Now it is also to be noted that Ptolemy assumes the epicycle's centre $K$ to move regularly when seen from $E$, and for that reason it moves irregularly when

## 346 Anhang vander Duvaelders

middelpunt $G$, dat is inde felve wech d'een tijt rafcher als d'a nder. Maer he oogh gheftelt andes wechs middelpunt $\mathbf{G}$, foo neemt hy Mercurius, van daer ghefien oidentlick te loopen in fijn inront, en daerom loopt hy felfint inront oock oirdentlick alijit even ras. En volg ens fulcke felling gevonden wefende Mercurius voorofachtring en fchijnbacr duyfteraerlangde, foo beftaet hier in piolemeus fiegheling. T'besly y t. Wy hebben dan verclaert de fomme van Polemeus byghevoughde fpiegheling des langdeloops van Mercurius, na den eylch.

Tot hier toe is ghefeyt van Polemerus byghevoughde fpiegheling des langdeloops dichy v ermengt heeft byden eenvoudighen loop hem van fijn voorgangers ter handi gecommen. A ngacnde fijn fpiegheling des breedeloops, de tomme daer af fchijnt inde voorgaende breedeloop ghenouch verclaert.

> NVVANCOPERNICVS BYGHE-
> voughde /piegheling der Dvvaelders met Aclling eens roerenden Eertcloots.

## 8 VOORSTEL.

## Teverclaren de fomme van Copernicus byghevoughde fpiegheling der Maen.

Nemende Copernicuu dat Ptolemeuservaringhen vande Manens gageflagen fehiinbaer plactien recht waten; om daer op als vafte gront een fpiegheling te fichten, en fiende dat hy in fijn byghevoughde fipiegheling haer loop int inront, en des inronts loop in fijn wech oneven felde, d'een tijt raffcher als d'ander, ghelijck vooren gefeyt is in defes Anhangs 2 voorfel, fulex heefi hem onghefchickt ghedocht, alfiouock dede het fellen van haer groote naerdering totten Eertcloot, Arijdende teghen d'ervaring, deur welcke men bevint haer griiphouck de verandering niet tecrijghen dieder uyt foude moeten volghen, inder vougen dat hy in die plaets een ander wijfe befchreef: Cm welckete verclaren, foo is te weten dat hy lettende op de str.groothe voorofachtring der Maen in middeltegheflant en middelfaming, maer van 7 tr. 40 (1) in ettelicke middelvierdefchijnen door Poolemeus gaghe laghen, als vooren gheleyt is, heeft ghenomen die reghel valt te gaen, en doirfaeck gheftelt dufdanich te wefen: Laet A Bden inrontwech der Maen beteyckenen, diens middelpunt dats den Eertcloot C, en D EF het inront daer de Maen in loopt, volghens de eenvoudighe felling foofe Ptolemeers cerft ter handt quam, diens middelpunt A,en getrocken de rechte D A FC, oock EC gerakende hét iniont an F , foo doet den houck A C E de bovefchieven. tr . daer na fy gherrocken de lini CG, foodat den houck $A$ C $G$ doe de $\bar{j}$ tr. 40 (1) achtering, en op H als middelpunt fy befchreven het rondeken $E G$, gherakendede linien $C E, C G$, daer na fy gerrocken van A deur t'punt des bovefchteven raeckfels E de lini A EHG: En hefft de Maen in dit rondeken EG cen loop dobbel ande middelmaenwinft, en des sondekens middelpunt H heeft fijn loop ghelijck metteloop die de Maen ghefeyt wort te hebben int intont, volghens de eenvoudighe ftelling ghelijckfe

Ptole-
seen from the deferent's centre $G$, that is in the same orbit faster at one time than at another. But when the eye is situated at the deferent's centre $G$, he assumes Mercury, when seen from there, to move regularly on its epicycle, and for that reason it also moves regularly on the epicycle, always with the same speed. And when according to this supposition Mercury's advance-or-lag and apparent ecliptical longitude have been found, this constitutes Ptolemy's theory. CONCLUSION. We have thus expounded the sum of the theory of the motion in longitude of Mercury, added by Ptolemy; as required.

Up to this point the theory of the motion in longitude added by Ptolemy, which he combined with the simple motion handed down to him by his predecessors, has been discussed. As to his theory of the motion in latitude, the summary of this seems to have been explained sufficiently in the foregoing motion in latitude.

# NOW OF THE THEORY OF THE PLANETS, ADDED BY COPERNICUS, ON THE ASSUMPTION OF A MOVING EARTH 

[The 8th proposition, concerning the motion of the Moon, bas not been reproduced bere].
ghefocht des inronts halfmiddellijn $A$ E, wort bevonden deur het 4 voorftel der platte driehoucken van 872 , latet fija foo Coperricus ftelt
Dedriehouck ECG heeff drie bekende palen, te weten den houck EC G 2 tr.40(1), de fijde EC 10000 , als even genouch fijinde met A C,en den houck $G E C$ recht : Hierme ghelocht des rondekens middellija E G, wort bevondè deur het 4 voortel der platte driehoucken van 466 , latet fijn foo Copernicus ftelt
Diens helf voor de halfmiddellijn $E \mathrm{H}$
474.
237.

Tor C A 10000 , vergaert A D 860 , als even fijnde met A Eecrfte in doirdè, en daer toe noch D K 474, als even fijnde met E G tweede in d'oirden, comit voor C K mecfle verheyt vande Maen tottē Eertcloot
Van C. A rooco,getrocken A F 860 ,als even finde met A Eeerfte in d'oirden, en noch 474 voor de middellijn vant rondeken alt an $F$ is, blijft woor de minfte verheyt vande Maen totten Eertcloot is, biijft voor de minite verheyt vande Maen totten Eertcloot Suicx dat de meefe verheyt tot de minfte in fulckē reden is als in 3 , 8666. tweck foo groot werfchil der Manens grijphoucken niet en geeft als Pita Welc 100 groot verichil der Manensgriphoucken niet en geeft als Ptolemeus palen int 3 voorftel defes Anhangs van 65 deelè 13 (1) tot 34 deelen 9 (1), want fegghende 34 deelen 9 (1), geven 65 deelen 13 (1), wat de Manens minflegrijphouck 30 (1) :Comt deur het 6 voorfel des 2 boucx de Manens meefte grijphouck na Ptolemeus bygheroughde fpiegheling 57 (1), maer na Copernicus ftelling alleenelick 39 (1), want fegghende 8666 , gheven 11334 , wat de Manens minifte grijphouck 30(1)?comt als vooren 39 (1): Doch ift 3 (1) meer dan na de eenvoudighe ftelling foofe Ptolemess eerft ter handr quam, weicke dede 36 (1) (overeencommende foomen feght mette dadelicke ervaringhen) wantals gefeyt is inde Byeenvouging vant 13 voorfel des 3 boucx, de meefte verheyt doet 531 , de minfte 445 , daerom feggende 445 gheeft 331 , wat de Manens minfte grijp houck 30 (1)? comt als vooren 36 (1), fulcx dat Copernicus de fake daer in naerder ghecommen is dan Prolemeus.

Ten anderen foo en hecfr Copernicies mettet rondeken gheen ongheregelde loop d'een mael raffcher alsd'ander, ghelijck Ptolemeus ftelling inhoudt.

Angaende d'overeencomminghen mette dadelicke ervaringhen, Copernicus, en Ptolemews flellinghen gheven een felve befluyt in alle middelfaminghen en middeltegeftanden, en oock in alle middelvierdefchijnen in welcke de Maen by des inronts middelverheden is, want alfdan de voorofachtring na d'een en d'ander wijfe 7 tr. 40 (1) doet, maer buyien die plactfen valter, uffichend'een en d'ander telling verfchil. T' b e s i vy t. Wy hebben dan verclaert de fomme van Copervicus byghevoughde fiegheling der Maen, na den cyfch.

## 9 VOORSTEL.

Te verclaren de fomme van Copernicus byghevoughde fpiegeling des langdeloops vanSaturnus,Iupiteren Mars.

Nemende Copernicus dat Prolemeus ervaringhen van Saturnus, Iupiters en Mars gaghenaghen plaetien recht waren, om daer op als vafte gront een fpiegheling te ftichten, en fiende dat hy in fijn byghevoughde fieghelingen haer loop int intont, en des intonts loop in fijn wech oneven ftelde, d'een tijt raffcher

## 9th PROPOSITION.

To expound the sum of the theory of the motion in longitude of Saturn, Jupiter, and Mars, added by Copernicus.

When Copernicus assumed that Ptolemy's experiences of the observed positions of Saturn, Jupiter, and Mars were right, to base thereon a theory as a firm foundation, and he saw that in his additional theories he assumed their motion on the epicycle and the epicycle's motion on its deferent to be unequal, at one
fcherals d'ander, ghelijck vooren ghefeyt is in defes Anhangs 6 voorfel, fulcx heeft hem onghefchickt ghedocht, inder voughen dat hy in die plaetseen ander wijfe befchreef aldus toegaende:Laet A B C den inrontwech beteyckenen van een der drie bovenfte Dwaelders, ick neem Saturaus, diens middelpunt D, den vaften Eertcloot E , deur welcke ghetrocken is de reche lini A C, foo dat At'verfepunt bediet; C t'naeftepunt, D E de uytmiddelpunticheytijn, docnde na Ptolemeus rekening 3 deelen 25 (D), fulcke alffer $D$ A 60 doet, daer na fy op $A$ als middelpunt befchreven het inront $F G$, diens verttepunt $F$, naeftepunt G , waer in den Dwaelder fy ant verftepunt F. Dit is tot hier toe de form der eenvoudighe felling met een vaften Eertcloot, foofé Ptolemeus eerft ter handt quam, waer op hy fijn bovefchreven fpiegheling veroirdende : Maer de felve an Copernicus als ghefeyt is niet bevallende, heeft gedocht ofmen fijn verfierde roerfels niet bequamelicker en foude te wege brengen, met den Dwaelderte doen loopen in een rondeken befchreven int inront: En na verfcheyden taftinghen quam tot duflanich befluyt: Hy nam voor fich de lini tufichen den Eertcloot en het onevenheyts pundby Ptolemeusin fijn byghevoughde fpiegeling int $\boldsymbol{y}$ Hoofffick fijns is boucx bevonden van 6 deelen so(1), fulckealfier des inrontwechs halfmiddellijn 6odoet, waer voor Copernicus int s Hoofiftick fijns $\rho$ boucx ghebruyckt 1139 en 10000 : Van defe 1139 der lini tuffchen den Eertcloot en het onevenheytpunt, trock hy het vierëdect doende 285 , en blecf 854 , dic hecfi hy ghereyckent van $D$ tot $H$, nemende d'felve punt H nu voor Eertcloot,dic ecrft deur E hadde,beteyckent geweef: Nam daer na het derdendeel van D H 8 s 4 , dats $\mathrm{E} H$ doende 28 s , en teyckende die langde van F tot I , befchreefmet F a als halfmiddellijn het rondeken IK, nemende den Dwaelder ten tijde van fijn
 faming mette middelfontewefenan het naeftepunt $I$, hebbende eẽ loop mettet vervolgh der trappen van I na K,even metten loopdes intordts middelpunt A na B: Maer wefende den Dwaelder in defe middelfaming alfoo an het rondekens naeftepunt I, tiskennelick dat hy in alle middel/aminghen daer an moetwefen, in allemiddelreghefiant an het verfepunt $K$, en in alle middelvierdefchijn an cen middelverheyt,en quamen hier me $\mathbf{G g}_{3} \quad$ over-
time faster than at another - as has been said previously in the 6th proposition of this Appendix - this appeared objectionable to him, so that instead of it he described another method, as follows. Let $A B C$ denote the deferent of one of the inree upper Planets - I assume Saturn - its centre being $D$, the fixed Earth $E$, through which has been drawn the straight line $A C$ such that $A$ denotes the apogee, $C$ the perigee, $D E$ the line of eccentricity, making according to Ptolemy's calculation $3 \frac{25}{60}$ parts such as $D A$ makes 60 . Thereafter let there be described about $A$ as centre the epicycle $F G$, its apogee being $F$, its perigee $G$, on which let the Planet be at the apogee $F$. This is, up to this point, the figure of the simple assumption with a fixrd Earth, as it was first handed down to Ptolemy, on which he framed his above-mentioned theory. But since, as has been said, this did not satisfy Copernicus, he considered whether his imagined motions could not be brought about more conveniently by having the Planet move on a small circle described upon the epicycle. And after several tentative efforts he arrived at the following conclusion. He took before him the line between the Earth and the point of inequality, found by Ptolemy in his additional theory in the 5th Chapter of his 11 th book to be $6 \frac{50}{60}$ parts such as the deferent's semidiameter makes 60 , for which Copernicus in the 5th Chapter of his 5th book uses 1,139 and 10,000 . From these 1,139 of the line between the Earth and the point of inequality he subtracted one fourth, making 285, upon which there were left 854, which he drew from $D$ to $H$, now taking this point $H$ for the Earth, which had first been denoted by E. Thereafter he took one third of $D H=854$, i.e. $E H$, making 285, and drew this length from $F$ to $I$, described with $F I$ as semi-diameter the small circle $I K$, assuming the Planet at the time of its conjunction with the mean sun to be at the perigee $I$, moving in the order of the degrees from $I$ to $K$, equally to the motion of the epicycle's centre $A$ to $B$. But if the Planet is in this mean conjunction at the perigee of the small circle $I$, it is obvious that it must be there in any mean conjunction, in any mean opposition at the apogee $K$, and in any mean quadrature at a point of medium
overeen Saturnus dadelicke langden na fijn meyning. Doch want fijn voor. nemen niet en was defe befchrijving aldus te doen met felling eens vaften Eertcloots, maer met ftellingeens roerenden, hy heeft die form verandert, befchrijvende op t'punt ghelijck $H$ als middelpunt, een Eertclootwech even ant bovefchreven inrondt, en opt verftepunt des Dwaelderwechs ecn rondeken even an t'ander, nemende den Dwaelder daer in te loopen. Laet tot opentlicker verclaring vandien $A B C$ andermael het uytmiddelpuntichiont beleyckenen, diens middelpunt D, en tpunt E fy hier in fulcke verheyt van $D$, alf in de eerfte form van $D$ was, daer na fy berchreven den Eertclootwech F G Op $t^{\prime}$ punt Hals middelpunt, wefendet'felve punt Hin fulckẽ verheyt van Dalst'punt Hindecrfte form va D was, te weten 854 declen, en des Eertclootwechs halfmiddellijn F G, doe foo veel als daer des inronts halfmiddellijn EG1083, daer nafy mettehalfmiddellijn evē an $\mathrm{H} E$, belchreven op $A$ als middelpunt het rondeken I K, even ant rondeken I K der eerfte form, waer in Saturnus fy ant naeftepunt 1, met cen loop als in d'cerfte form vā InaK: Defferm met felling eensroerenden Eericloots, gheefi den Dwaelder alde felve Cchijnbacr duyfteraerlangden die uyt d'eerfte form met felling eens vaften Eertcloots volgen, waer afick eerf befonder bewiis gedaen hadde, maer denckende daer na de fake verftanelick ghenouch te connen fijn deur het ghene van dergelijcke verroont is int is yoorfel des 3 boucx, ten anderen lettende op de onfekerheyt des gronts daer defe felling op gebout fchijnt, ick heb dat bewiis cortheytshalven onbefchreven ghelaten.

Mera noch hier vooren gefeyt te wefen dat Copernicus het rondeken eerft verdocht int inront met felling eens vaften Eertcloors, ende hoewel fulcx in fijn fchrifien niet en blijckt, ick hebt nochrans foo ghefeyt om mijn meyning int coste beter te yerclaren, en dattet metter daet foo fchijnt toeghegaen tc hebben.
Deur defe voorgaende fpiegheling feght Copernicus den Dwaelder altijt tot Ajn behoirlicke plaets ghevonden te worden.

Merckt noch int boverchireven te blijcken, dat Copernicus byghevoughde fpiegeling een vermenging is van fijn vondt met wat uyt Psolemeus byvouging gherrocken, ghemerck de lini daer hy de drievierendeel af neemt by Polemeus ghebruyckt wiert.

Angaende het foucken van des $D$ waelders fchijnbaer duyfteraerlangde volghens
distance, and in his view Saturn's practical longitudes agreed with this. But because it was not his intention to make this description thus on the assumption of a fixed Earth, but on the assumption of a moving Earth, he changed that figure, describing about the point $H$ as centre an Earth's orbit equal to the above epicycle, and about the apogee of the Planet's deferent a small circle equal to the other, assuming the Planet to move thereon. For a fuller explanation of this, let $A B C$ again denote the eccentric circle, its centre being $D$, and let the point $E$ be here at the same distance from $D$ as it was from $D$ in the first figure. Thereafter let there be described the Earth's orbit $F G$ about the point $H$ as centre, this point $H$ being at the same distance from $D$ as the point $H$ was from $D$ in the first figure, to wit, 854 parts, and let the semi-diameter of the Earth's orbit $F G$ make the same as there the epicycle's semi-diameter $E G=1,083$. Thereafter let there be described, with the semi-diameter equal to $H E$, about $A$ as centre the small circle $I K$, equal to the small circle $I K$ of the first figure, on which let Saturn be at the perigee $I$, with a motion as in the first figure from $I$ to $K$. This figure on the assumption of a moving Earth gives the Planet quite the same apparent ecliptical longitudes as follow from the first figure on the assumption of a fixed Earth, of which I had first given a separate proof, but considering afterwards that the matter could be understood easily enough from what has been shown for a similar case in the 15th proposition of the 3rd book, and secondly taking into account the uncertainty of the foundation on which this assumption seems to be built, for brevity's sake I have left this proof unwritten.

Note also that it has been said above that Copernicus first imagined the small circle on the epicycle on the assumption of a fixed Earth, and though this does not appear from his writings, I have nevertheless said it so in order better to explain my view in brief, and because it seems really to have taken place like this.

Copernicus says that by the foregoing theory the Planet is always found at its appropriate place.

Note also that it appears from the above that Copernicus' additional theory is a combination of what he found and what was deduced from Ptolemy's addition, since the line of which he takes three fourths was used by Ptolemy.
gens defe fpiegeling,t'is kennelick darmen inde tweede form fal vindë des rondekens middelpunts fchijnbaer duyfteraerlangde op de wijfeghelijck int 6 lide vant is voorftel des 3 boucx ghevonden wiert des Dwaelders fchijnbaer duyfteraerlangde, en daer noch by voughen de voorofachtring die den Dwaelder deur het rondeken crijcht, want datter uyt comt is t'begeerde. Deurtghene wy tot hier toe van Saturnus gefeyt hebben, is derghelijcke te verftaen van Iupiter en Mars. T'besivy t. Wy hebben dan verclaert de fomme van Copernicus bygh evoughde fpiegheling van Saturnus,I Iupiter en Mars, na den eyfch.

## ${ }_{10}$ VOORSTEL.

## Te verclaren de fomme van Copernicus byghevoughde fpiegheling des langdeloops van Venus.

Angefien Venus met ftelling cens roerenden Eertcloots alfoo loopt in haer wech die binnen den eertclootwech is, ghelijck de drie opperfte Dwaelders in haer weghen loopen die boven den Eertclootwech fijn, foo foude mijns bedunckens Copernicus meyning uyt het voorgaende bekent fijn, alfmen her rondeken befchreef op Venuswech binnen den Eertclootwech: Doch te wijle hy achte de fake claerder te wefen, met Venuswechs middelpunt te doen dracyen in een rondeken even an t'ghene men anders op de wech als ghefeyt is mocht befchrijven,foofal ick dat verclaren. Laet A B C dē Eertclootwech fijn,diens

middelpunt $D$, halfmiddelijn $D$ A doende 10000 , en $E$ isde plats daer Venus wechs middelpant bevonden wiert volghensde rekening gemaeckr op de eenvoudighe ftelling foofe Ptolemeers eerft ter handt quam, alwaer de uytmiddelpunticheylijin DEdede 208 : Maet na Copernicus fpiegeling fy geteyckent het punt $F$, foo dat E F even is met E D , beduydende trfelve punt $F$ Venuswechs middelpunt, waer op mette halfmiddellijn F G doende 7194 , berchrevē is Venuswech $G$ Hin defe ghefalt : Daer aa fy van E Fghenomen het middel I, en
$\mathbf{G g}_{4}$ daer

As to the computation of the Planet's apparent ecliptical longitude according to this theory, it is obvious that in the second figure the apparent ecliptical longitude of the small circle's centre has to be found in the manner in which in the 6th section of the 15th proposition of the 3rd book the Planet's apparent ecliptical longitude was found, to which has to be added the advance-or-lag which the Planet gets from the small circle, for the result is the required value. From what we have hitherto said about Saturn the same is to be understood for Jupiter and Mars. CONCLUSION. We have thus expounded the sum of the theory of Saturn, Jupiter, and Mars, added by Copernicus; as required.

10th PROPOSITION.
To expound the sum of the theory of the motion in longitude of Venus, added by Copernicus.

Since on the assumption of a moving Earth Venus moves in its orbit, which is within the Earth's orbit, just as the three upper Planets move in their orbits, which are above the Earth's orbit, in my opinion Copernicus' view would be known from the foregoing if the small circle were described on Venus' orbit within the Earth's orbit. But since he deemed the matter to be clearer if the centre of Venus' orbit were made to move on a small circle equal to the one that might otherwise - as has been said - be described on the orbit, I will explain this. Let $A B C$ be the Earth's orbit, its centre being $D$, its semi-diameter $D A$, making 10,000 ; and $E$ is the place where the centre of Venus' orbit was found according to the calculation made on the simple assumption, as it was first handed down to Ptolemy, where the line of eccentricity DE made 208. But according to Copernicus' theory let there be marked the point $F$ such that $E F$ is equal to $E D$, this point $F$ denoting the centre of Venus' orbit, about which, with the semi-diameter $F G$ making 7,194 , has been described Venus' orbit $G H$ in this disposition. Thereafter let there be taken of $E F$ the middle point $I$, and

## 352 ANHANGVANDER DVVAELDERS

dacrop als middelpunt befchreven het rondeken $E F$, daer des wechs $G H$ middelpunt in dracyt, tweemael fo rasals den Eertcloor, en oockna t'vervolgh der trappen, fulex dat wanneer den Eertcloot is an t'verftepunt A of naeftepunt C, roo is t'middelpunt des wechs $G$ Haltijt an $E$, maer den Eertcloot an een der middelverhedē fijnde,als B,foo is dat middelpunt altijtan F. En hier me feght Copernicus dat Venusaltijt tot haer behoorlicke langde ghevonden wort.

T'B ESLVYT. Wy hebben dan verclaert de fomme van Copernicus byghevoughde fpiegheling des langdeloops van Venus, na den eyfch.

## MERCKT.

Alfoo Copernicus int 25 Hoofftick des s boucx, tot Gjn fpiegeling noodich verfont Mercurius te doen overentweer loopē in een rechre lini, en nochtans niet willende toclaten eenighe onghefchickie loop van ronden d'eenmael raffcherals d'ander, foo heeft hy int 4 Hoofftick fijns 3 boucx befchrevē een vertooch waer deur fulcx met even roerfel van ronden te weghe can ghebrocht worden tfelve vertooch (daer oock af ghehandelt wort deur froclues uytlegger der beginfelen van Euclides) fal ick hier by fetien als 11 voortel, om tedienea tot bewijs des volghenden 12 voorftels.

## VERTOOCH. <br> II VOORSTEL.

Wefende opt middelpunt eens cerfe ronts befchreven een tvveede, diens halfmiddellijn even is ande helft der halfmiddellijn van t'eerfte, en opeen puntindē omtreck vant twveede befchrevē cen derde, even ant tvveede, hebbende een loop dobbel anden loop vant twveede, enop cen anderfijde. Yder punt des omtrecx vant derde befchrijfteen rechte halfmiddellijn vanteerte.


Tghegeven. Laet in dees cerfte form ABC het eerfte rondt fijn, diens middelpunt $D$, halfmiddeliijn AD, en op D fy befchreven een tweede rondt $\mathbf{E F}$, diens halfmiddellijn D E even is anden helft $v \bar{a}$ A D des cerfleronts A.BC, daer na fy op cen punt als Eindé omtreck vant twetderont EF,befchreven een derde $A D$ even ant twec. de EF, en hebbende cen loop van A na de rechier fijde, dobbel anden loop vant tweede-rondt EF na de Alijncker: Laet voort A eenich
about this as centre let there be described the small circle $E F$, on which the centre of the orbit GH moves, twice as fast as the Earth, and also in the order of the degrees, so that when the Earth is at the apogee $A$ or the perigee $C$, the centre of the orbit $G H$ is always at $E$, but when the Earth is at one of the points of medium distance such as $B$, that centre is always at $F$. And Copernicus says that herewith Venus is always found at its appropriate longitude.

CONCLUSION. We have thus expounded the sum of the theory of the motion in longitude of Venus, added by Copernicus; as required.

## NOTE.

Since Copernicus in the 25th Chapter of the 5th book deemed it necessary for his theory to make Mercury move to and fro in a straight line and yet was not prepared to admit any objectionable motion of circles, at one time faster than at another, in the 4th Chapter of his 3rd book he gave a demonstration by means of which this can be brought about with a uniform motion of circles; I will here add this demonstration (which is also dealt with by Proclus, the commentator of the elements of Euclid) as the 11th proposition, to serve as a proof of the subsequent 12th proposition.

## THEOREM.

11th PROPOSITION.
When about the centre of a first circle a second is described, whose semidiameter is equal to one half of the semi-diameter of the first, and when about a point on the circumference of the second a third is described, equal to the second, having a motion that is twice the motion of the second and in an opposite direction, every point of the circumference of the third describes a straight semi-diameter of the first.

SUPPOSITION. In this first figure let $A B C$ be the first circle, its centre being $D$, its semi-diameter $A D$, and about $D$ let there be described a second circle $E F$, whose semi-diameter $D E$ is equal to one half of $A D$ of the first circle $A B C$. Thereafter in a point such as $E$ on the circumference of the second circle $E F$ let there be described a third. circle $A D$, equal to the second $E F$ and having a motion from $A$ to the right that is twice the motion of the second circle $E F$ to
cenich genomẽ punt fijn des omtrecx vant derde ronde A D. TBE GEERDE: Wy moeten hier me bewijfen dattet punt $A$ des omtrecx $A D$ vant derde ront, een rechte middellijn A C befchrijft des eetfien rondts A B C.

T'BEREYTSEL. Latet punt Edes tweede rondtsE Finde certe form gecommen fijn na de flijncker fijde tot $G$ als in dees tweede geloopen hebbende dē booch E G, of houck A D B, fulcx dattet verftepunt A des derde ronts A D inde eertte form moet gecommé fijn vä $A$ tot $B$ in dees tweede:Hierentuffcher moettet genomen roerende puntin het derde rondt ghe-
 commen fijn volgendergeflelde van B na H , te weten nade rechter fijde, fulcx dat den booch BH dobbel is an E G, of den houck B GH, dobbel anden houck BD $H$, latet fijn tot H . Om nu op defe derde form het begeerde noch opentlicker te vercla. ren, wy moeten bewijfen dat H valt inde lini AC. T'BE. w y s. Angefien den houck B G H opt middelpunt Gint rondt BH D dobbel is anden houck B DH opt punt des omtrecx $D$ int $\mathfrak{\text { celve ront }}$ B H D deur t'bereytfel', en oocdeur het 20 voortel des 3 boucx van Euclides, fo fegh ick hierom t'punt H nootfakelick te vallen in AC , want by aldient daer buyten viel, ick neem an I, foo en foude dan den houck B G I niet het dobbel connen fijn des houcx ED G, het welck teghen tgeftelde waer. T' в ESLYy Welende dan opt middelpunt eens rondts, befehreven \&c.

## VERVOLGH.

De lini B H valt rechthouckich op A C om defe reden : Laet gheteyckent worden inden omtreck $E F$ het punt $K$, foo dat de booch $E K$ even is met $E G$, en daerom oock de booch B H met GK, daer na fy ghetrocken de lini D K en GK : Twelck foo wefende A D fnijt de rechte $G$ K in haer middel $I$, fulcx date op malcander rechthouckich commen : Maer den driehouck B GH is even en ghelijck metten driehouck G D K, en de Gjde B G light met G Din een rechte lini, waer deur B H evewijdeghe is met $G K$, en comt ghelijek de felve G K oock rechthouckich op A C. Dit foo fijnde ick fegh aldus: Want opeen gegeven tijt bekent is de booch AB, foo wort ghevonden de houckmaetpijl H A des houckmaets H B, of houcx A D B in fulcke declen alfmen A D toefchrijft deur het 14 voorftel vant Houtmaetmaeckfel, macr mettet punt $H$ wort Mercurius betegckent, waer uyt blijekt fijn placts inde middelbijn A Cbekent te worden.

Ggs 12 VOOR:
the left. Further let $A$ be any point taken on the circumference of the third circle $A D$. WHAT IS REQUIRED. We have to prove herewith that the point $A$ of the circumference $A D$ of the third circle describes a straight diameter $A C$ of the first circle $A B C$.

PRELIMINARY. Let the point $E$ of the second circle $E F$ in the first figure have moved to the left to $G$, as having moved on this second circle through the arc $E G$, or angle $A D B$, so that the apogee $A$ of the third circle $A D$ in the first figure must have moved from $A$ to $B$ on this second circle. In the mean time the moving point taken in the third circle must, according to the supposition, have moved from $B$ to $H$, to wit, to the right, so that the $\operatorname{arc} B H$ is twice $E G$, or the angle $B G H$ twice the angle $B D H$, let it be as far as $H$. In order now to explain in this third figure more clearly what is required, we have to prove that $H$ falls in the line $A C$. PROOF. Since the angle $B G H$ at the centre $G$ in the circle BHD is twice the angle $B D H$ at the point of the circumference $D$ in the said circle $B H D$, by the preliminary and also by the 20th proposition of the 3rd book of Euclid, I say that for this reason the point $H$ necessarily falls on $A C$, for if it fell outside it I assume at $I$ - the angle $B G I$ could not be twice the angle $E D G$, which would be contrary to the supposition. CONCLUSION. When thus about the centre of a circle is described, etc.

## SEQUEL.

The line $B H$ is perpendicular to $A C$, for the following reason: Let there be marked on the circumference $E F$ the point $K$ such that the arc $E K$ is equal to $E G$, and consequently also the arc $B H$ to $G K$. Thereafter let there be drawn the lines $D K$ and $G K$. This being so, $A D$ intersects the straight line $G K$ in its middle point $L$, so that they come perpendicular to one another. But the triangle $B G H$ is equal and similar to the triangle $G D K$, and the side $B G$ lies with $G D$ in a straight line, owing to which $B H$ is parallel to $G K$, and like this $G K$ also comes perpendicular to $A C$. This being so, I say as follows: Because at a given time the arc $A B$ is known, the versed sine $H A$ of the sine $H B$ or of angle $A D B$ is found, in such parts as are ascribed to $A D$ by the 14th proposition of Trigonometry 1), but by the point $H$ Mercury is denoted, from which its position in the diameter $A C$ appears to become known.

[^55]
## Anhang vander Dfraelders

${ }_{12}$ VOORSTEL.
Te verclaren de fomme van Copernicus byghevoughde f piegheling des langdeloops van Mercurius.

I aet A Bden Eertclootwech beteyckenen, diens middelpunt C,middellijn A B, uytmiddelpunticheytlijn DC, ghevonden na de wijfeder eenvoudighe ftelling foofe Ptolemeus eerft ter handı quam van 947 deelen, fulcke alferdes Eertclootwechs halfmiddellijn A C iooco doet, ende op D als middelpunt, en

mettet derdendeel van DC, t'welck fy DE, is befchreven een rondeken $E$, fulcx dat Fiverftepunt beteyckent và C,en E t'naeftepunt, daer na op Falsmiddelpunt fy befchrevẽ den inrontwech $\mathbf{G H}$, op wiens verffepunt H als middelpunt ick het inront I K teycken, en opt felve middelpunt H noch een cleender ronds $L M$, diens halfmiddellijn $H M$, even is an den helfi der balfmiddellijn

HI, en

## 12th PROPOSITION.

To expound the sum of the theory of the motion in longitude of Mercury, added by Copernicus.

Let $A B$ denote the Earth's orbit, its centre being $C$, its diameter $A B$, the line of eccentricity $D C$, found by the method of the simple assumption, as it was first handed down to Ptolemy, to be 947 parts, such as the semi-diameter of the Earth's orbit $A C$ makes 10,000 , and about $D$ as centre and with one third of $D C$, which shall be $D E$, there is described a small circle $E F$ such that $F$ denotes the point furthest from $C$ (apogee) and $E$ the nearest point (perigee). Thereafter about $F$ as centre let there be described the deferent $G H$, about whose apogee $H$ as centre I draw the epicycle $I K$, and about this centre $H$ also a smaller circle $L M$, whose semi-diameter $H M$ is equal to one half of the semi-diameter $H I$ and intersects $A B$ in $L$ and $M$; thereafter about $L$ as centre the small circle $K H$, whose semi-diameter $L H$ is the same as that of the circle described about $H L$; in this small circle $K H$ Mercury is carried. This figure thus being completed, we will explain its significance. $F$, the centre of the circle $H G$, performs two revolutions a year, one which it receives from the Earth's orbit, the other being its proper motion, and both in the order of the degrees. The centre $L$ of the circle $K H$ is fixed on the circumference of the circle $L M$ and is carried therein against the order of the degrees, performing one revolution a year. The motion of Mercury on the circle $K H$ is in the order of the degrees, equal to the abovementioned motion of $F$, to wit, two revolutions a year, from which it follows that Mercury always moves to and fro on the diameter KI without leaving it, by the 11th proposition of this Appendix. Further it follows that when the Earth is at $A$ or $B$, the centre of the circle $H G$ must always be at $F$, that is the point of the circle $E F$ furthest from $C$. But when the Earth is at the points of medium distance, i.e. $90^{\circ}$ from $A$ or $B$, the aforesaid centre of the circle $H G$ must always be at $E$, that is the point of the circle $E F$ nearest to $C$, which takes place in the opposite way to what happened with Venus. Further it follows that if, as has been said, Mercury moves to and fro on the diameter $I K$, the nearest point will always be at $I$ when the Earth is at $A$ or $B$, but at the furthest point $K$ when the Earth is at the points of medium distance. In this way it occurs that the centre of $H G(F)$ on the circle $E F$, and Mercury on the diameter $I K$, each perform two revolutions a year. And meanwhile the proper motion of the epicycle $I K$ or the line $F H$ in the circle $H G$ is uniformly about 88 days for one revolution. And herewith Copernicus says that Mercury is found at its appropriate place.

CONCLUSION. We have thus expounded the sum of the theory of the motion in longitude of Mercury, added by Copernicus; as required.

HI, en friende A B in $\mathrm{Len} M$, daer na op $\mathcal{L}$ als middelpunt het rondeke KH , diens halfmiddellijn $L$ Hde felve is des ronts befchreven opH $L$, in dit rondeken KH wort Mercurius ghedreghen. Defe form aldus voldaen fijnde, foo fullen wy haer beteyckening verclaren: F middelpunt des rondts $\mathrm{H} G$ doet des jaers twee keeren, d'een diet vanden Eertclootwech ontfangt, d'ander fijn eyghen, en beyde nat'vervolgh der trappen : T'middelpunt $L$ des rondts $\mathrm{KH}_{\mathrm{H}}$ is vaft inden omtreck des rondrs $I . M$, en wort daer in ghedreghen teghen het vervolgh der trappen doende des jaers een keer : Den loop van Mercurius int ronde $\mathrm{K} H$, is nat'vervolgh der trappen, even anden bovefchreven loop van $F$, te weten des jaers twee keeren, waer uyt volght dat Mercurius altijt overentweer loopt inde middellijn K I fonder daeruyt te commen, deur her 11 voorftel defes Anhangs. Wijder volght dat wefende den Eercloot an A of B, foo moet het middel punt des rondts H G dan altijt fijn an F , dats des rondts EF verftepunt van C: Maer den Eertcloot ande middelverheden fijnde, dats 90 tr. van A of $B$, foo moet het voorfchreven middelpunt des rondts HG dan altijt fijn an $E$, dats des rondts $E F$ naeftepunt van $C$, her welck op verkeerde wijfe tocgaet van t'ghene met Venus ghebeurde. Wijder volght dat Mercuriusde middellijn I K overentweer loopende foo ghefeyt is, altijt het naeftepunt an I fal fijn wefende den Eericloot an $A$ of $B$, maer an t'verftepunt $K$ den Eertcloot ande middelverheden fijnde : Hier me ghebeuret dat het middelpunt van $\mathrm{H} G$ als $F$, int rondr $E F$, en Mcrcurius inde middellijn IK des jaers elck twee keeren doen : En hierentuffchen is den eyghen loop des inrondrs $I K$, of de lini FH int rondt HG eenvaerdelick ontrent de 88 daghen over een keer. En hier me fegt Copernicus dat Mercurius tor fijn behoirlicke plaets ghevonden wort.
T'be slvy t. Wy hebben dan verclaert de fomme van Copernicus bygevoughde fpiegheling des langdeloops van Mercurius, na den eyfch.

## 13 VOORSTEL.

## Verhael op der fterren onbekende loop: Endesduyfteraers onbekende afvvijcking vanden * evenaer.

De vafte fterren worden ghereyt een onbekende loop te hebben d'cen tije raffcherals d'ander, want hoewelmenfe altijt eveverre van malcander bevint, nochtans heeft den heelen Hemelscloot een roerfel van Weften int Ooften, fulcx dat haer duyfteracrlangde die ande lentfne begint, gheduerlick grooter wort, en van Ptolemeus tijt tot nu toe over de 21 (1) vermeerdert is: Maer volghens de ervaringhen federt ghefchiet, foo wort dit roerfel feer onghereghelt gheacht, d'eenmael flapper als d'ander, ja foo eenighemeynen fomwijlen ruggheling te loopen. Hier affijn by ettelicke als Thebit, de Alfonfinen, Purbachius, Copernicus, Ioannes Venerus, verfcheyden * fpieghelinghen verdocht, elck Theoria: na fijn goetduncken. Maer om van dit onbekent roerfel mijp ghevoelen te fegghen, het is te weten dat der fterren * wanfchaeuwing grooter bevonden refratio: wort in landen na den * afpunt dan na den evenaer, waer af wy feer mercke- Polums. lick voorbeelt hebben, deur de ervaring ghefchiet op de vermaerde feylage van Willem Barenten metten fijnen in Nova Zembla, wefende daer des afpunts verheffing van 76 tr. alwaer hemlien de Son eerft onder den * fichtein- Horizente? der ginck den vierden November 1 s96, diefe op den eertten behoorden verlooren te hebben, fulcx datfe hoogher fcheen danfe eyghentlick was, of wan-
fehacu:

An account of the stars' unknown motion; and the ecliptic's unknown deviation from the equator.

The fixed stars are said to have an unknown motion, at one time faster than at the other, for though they are always found at the same distances from one another, nevertheless the whole Heavenly Sphere has a motion from West to East, so that their ecliptical longitude, which starts at the vernal equinox, becomes continuously greater, and from Ptolemy's time to the present day has increased by more than $21^{\circ} 1$ ). But according to the experiences that have been gained since, this motion is considered to be very irregular, at one time slower than at another, nay, as some think, it is sometimes a backward motion. About this many authors, such as Thebit, the Alphonsines, Purbachius, Copernicus, Jobannes Vernerus ${ }^{2}$ ), have invented different theories, each according as he thought fit. But to give my opinion about this unknown motion, it is to be noted that the refraction of the stars is found greater in countries towards the pole than towards the equator, of which we have a very notable example through the experience gained during the famous voyage of Willem Barentsen and his men to Nova Zembla 3) where the elevation of the pole was $76^{\circ}$ and where the Sun did not go down beneath the horizon until the fourth of November 1596, though they should have lost it on the first, so that it seemed to be higher than it really was, or had

[^56]
## 356 Anhang vander Dviaelders

fchaeuwing had ghelijck elck berekenen mach, van ontrent itr. 9 (1): Maer 81 daghen daer na, te weten den 24 Ianuarius 1597 , foo heeft den rande der Son haer weerom begonnen te openbaren, welcke fy fooder geen wanfchaeuwing gheweeft en had, op den 9 . Februarius eerft behoorden gefien te hebben, inder voughen datfe hoogher fecheen danfe eyghentlick was, of wanfchaets. wing had by de str, welcke in defe laetfe ervaring veel meerder bevonden wiert als in d'eerte, waer af doirfaeck bekent gheworden is an Philippus Lamf-
Objervasor. berginss victich* Ganagher en vermaert Wifconftenaer, die daer te vooren in fijn crvaring hen deur oneven wanfchacuwinghen langhe in twijffel gheweeft
Solfitio hie. had, want hoewel de Son tot lijckltandighe plaetfen vant* Winters keerpunt mali. was, als neem ick soof $\mathbf{s} 6 \mathrm{tr}$. daer voor, en $\mathbf{s} 6 \mathrm{tr}$.daer na, foo en hecft hyle nochtansin d'een en d'ander niet met cen felve hooghde boven den fichteinder bevonden, maer meerder inde laetfe dan in deerfte plaets, achtende nochtans aldoen dit feyl van weghen wanfchaeuwing niet te connen commen, omdat, als ghefeyt is, de Son in d'een en d'ander ervaring eveverre van het winterskecrpunt was: Maer het bovefchreven voorbeelt van Nova Zembla thijnder kennis ghecommen fijnde, heeft doirfaeck befoten te wefen, en mijns bedunckens met goede reden, dat de coude winteriche vochticheden in Februarius dicker en waterachtigher fijn, dan inde warmer maent OCtober eynde des voorganghen Somers. Nudan de wanfchaeuwing in Nova Zem. bla foo uytnemende groot wefende, en tot ander plaetfen daer de ervaringhen ghebeurt fijn, als Pruyffen, Duythandt, Spaeigne, Italic, Egipten, foogroot als yders Noorderlickheyt mebrengt, boven dien tot een felve plaets op d'een tijt des jaers grooter als op d'ander, fonder nochtans by de Befchrijivers der voornoemde fpieghelinghen daer opacht ghenomen te wefen, foo valt daer uyt te befluyten, dat de onevenheden by hemlien bevonden, niet nootfakelick en fijn van weghen onevenheyt des loops der fterren, want al waer die gantich even, foo fouder om de verfcheydenheyt der wanfchaeuwing moeten fchijnen onevenheyt te wefen : Oft andersgheleyt, fooby hemlien volcommen evenheyt bevonden waer, $t^{\prime}$ foude teycken fijn van onevenheyt int wefen. Tot breeder bevefting van het voorfeyde valt noch te anmercken, ten eerften dat uyt de ervaringhen in Egipten ghefchict, even loop bevonden wiert,te hondert laren van 1 tr. totten tijt van 432 Iaren toe: Ten anderen dat de onevenheyt met raffcher loop, gheoirdcelt wort uyt ervaringhen die daer na in verfcheyden Noorderlicker landen gaghenlaghen fijn, t'welck met reden; vermoeden gheeft de onberekende wanfchaeuwinghen daer af oirfaeck te meughen wefen, of volcommelick, of ten decle, maer welck van beyden men neemt, de voorfchreven fieghelingben vallen onghegront, en fchijnt dat foo de Schrijvers van dien defe verfcheyden grootheyden der wanfchaeuwinghen ghenouch bedocht hadden, datfe de felve fpieghelinghen foo niet en fouden veroirdent hebben, en daerom laet ick die onbelchreven, achtende datter voor al behooren te fijn ervaringhen van ghenouchfaem fekerheyt, eermen tottet veroirdenen en befluyten van fulcke fieghelinghen comt. Hier toe foudet connen voorde̊rlick fijn, datmen tot Alexandrie in Egipten, daer de voorfchreven eerfte ervaringhen ghebcurden, dede gaflaen de Sonnens inganck dex lentine en erfifne, met hacr meefte afwijcking vanden evenaer, en datmen daer na faghe hoe dic overcommen met dergheli;cke ons Noorderlicker ervaringhen op den felven tijt ghefchiet.

Tot hier toe is ghefeyt vande onbekende reerfels der vafte fterren: Angaende die de: Dwaelders, van welcke in defen Anhangghehandelt is, ick acht Pto-
a refraction, as anyone may calculate, of about $1^{\circ} 9^{\prime}$. But. 81 days afterwards, to wit, on the 24th of January 1597, the rim of the Sun began to show again, though, if there had been no refraction, they ought not to have seen it until the 9th of February, so that it seemed higher than it really was or had a refraction of about $5^{\circ}$, which in this last experience was found much greater than in the first. The cause of this was revealed to Pbilippus Lansbergius 1), industrious Observer and famous Mathematician, who previously had long been in doubt in his experiences owing to unequal refractions, for though the Sun was in homologous places in relation to the winter solstice - I assume $50^{\circ}$ or $56^{\circ}$ in advance of it and $56^{\circ}$ behind it - yet he did not find it at the same height above the horizon in one place and the other, but at a greater height in the last place than in the first; yet he then thought that this error could not be due to refraction, because, as has been said, the Sun was at equal distances from the winter solstice in one experience and the other. But when the aforesaid example of Nova Zembla had come to his knowledge, he concluded the cause to be - in my opinion with good reason that the cold, humid winter atmosphere in February is denser and contains more water than in the warmer month of October, the end of the preceding summer. Since therefore the refraction in Nova Zembla was so extraordinarily great, and in other places where the experiences were gained, such as Prussia, Germany, Spain, Italy, Egypt, as great as was conditioned by the Northerliness of each, while moreover in the same place it was greater at one time of the year than at another, but without the Describers of the aforesaid theories having paid heed to it, it may be concluded that the inequalities found by them need not necessarily be due to inequality of the motion of the stars, for even if this were altogether equal, there must seem to be inequality owing to the variation of the refraction. Or in other words: if they had found perfect equality, this would be a sign of real inequality. For a fuller confirmation of the above it is also to be noted that from the experiences gained in Egypt there was found equal motion, of $1^{\circ}$ in a hundred years, up to 432 years. Secondly, that the inequality with faster motion is judged from experiences observed thereafter in different more Northerly countries, which justly raises the suspicion that the uncalculated refractions may be the cause of this, either altogether or in part. But no matter which of the two is taken, the above-mentioned theories are unfounded, and it seems that if the Authors thereof had taken sufficient account of these different amounts of the refraction, they would not have framed the said theories as they did; and for that reason I leave them undescribed, being of opinion that before all there should be experiences of sufficient certainty before one proceeds to frame and derive such theories. To this end it might be advantageous if at Alexandria in Egypt, where the aforesaid first experiences were gained, the Sun's passage through the vernal and the autumnal equinox were made to be observed, with its greatest deviation from the equator, and that it were thereafter seen how they correspond with similar more Northerly experiences gained at the same time.

Up to this point the unknown motions of the fixed stars have been discussed. As to those of the Planets, which have been dealt with in this Appendix, I also

[^57]Lemeus ervaringhen daerfe op ghegront fijn oock voor onfeker, want hoewel by daer in groote looficken aerbeyt ghedaen heeff, nochtans ghemerckt dat tocginck met een clecne cooper* Hemelloopfuych, van verfcheyden ringhen ghemacckt, elckeop hacr as dracyende, fulcx datmen des tuychs duyfte- Infrumento raer altijit evewijdich creech metten hemelfchen : Voort dat hy de ferren deur co. fichigaetkens der wijnlijnen fach, met meerder plaers dan de grootheyt der flerre, onfekerder toegaende dan na hetgebruyck van Tuycho Brahe, foo is hemlien die met fulcke reetfchappen ommegaen,kennelick ghenouch de onfekerheden dieder in vallen, hoe forchvuldich die oock ghemaeckt fijn, ghelijck Ptolemerus felf daer af fomwijlen vermaen doet. Maer der ferrenhoochden of verheden van malcander met groote reeifchappen ghemeten, en de reft deur rekeninghen der platte en clootfche drichoucken ghewrocht, daer machmen vaftelicker op te wercke gaen.

Noch vielder in Ptolemeus ervaringhen eenige onfekerheyt van der Dwaelders fichijngbaer duy feraerlangden, om dat de vafte ferren felf daer de dadelicke meing op ghegront is,tot die tijt rouwelick befchreven waren met io (1) voor cleenfte maet,als in fijn tafclen blijckt. Voorts boven felling van oneven onnatucrlicke ioopen, foo betuyghen noch de dadelicke ghemeten grijphoucken der Dwaelders, voornamelick van Mars en de Maen, datfe niet in fulcke verheyt en naerheyt des Eercloois en commen als de fpiegeling mebrengt,gelijck wy elders breeder verclaert hebben.
Benevens t'ghene tot hier toe ghefeyt is noch vervought t'ghetuychnis van vercheyden Ganaghers, als onder anderen Regiomonitanus, Berrhardus Walzheri, en Purbachius, in druck uytgacnde, foo $n$ worden der Dwaelders plactfen niet bevonden t'overcommen metre fpieghelinghen : Al t'welck anghemerckr, ten fchijnt nier feker ghenouch ofier der Dwaelders onbekende roerfels fijn, of wefende, dat wy van haer ghedaente gheen ghenouchfaem befeheyt en hebben, dacrom meyn ick dat foo ymant voor hem naem een nieuwe fpiegheling van dien te befchrijven, dattèt oirboir waer fich voor al van foo veel ghewiffe ervaringhen te voorfien, datfe voor gront mochten verftrecken om op te bouwen. Doch hier mede mijn teghenwoordich ghevoelen verclaert fijnde, laet daerentuftchen elck fijn goetduncken volghen.

T'beslvyt. Wy hebben dan ghedaen een verhael op derfterten onbekende loop, en des duyferaers onbekende afwijcking vanden Evenaer, na dencych.

DES DERDEN BOVCX
EYNDE.

consider Ptolemy's experiences, on which they are founded, to be uncertain, for though he has performed a great deal of praiseworthy work in this respect, nevertheless, considering that this took place with a small astronomical instrument of copper, made of different rings, each revolving about its axis, so that the ecliptic of the instrument was always obtained parallel to the celestial ecliptic, and since he saw the stars through small peepholes in the diopter rings, wider than the size of the star, which was a more uncertain procedure than by the practice of Tycho Brahe, it will be sufficiently obvious to those who handle such instruments to what uncertainties they give rise, however carefully they may have been made, as Ptolemy himself sometimes warns his readers. But when the altitudes of the stars or their distances from each other are measured with large instruments and the rest is achieved by calculations of plane and spherical triangles, this forms a firmer foundation on which to proceed.

There was also some uncertainty in Ptolemy's experiences concerning the Planets' apparent ecliptical longitudes, because the fixed stars themselves, on which practical measurement is based, up to that time had been roughly described with $10^{\prime}$ as the smallest measure, as appears from his tables. Further, apart from the supposition of unequal unnatural motions, the practically measured angular diameters of the Planets, chiefly of Mars and the Moon, also show that they do not come as far from and near to the Earth as the theory implies, as we have explained more fully elsewhere.

When to the statements made up to this point there is further added the testimony of different Observers, such as, among others, Regiomontanus, Bernbardus Waltheri, and Purbachius 1), which has been printed, the Planet's positions are not found to agree with the theories. Taking all this into consideration, it does not seem to be certain enough whether there are unknown motions of the Planets or whether we do not have sufficient information about their character. I am therefore of opinion that if anyone intended to describe a new theory about this matter, it would be proper first of all to procure so many certain experiences that they might serve as a foundation on which to build such a theory. But since herewith my present view has been set forth, let everyone meanwhile use his own discretion.

CONCLUSION. We have thus given an account of the stars' unknown motions and the ecliptic's unknown deviation from the Equator; as required.

## END OF THE THIRD BOOK.

[^58]
## CONTENTS OF THE HEAVENLY MOTIONS

(The Chapters, marked by an asterisk, have been selected for publication. The numbers between brackets refer to the pages of the original Dutch text).
Page in the English translation
Book I: Of the Finding of the Planets' Motions and the Motions of the Fixed Stars by Means of Empirical Ephemerides, on the Assumption of a Fixed Earth ..... 27

* Definitions (5-13) ..... 31
* Of the Finding of the Sun's Motion (14-30). ..... 49
Of the Finding of the Moon's Motion (31-54)
* Of the Finding of Saturn's Motion (55-68) ..... 79Of the Finding of Jupiter's Motion (69-79).Of the Finding of Mars' Motion (80-91).Of the Finding of Venus' Motion (92-104) .Of the Finding of Mercury's Motion (105-114)
* Of the Finding of the Motions of the Fixed Stars (115-116) . ..... 105
Book II: Of the Motions of the Planets by Means of Mathematical Operations, Based on the Untrue Theory of a Fixed Earth ..... 109
Mathematical Theorems on Eccentric Circles (120-133)
The Sun's Motion (134-178)
The Moon's Motion (179-212)
The Planets' Motions (213-232)
The Planets' Conjunctions, Oppositions, Eclipses (233-246) .
Book III: Of the Finding of the Motions of the Planets by Means of Mathematical Operations, Based on the True Theory of a Moving Earth ..... 115
* Of the Figure of the Planets' Heavens (249-261) ..... 119
* Of the Motion in Longitude of the Earth (262-266) ..... 145
* Of the Motion in Longitude of the Moon (267-272) ..... 155
* Of the Motion in Longitude of the Planets (273-295) ..... 167
* Of the Motion in Latitude of the Five Planets (296-316) ..... 213
* Supplement: Of the Motion in Latitude of the Five Planets, Based on the Theory of a Fixed Earth (317-330) ..... 255(*) Appendix: Of the Planets' Unknown Motions Observed by Ptolemy;and the Theories Derived therefrom by bim and Copernicus(331-357)283


# VAN DE SPIEGHELING DER EBBENVLOET 

OF THE THEORY OF<br>EBB AND FLOW

From the Wisconstighe Gbedachtenissen (Work XI; i, 26)

## INTRODUCTION

## HISTORICAL REMARKS 1)

In Antiquity many authors described tidal phenomena and indicated their connection with the moon, though often also a comparison with the breathing of an animal was made. Pytheas of Massilia is said to have been the first to indicate the connection of the half-monthly variation of the tide with the phases of the moon. Strabo in his Geography 2) calls attention to the tidal currents in narrow straits, which are connected with the risings, settings, and meridian passages (upper and lower) of the moon. Pliny the Elder ${ }^{3}$ ) is acquainted with the facts that the tide for any place has a constant time-interval with the moon, that the height of the tide varies with the phase of the moon, and also that near the equinoxes the tides are higher than at the solstices, and that on the coasts of the Atlantic they are higher than along the shores of the Mediterranean.

The revival of learning in the sixteenth century, which first had to resuscitate and assimilate the science of Antiquity, did not show much progress as to the knowledge of the Tides. The great navigations of those days indeed made known a wealth of new facts on the movements of the waters. But in the reports of the navigators the westward flow in the oceans was attributed to the westward diurnal motion of the heavens. In a work by Julius Caesar Scaliger ${ }^{4}$ ) (the father of the renowned mathematician and chronologist Josephus Justus), published in 1557, the "desire of the moon" is mentioned as the cause of the tides; the alternation of ebb and flow is explained by the repulsion exerted by the long stretch of the Western Continent lying in the way of the westward stream.

Francis Bacon ${ }^{5}$ ) also speaks of the general westward motion of the sea, and he believes that the short period of half a lunar day is due to obstruction by the shores. In his zeal to refute old superstitions he refuses to assume here an effect of the moon. "Yet it will not immediately follow. . . that things which correspond in the course and periods of time, or even in the manner of carriage, are in their nature subordinate, and the cause one of the other. For I do not go so

[^59]far as to assert that the motions of the moon or sun are set down as the causes of the inferior motions which are analogous to them; or that the sun and moon (as is commonly said) have dominion over these motions of the sea; .... indeed in that very half-monthly motion (if rightly observed) it would be a very strange and novel kind of obedience, for the tides at the new and full moon to be affected in the same way, while the moon is affected in opposite ways ..." ${ }^{6}$ )

Johannes Kepler in a letter to J. G. Herwartus (1598) says that the seas might adhere to the moon 7). In his Astronomia Nova (1609) he writes: 'If the earth should cease to attract its waters, all marine waters would be elevated and would flow into the body of the moon" 8). Yet at other times he compares the tide to the breathing of an animal.

It is well known that Galileo Galilei in 1616 framed a different theory ${ }^{9}$ ). Ascribing the tides to a periodical irregularity in the velocity of the terrestrial surface, due to a combination of the diurnal rotation and the annual revolution, he makes them an important argument in favour of the Copernican world-system. This effect indeed must be present, but it is too small to be observed and is lost among the irregularities of the small tidal phenomena in the Mediterranean.

The treatise of Stevin on the Tides is part of his Wisconstighe Gbedachtenissen (Mathematical Memoirs), published at Leyden in 1608 (Work XI; i, 26); it was translated into Latin by Snellius (Leyden 1608, Work XI b) and into French by Girard (Leyden 1634, Work XIII; ii, 2). In these Memoirs, it is Book VI of the Eertclootschrift (Geography).

[^60]
## SUMMARY OF THE WORK.

The Tides are treated by Stevin as a chapter of geography. His knowledge of this phenomenon was determined by the conditions on the coasts of Western Europe, especially the North Sea. To him the tides were a phenomenon to be explained, as they were by Kepler, by an attraction of the terrestrial oceans by the moon. In this attraction there is nothing of the later Newtonian theory; it is simply an expression of direct experience. The same experience taught him a second fundamental fact: the waters were attracted not only towards the moon but also towards the opposite side. The third fundamental fact, also taken simply from experience, was the alternation of spring tide at the times of the full and the new moon, and neap tide at the times of the quarters. There is no trace of an attempt to account for this alternation by a combination of solar and lunar attraction; the tides to him were a purely lunar phenomenon.

Starting from this basis, Stevin derives the phenomena of the tides first by means of what in later years was called the static theory. The earth is supposed to be entirely covered with water, the surface of which takes the form of an elongated ellipsoid with the high tops exactly below the moon and at its opposite point, and the places of lowest level forming a circle on the globe at a distance of $90^{\circ}$ between the tops. Projected upon the celestial sphere, they are the place of the moon in the sky and its opposite point, and a celestial circle at a distance of $90^{\circ}$ from the moon. The observer's zenith, also projected upon the sphere, owing to the diurnal rotation describes a parallel circle with a declination equal to his terrestrial latitude. Thus it is a problem of spherical trigonometry: when the observer's zenith passes the moon (or its opposite) at the shortest distance -i.e. when it has the same right ascension - there is high tide; when it intersects the $90^{\circ}$ circle of lowest level, the observer witnesses low tide.

These conditions are worked out for a number of special cases. When the moon is in the vernal or autumnal equinox, the low-level circle is the colure through the poles, at $90^{\circ}$ right ascension; high tide and low tide alternate with a six-hour interval (neglecting the moon's interim motion in longitude). However, when the moon at $90^{\circ}$ or $270^{\circ}$ right ascension reaches its maximum declination (neglecting its latitude), the low-level circle passes through the equinoxes and the poles of the ecliptic; the parallel circle described by the observer's zenith intersects it at a point nearer to the pole of the ecliptic, at a right ascension that has to be computed by spherical trigonometry. Then the intervals between the moments of high and low tide are unequal; the rise of the water is slow, its fall is rapid. Since the height of the high tide depends on the distance from the zenith to the moon's position, it will - for medium latitudes - if the moon's declination is large, be different for the two high tides of one day. This difference increases with the observer's latitude, and beyond $61^{\circ}$ (determined by the maximum declination $28^{\circ} .6$ of the moon) one of them disappears, so that instead of a 12 -hour, a 24 -hour period in the oceanic level appears. At the poles there is always an interval of 7 days between high tide and low tide.

Thus Stevin deduces the phenomena of the tides from simple static theory. But he is well aware that the real phenomena of the tides deviate from this theory and are far more intricate. In the next chapters he therefore gives an explanation, first of the fact that high tide occurs many hours (different for different coasts) after the moon's culmination; this is due to the resistance which the coasts of the continents offer to the progress of the tidal wave. The fact that in the seas of Western Europe the high tide proceeds in the wrong direction, from West to East, he explains by stating that small and inland seas are only imperceptibly attracted by the moon. An exact treatment of these phenomena was not yet possible at that time (a century before Newton). Stevin tries to give a demonstration in his third proposition; comparing a small and a large vessel with water, he shows that in the latter a greater weight of fluid can be sustained by a smaller sideways pressure. Thus the small attraction by the moon is more effective for the oceans than for minor waters, such as the North Sea; these receive their motion from the progress of the tide in the oceans. Hence, the tidal wave slowly runs up from the western sea eastward into the broad river estuaries.

Stevin emphasizes the fact that the tidal phenomena are complicated, and that their theory may be highly defective. Because the opinion had been expressed that the motion of the waters was due not to an attraction but to a repulsion exerted by the moon, he examines the consequences of such a force. They can be described by interchanging the expressions high tide and low tide in the preceding results, so that at medium latitudes the rise of the water is rapid and the fall is slow; they are at variance with the phenomena observed. And he concludes his treatise with the wish that all over the earth the tides should be carefully studied, in order that a satisfactory theory might be based on the observations.

# $\begin{array}{lllll}\text { S } & \mathrm{E} & \mathbf{S} & \mathrm{T} & \mathrm{E}\end{array}$ BOVCK DES eertclootschrifts, <br> VANDE <br> SPIEGHELING DER Thamic ebbenveoet. 

## CORTBEGRYP.



 ons deur defer landen groote feylagen, bequamer middel ontmoet d'ander tervooren gheruveest is, om te geraken tot reel gheroviffe erraaringhen der cyghenschappen rvan ebbe enroloet: Soo beeft my tottet bervoorderen raan fulcx, oirboir ghedocht rvan defe fiof een $\star$ Spregheling te befchryiven, ghegront ten deele op errvaringhen diemen nu beeft, ten deele op ftcling die de natuerlicke reden lijckformich/chünt, dicxiende als begin, om by mavier rvan befchrercien const bier af te bandelen, en deur breeder erbaringhen diemen namaels crüghers mocht, oiraientuckna grondelicker kenniste trachten.
eAngaende ymant dencken mocht, dattet ruan my roor t'uytgerienruass de/en rougheucker ruaergheropeest, fulcke dingheneerst fekerlickonderfocbt te bebben, of doen onderfoucken: Hier op Segbick dat Julcx niet cen of zveynich merfichens warck uvefende, foo beeft my dit de bequaemfice z vech ghedocht,om op corten tüt reeel bef cheyt en Jekerbeyt te crügen, uvant rveel merffben totte borvefobreriengaflaginghen rvermaent/jinde, $t$ t'an ghebeuren datter bun tot rverfcheyden plaetfen meer toefullen begerven, dav deur mün befonder woordering an befonder menfchen meughelick foude ruvefen.

I BE-

## OF THE THEORY OF EBB AND FLOW

## SUMMARY.

Since experience is the surest ground, as has been said more fully in the foregoing, from which to draw general rules in order to gain knowledge of things, and since thanks to the great navigations of these countries we have better means than before for obtaining many sure experiences of the properties of ebb and flow, it seemed suitable to me, in order to promote this, to describe a theory of this subject matter, based in part on experiences now available and in part on suppositions which seem to be in accordance with natural reason, which description may serve as a starting point, in order to deal with this in the manner of a textbook and properly strive to gain fuller knowledge by means of ampler experience that may be obtained later.
If anyone should be of opinion that it would have been more fitting if, before publishing this treatise, I had first examined these things with certainty or caused them to be so examined, I say to this that since that is not the work of one man or a small number of men, this seemed to me the best method for getting much information and certainty in a short time, for when many people have been admonished to make the above-mentioned observations, it may happen that in different places more people will proceed to do so than would be possible by my private admonition to some private persons.

# BEGHEERTEN. 

# 1 BEGHEERTE. <br> Wy begheeren toeghelaten te vvorden, dat de Maen en haer teghepunt het vvater des Eertcloots gheduerlick na hun fuyghen. 


#### Abstract

VERCIARING. E s bevint deur daghelickiche gheduerighe ervaringhen, dat ebbe en vloet vande Maen gheregiert worden, oockden vloet ten hoochiten te commen in volle en nieu Maen, diemen dan frinckvloet noemt, maer tendeeghften in * vierdefchijn: Waer Quadraturd. affulcken ghemeenen kennis fijnde, datmen met ghenouchfaem fekerheyr van te vooren weet de uyr van toecommende ghetijden, totgroot voordeel der zeevaert, foo en ift niet noodich daer af toelating te begheeren. Maer want metelcken Maenkeer om den Eertcloot (die ontrent alle $2 s$ uyren eens ghebeurt) twee vloeden en oock twee ebben commen,foo wort by ettelicke vermoet de Maen en haer teghepunt een eyghenfchap te hebben, datfe het water na hun fuyghen inde hooghde: Doch ift onfeker oft inde natuer foo toegaet, want deur haer perfing (t'welck t'verkeerde van fuyging is) fouden oock dagelicx twee ebben en vloeden commen. Maer welck van beyden, of wat ander derde natuerlickeeyghenchap daer af d'oirfaeck is,meyn ick oubekent te finn deur ghebreck van ervaríng. Ick heb eenighe ons Indivaerders ondervraeght na de ghedaente van waterghetyen tot feker plaetlen, maer niet connen vinden $t$ 'ghene ick focht : Doch anghefien t'vermoen van ettelicke is, t'felve deur de voorfchreven füyging te getchien, fo ift dat wy begheeren fulcx toegelaten te worden, om allo ons voorghenomen fpiegheling een gront te gheven, welcke befchreven fijnde,fullen eynt. lick int naeft laetfte voorftel fegghen wat verandering uyt perfing volghen. foude.


## 2 BEGHEERTE.

## Den Eertcloot heel met vvater bedeckt te fijn, fonder vvint of yet dat an ebbe en vloet verhindernisgheeft.

VERCLARING.

De natuerlicke oirden van ebbe envloet, wort deur winden, oock deur landen boven t'water uyttekende, verhindert,fulcx dat tot alle plactfen geen hoochite water en is, wefende de maen of hater teghenpunt int middachront ${ }_{\text {s }}$ ghelijck de ghèmeene reghel vereyfcht volghende d'eerfte begheerte, maer mach dan ten leegften fijn; of min verfchillen : Tenanderen dat de vloet niet ancommen en fal uyt den ooften na weften, maer uyt den weften of cenigen anderen oirt. Ten derden datmen tot fommighe plaetfen diens toppunt verrevande Maen is'; den daghelickfchen vloet hoogher bevint dan tot ander plaetfen over diens toppunt de Maen gheweelt heeft,daerle volghende $t$ 'geftelde ten hoochiten foude fijn.

## POSTULATES.

## 1st POSTULATE.

We postulate that the Moon and its opposite continually suck the water of the Earth towards them.

## EXPLANATION.

It is found by daily continual experiences that ebb and flow are governed by the Moon, and also that the flood-tide is highest at full and new Moon, which is then called spring-tide, but lowest at quadrature. This being such common knowledge that the hour of future tides is known beforehand with sufficient certainty, to the great advantage of navigation, it is not necessary to postulate this. But because with every revolution of the Moon about the Earth (which takes place once in about every 25 hours) there are two flood-tides and also two ebb-tides, it is suspected by several people that the Moon and its opposite have the property of sucking the water up towards them. It is, however, uncertain whether it happens like this in nature, for in consequence of their pressure (which is the opposite of suction) there would also be two flood-tides and two ebb-tides every day. But I think that for lack of experience it is unknown which of the two or what other (third) natural property is the cause of this. I have inquired with some of our mariners sailing to the Indies about the nature of the tides in certain places, but have not been able to find what I sought. But since several people suppose that it is due to the aforesaid suction, we postulate this in order thus to give our intended theory a basis. And after this has been described, we will finally say in the last proposition but one what change would result from pressure.

## 2nd POSTULATE.

That the Earth is covered entirely with water, without the wind or anything else impeding ebb and flow.

## EXPLANATION.

The natural order of ebb and flow is impeded by winds, also by lands sticking out above the water, so that not in all places is the tide highest when the moon or its opposite is in the meridian, as the general rule requires according to the first postulate, but it may be lowest or differ less. Secondly, the flood may come not from the east to the west, but from the west or some other direction. Thirdly, in some places, whose zenith is far from the Moon, the daily flood-tide is found to be higher than in other places, in whose zenith the Moon has been, where according to the supposition it ought to be highest.

Maer op dat alle defe ongheregheltheden,ons niet en verhinderen om re begrijpen de grooteghemeene eyghenfchap van ebbe en vloet, die wy ficieghelingfche wijfe voornemen te befchriven, foo begheeren wy hicr boven roeghelaten te worden, denEertcloot heel met water bedeckt te fijn, fonder wint of yet dat an ebbeen vloet hinder gheeff; om daer na vande ghedaente

Tineoria Geometria. Praxin Geo:Metrux. der beletfelen onderfcheydelicker te meughen fpreken: Want gelijck * fiegheling der Meetconit voorderlick is * totte meetdaet, hoe wel daer in nochtans platten en rechte linien der meetbaer velden en lichamen, niet de volcommenheyt en hebben die de bepalinghen der Spieghelinghen mebren:ghen, alfoo can defefpiegheling oock voorderlijck fijn totte daet, voornamelick int ftuck der zeevaert, hoe wel nochtans de formen der zcen, niet de yolcommenheyten hebten die defe begheerte en de volghende bepalinghen inhouden.

## BEPALINGHEN.

## BEPALING.

Wefende ghetrocken een rechte lini van des Eertcloots middelpunt totte Maen: Het punt daerfe des vvaters oppervlack gheraeckt noemen vvy Manens vloettop : En tpunt daer teghenover Teghepunts vloettop.

VERCLARING.

Latet rondt ABCD den Eertcloot betegckenen, dienis middelpunt E, welcke teenemael bedeckt fy met water, totten omtreck $F$ GH I toc, en dat fonder form, wint, of eenich belerfel, na luyt der bovefchreven 2 begheerte: Voort fy het rondt $\mathrm{K} L$ de Maenwech, waer in K de Maen bedict, en L haer teghepunt: Welcke twee deur haer trecking niet toe en laten, het water om den Eertcloot fijnde, hem totte rontheyt te begheven, macr cen eylche form doen hebben: Ick treck daer na derechre lini K $E L$, fnyende des waters oppervlack in Fen H: Voort treckick IE Grechthouckich op K L. Dit fo fijnde, Fis des vloets hoochfte punt, of top na de Maen toe, $t^{\prime}$ welck ick daerom noem Manens vloettop. En om derghelicke redenen H haer teghepunts vloettop.

2 BEPALING.

Het rondtopden Eertcloot diens platde rechtelinituffchen beyde de vloettoppen int middel deurfnijt, en daer oprechthouckich is, noemen vvy Ebront.

## VERCLARING.

Als het rondt IF G overcantghefien, heet Ebront, om dat daer in altijt ebbe of leeghtte water ghefchiet. En valt daer in tenalderleeghtten om dat E I de cortthe lini is,diemen van des Eertcloots middelpunt $E$, tot des waters opperylacktrecken cal.

But in order that all these irregularities may not prevent us from understanding the great general property of ebb and flow, which we intend to describe in theory, we postulated above that the Earth is covered entirely with water, without the wind or anything else impeding ebb and flow, after which we may discuss more particularly the character of the impediments. For just as Theoretical Geometry forms a suitable preliminary to practical geometry, although in the latter the planes and straight lines of the fields and bodies to be measured do not have the perfection which the definitions of the Theories imply, the present theory may also form a suitable preliminary to practice, especially in the matter of navigation, although nevertheless the forms of the seas do not have the perfection which the present postulate and the following definitions imply.

## DEFINITIONS

## 1st DEFINITION.

When a straight line is drawn from the centre of the Earth to the Moon, we call the point where it touches the surface of the water the Moon's Flood Top, and the point opposite it the Opposite's Flood Top.

## EXPLANATION.

Let the circle $A B C D$ denote the Earth, whose centre is $E$, and let it be covered entirely with water, up to the circumference $F G H I$, such without storm, wind or any impediment, according to the above-mentioned 2nd postulate. Further let the circle $K L$ be the Moon's orbit, in which $K$ denotes the Moon and $L$ its opposite. Owing to their attraction these two do not permit the water surrounding the Earth to take a spherical shape, but cause it to have the shape of an egg. I then draw the straight line $K E L$, intersecting the water's surface in $F$ and $H$. Further I draw IEG at right angles to $K L$. This being so, $F$ is the highest point of flood, or the top directed towards the Moon, which I therefore call the Moon's flood top. And for the same reasons I call $H$ its opposite's flood top.

## 2nd DEFINITION.

We call the circle on the Earth, whose plane intersects the straight line between the two flood tops in the middle and is at right angles thereto, Ebb Circle.

## EXPLANATION.

Thus the circle $\operatorname{IEG}{ }^{1}$ ), seen transversely, is called Ebb Circle, because ebb or lowest tide always occurs in this. And it is lowest of all in this, because $E I$ is the shortest line that can be drawn from the centre of the Earth $E$ to the water's surface.

[^61]

# NV DE <br> VOORSTELLEN. 

## 1 VOORSTEL.

T'onderfoucken deghemeene ghedaente van ebbe en vloet.

Om lijckformicheyt te hebben der gheftalt van vloettoppen en ebront tot alle plaetfen des Eertcloots, foo ift voorderlick te doen maken een ebbenvloettuych welcke op een Eertcloot gheleyt, en daer op verfchoven fijnde na ons wille, alrijt de felve twee vloettoppen en ebront anwijfe: Hier toe hecft fijn Vorstelicke Ghenade hemin dees fpiegheling octfenende, doen bereyden feker ronden van ftijf papier, daer me fulcx te weghic ghebrocht wiert, $\mathbf{t}$ 'welck yder tot derghelijcke luft hebbende, oock fo fou meughen doen. Doch want op dehemelclooten der vafte fterren, feker twee ronden en vier punten ghereyckent worden, die ons verftrecken meugen voor ebronden en vloettoppen van eenighe befonder plaetfen, foo fullen wy die voorbeett fche wijfe daer toeghebruycken; want den fin daer me verftaen fijnde, foo falfe metten bovefchreven ebbenvloeftuych openbaer wefen int ghemeen overal.

## NOW THE PROPOSITIONS

## 1st PROPOSITION.

To examine the general figure of ebb and flow.
In order to have uniformity in the form of flood tops and ebb circle in all places of the Earth, it is efficacious to have a tidal instrument constructed, which, when laid on a Globe and displaced thereon as desired, shall always show the two flood tops and ebb circle. To this end his PRINCELY GRACE, when he practised the present theory, had certain circles of stiff paper prepared, with which this was brought about, a thing which anyone having a mind to it might also do in this way. But because on the celestial globe of the fixed stars are drawn two circles and four points which may serve as ebb circles and flood tops of some particular places, we will use them for this purpose by way of example, for if the meaning has been understood in this way, it will be clear in general with the above-mentioned tidal instrument.

## 1826 Bovck des Eertceootschrifts, I Vcorbeels gaende de Maen onder de lent $\int n e$, datsboven $t$ 'miade'ront.

Seltonem In handen hevivende een Hemelcloot, ick ftel my voor * ientrne en herbfne vermalen 6 de wee voectoppen tefijn, wefende de Maen onder t'begin des duyfteraers, en fal aldan ebront fijn het ronde deur den 90 tr.en de afpunten des Eerteloots. Dit aldus wefende, foo lang de Maen onder de lentfine loopt, falt tot eleke plaets opt middelrondt daer de Maen boven is hoochwater (ijn : En 6 uyren dacr na (meer van weghen hacr eyghen loopontrent $\frac{1}{4}$ dats $6 \div$ uyren) fal het ebront tot die plactsghecommen fijn, en dacromalfdant'water ten Iceghiften: En binnen ander $6 \frac{1}{4}$ uyr dace nae weerom hooghe vloer, en foo overhant gheduerlick mette volghende ebbe en vloet.

## 2 Voorbeelt gaende de Maenöder des duyfteruers gotr.

Ten tweeden ftel ick my opden Hemelcloot voor, des duyfteraers 90 tr. en haer teghenoverpunt den 270 tr , de twee vloettoppen te fijn, wefende de Maen onder den 90 tr. en fal alfdan t'ront deur de lentifie, en des duytteraers afpunten cbront fijn. Hier me en fullen de tijden tuffhen ebbe en vloer nict cyegroos vallen als int ecrfte voorbeelt, maer verfchillen, en dat tot d'cen placts meer als d'ander na t'verfchil haerder breeden. Om nut'felve te vinden tot een ghegeven breede, als van sotr. ick verhef den afpunt op fulcken hooghde boven den fichteinder, en breng den 90 tr.des duyfteraers onder t'middachront, keer daer na den cloot tot dattet cbront deurfnijt het middachront inden voorfchreven so tr. der breede, dats int toppunt: En fie hoe veel trappen des evenaers daerentufichen verloopen fijn, bevinde ncem ick 121 tr. 13 (1), die, 15 tr. op de uyrgherekent, bedraghen 8 uyr s (1), voor den tijt van thoochfte water tottet leeghite: En van daer tor d'ander vloet fal fijn 3 uyr $s s$ (1), te weten 'verfchil tuffchen 8 uyr $s$ (1) en 12 uyren; welverftaende dat hier tot elck noch foude moeten vergaert worden t'ghene de Manens eyghenloop veroirfaeckt; t'welck ick cortheyts halven achterlact.

## MERCKT.

Sijn Vorstelicke Ghenade dit bovefchreven 2 voorbeelt metten Hemelclont onderfouckende, en voorder letrende opt vervolgh van verfcheyden ebben en vloeden achter malcander, heeft daer in de volghende oirden bemerck.

Den tijt van ebbe na de bovefchreven vloet, fal fin yan 3 uyr $; s$ (1): En de volghende vloet weerom 8 uyr ; (1). Sulcx dat by aldien de Maen gheduerlick liep in des dayfteraers 90 tr. (''welck om de leerings will foo mach ghentelt worden) d'oirden van ebbe en vloet foude duidanich fijn.

| Ebbe | 8 uyr s (1) |
| :--- | :--- |
| Vloet | 3 uyrss (1) |
| Ebbe | 3 uyrss (1) |
| Vloct | 8 uyr s (1) |
| Ebbe | 8 uyr s (1) |
| Vloet | 3 uyr ss (1) |
| Ebbe | 3 uyrss (1) |
| Vloct | 8 uyr s (1) |
| Ebbe | 8 uyr |
|  |  |

## 1st Example, the Moon moving under the vernal equinox, i.e. above the Equator.

Having in my hands a celestial globe, I imagine the vernal and the autumnal equinox to be the two flood tops when the Moon is at the beginning of the ecliptic; then the circle through $90^{\circ}$ and the poles of the Earth will be the ebb circle. This being so, as long as the Moon is moving under the vernal equinox, it will be high tide in every place on the equator where the Moon is in the zenith. And 6 hours later (about $1 / 4$ hour more, on account of its own motion, i.e. $61 / 4$ hours) the ebb circle will have reached that place, and therefore the water will then be lowest. And another $61 / 4$ hours later it will be high flood-tide again, and so on continually with the next ebb and flow.

## 2nd Example, the Moon moving under the point at $90^{\circ}$ of the Ecliptic.

Secondly I imagine on the Celestial Globe that the point at $90^{\circ}$ and its opposite at $270^{\circ}$ [of ecliptical longitude] are the two flood tops, the Moon being under $90^{\circ}$, then the circle through the vernal equinox and the poles of the ecliptic will be the ebb circle. Herewith the intervals between ebb and flow will not be equally long, as they were in the first example, but they will be different, such in one place more than in another, according to the difference of their latitudes. In order to find it at a given latitude, e.g. of $50^{\circ}$, I raise the pole to that height above the horizon and bring the $90^{\circ}$ of the ecliptic under the meridian, then turn the globe until the ebb circle intersects the meridian at the aforesaid $50^{\circ}$ of latitude, i.e. in the zenith, and I ascertain how many degrees of the equator have passed between the two positions. I find e.g. $121^{\circ} 13^{\prime}$, which taking $15^{\circ}$ to the hour - is equivalent to 8 hours 5 minutes for the interval from the highest to the lowest tide. And from there to the next high tide will be 3 hours 55 minutes, to wit, the difference between 8 hours 5 minutes and 12 hours, it being understood that to each there would still have to be added what the Moon's own motion causes, which I omit for brevity's sake.

## NOTE.

When his PRINCELY GRACE examined the above-mentioned 2nd example with the Celestial Globe and further observed the sequence of many successive tides, he noted in this the following regularity.

The time from the above flood-tide to the next ebb-tide will be 3 hours 55 minutes, and then to the next flood-tide again 8 hours 5 minutes, so that if the Moon were continually at $90^{\circ}$ of the ecliptic (which may thus be assumed for didactic purposes), the order of the tides would be as follows:

| Ebb-tide | after | 8 hours 5 minutes |
| :--- | :--- | :--- | :--- |
| Flood-tide | $"$ | 3 hours 55 minutes |
| Ebb-tide | $"$ | 3 hours 55 minutes |
| Flood-tide | $"$ | 8 hours 5 minutes |
| Ebb-tide | $"$ | 8 hours 5 minutes |
| Flood-tide | $"$ | 3 hours 55 minutes |
| Ebb-tide | $"$ | 3 hours 55 minutes |
| Flood-tide | $"$ | 8 hours 5 minutes |
| Ebb-tide | $"$ | 8 hours 5 minutes |

## Vande Spiegeling der Ebbenvioet. 183

Enfoo gheduerlick voort. Doch valt hier daghelicx noch fulcke verandering by,als de Maenloop veroirfaeckt.
Maer om de voorfchreven vinding des tijts deur rekening der clootche driehoucken af te veerdigen, ick aenfie int eynde der voorgaende wercking op den Hemelcloot, de geftalt des driehoucx begrepen tuffchen de drie punten als Eertcloots afpunt, Duyfteraers afpunt, mettet toppunt,en merck den houck an des duyfteraers afpunt recht te wefen: De fijde tuffchen beyde de afpunten te doen 23 Ir. 30 (1): En de fijde van des Eertcloots afpunt totter toppunt 40 tr. te weten rchilbooch vande gegevẽ breede sotr. Sulckēdriehouc teycken ic hier als ABC, alwaer A het toppunt bediet, B des Eertcloots afpunt, C des duyfteraers a fpunt, wefende den hoitck ande felve C recht, de fijde A B van 4 otr.en BC 23 tr. 30 (1). Sulcx dat den driehouck drie bekende palen heeft, waer me ghefocht den houck B, wort deur het 32 voorftel der clootiche driehoucken bevonden van 58 rr. 47 (1) : Die gherrocken van 180 tr.bliff 121 tr. 13 (1), en foogroot is den verloopen evenaerbooch die doet voor $t$ 'begheerde 8 uyr 5 (1).


TBEWYS.
B A, BC, voortghetrocken totten evenaer,begrijpen daer des evenaers booch ais grootheyt des houcx B , dats 88 tr. 47 (7): Maer de voortgherrocken BC valt in des duyfteraers 270 tr.tuffchen weicke en des evenaers 90 tr. 6 ijn 180 tr. die ten tijde des hooghen waters int middachront was, daerom vanden tijt des hoogften waters totten tijt des leeghften datet ebront deurfneet het middachrondt inden sotr.der breede, fijn verloopen 180 tr. min den houck $B 88$ tr. 47 (1), dats 121 tr. 13 (1), als int werck.

## I VERVOLGH.

Twater is op de Eertcloots afpunten ten leeghften,loopende de Maen onder den evenaer als ghefyyt is int 1 voorbeelt; En ten hoochften wefende in haer uyterfte noortiche en zuytfiche brecde, waer uyt volght datmen daer met elck Maenfchijn maer tweemael hooch water en heeff,en tweemael leeghwater: En dattet ten leeghten fijnde daer na ontrent 7 daghen lanck waft,en weerom ontrent 7 daghen daclt, en fo overhant voort. Doch crijcht defe oirdenticke ebbe en vloet foo daer als overal eenighe verandering dsur dien de vloettoppen hoogher rijfen, in faming en teghellant van Son en Maen, dan alffe een vierendeelronts fchijnbaerlick van malcander fijn.

## 2 VERVOLGH.

Tiskennelick dat ebbe en vloet opt middelront elck aliijt ghedueren ontrent $6 \div$. uyren, tot wat placts de Maen oock is. Laetfe by voorbeelt fijn in des Duyfteraers 90 tr. Dit fooghenomen, hetront deur le lentfne en weerelts afpunten freckende is dan ebront, dat openbaerlick 6 uyren in evenaerloop verichilt vanden felven 90 tr. des duyfteraers: En derghelijeke bevint fich oock alfoo to alle platefen daer de Maen is, ghelijckmen lichtelicker fiet deurt'behulp eens papieren ebbenvloettuychs daer int begin des I voorfels afghefeyt is.
$\mathrm{Q}_{2}$
3 VER-

And thus continually on. But to this, daily changes have to be added as caused by the Moon.

However, in order to effect the aforesaid finding of the time by means of spherical triangles, at the end of the foregoing operation on the Celestial Globe I note the form of the triangle contained between the following three points: the pole of the Earth, the pole of the Ecliptic, and the zenith, and I note that the angle at the pole of the ecliptic is right, that the side between the two poles is $23^{\circ} 30^{\prime}$, and that the side from the pole of the Earth to the zenith is $40^{\circ}$, to wit, the complement of the given latitude of $50^{\circ}$. I here draw this triangle, namely $A B C$, where $A$ denotes the zenith, $B$ the pole of the Earth, $C$ the pole of the ecliptic, the angle at the said $C$ being right, the side $A B 40^{\circ}$, and $B C 23^{\circ} 30^{\prime}$, so that the triangle has three known terms. When by these means the angle $B$ is sought, by the 32 nd proposition of spherical triangles ${ }^{1}$ ) it is found to be $58^{\circ} 47^{\prime}$. When this is subtracted from $180^{\circ}$, there remains $121^{\circ} 13^{\prime}$, and this is the arc of the equator passed through, which is equivalent to the required 8 hours 5 minutes.

## PROOF.

When $B A, B C$ are produced to the equator, they there contain the equator's arc which is the magnitude of the angle $B$, i.e. $58^{\circ} 47^{\prime}$. But $B C$ produced passes through $270^{\circ}$ of the ecliptic, and between this and $90^{\circ}$ of the equator there are $180^{\circ}$, which were in the meridian at the time of high tide; therefore from the time of the highest tide to the time of the lowest, when the ebb circle intersected the meridian at $50^{\circ}$ of latitude, $180^{\circ}$ have passed minus the angle $B$ of $58^{\circ} 47^{\prime}$, i.e. $121^{\circ} 13^{\prime}$, as in the trigonometrical operation.

## 1st SEQUEL.

The water is lowest at the poles of the Earth when the Moon moves under the equator, as has been said in the 1st example, and highest when it is at its extreme northerly and southerly latitudes, from which it follows that there they have twice high tide and twice low tide in every lunation, and that when it is lowest, thereafter it rises for about 7 days and ebbs again for about 7 days, and thus continually. But this regular ebb and flow will undergo some change there as well as everywhere because the flood tops rise higher when Sun and Moon are in conjunction and opposition than when they are apparently a quarter circle apart.

## 2nd SEQUEL.

It is evident that on the equator low and high tide each always lasts about $61 / 4$ hours, no matter in what place the Moon is. Let it be, for example, at $90^{\circ}$ of the Ecliptic. This being assumed, the circle passing through the vernal equinox and the poles of the ecliptic 2 ) is then the ebb circle, which evidently differs 6 hours in equatorial motion from the said $90^{\circ}$ of the ecliptic. And the same is also found in all places where the Moon is, as is seen more easily by means of a tidal instrument of paper as referred to at the beginning of the 1st proposition.

[^62]
# 184 6 Bovex des Eertciootschrifts, 

3 VERVOLGH.

Het blijckt op den Eertcloot, dat plaetfen naerder den afpunt, dan de Maen den evenaer, aldan vant ebront niet gherocht en worden : Sulcx datfe op dien tij) fool leeghen ebbe niet en crijghen, als wanneer het cbront daer over comt.

## MERCKT.

Alfoo fijo Vorstelicke Ghenade het inhout des voorgaende 3 vervolghs deur een Hemelcloot onderfocht, heeft met een willerweten, wat tiit datter tot fulcke plaets verloopt, tuffchen het leeghtte der ebbeen hoochite des loets; Maer bevant (foo yghelick fal die derghelijcke doet)altijt 12 uyren, befloot daer uyt dat fulck geval fomwijlen foude moeten overcommen alle plaetfén diens breede over de 61 tr. 30 (1) freckt, want foo veel bliffter alfmen de Manens grootte evenaerbreede 28 tr. 30 (1), trecktvan 90 tr.
Nu ghedenckt mycenich zeevarent volck te hebben hooren beveftighen, datfe totplaetfen gheweeft hadden daert 12 uyren ebde,en 12 uyren vioegde,doch datfulce niect lang en duerde, dan dat daer na weerom een onghereghelde ebbe en vloct volghde. Maer of dit om defe oirfaeck ghefchiet, daer foudemen befcheyt af connen weten, alfmen de ervaringhen re werck fielde daer int 9 voorftel af ghefeyt fal worden.

## 4 VERVOLGH .

Tis kennelick datteteen der twee vloettoppen t'welck een geftelde plaets neef comt,aldaer hoogher vloet veroirfaeckt als tander. Waer uyt volght dat wefende de Maen over de noordijde, foo fullen des Eertcloots plaetfen overde noortfijde gheleghen hoogher vloet crijgen vande Manens vloettop, als van haer teghepunts vloettop. Maer wefende het reghepunt over de. noortfijde, dat alfdan t'verkeerde ghebeuren fal.

## MERCKT.

Uyt het voorgaende valt te befluyten, datrer op den Eertcloot vier merckelicke verfcheydenheden van ebben en vloeden fijn angaende de gheduericheyr.
Ten eerften opt iniddelront altijt van ontrent $6 \frac{-1}{4}$ uyren,als int I voorbeelt en2 vervolgh.
Ten tweeden buyten emiddeliont, tot op ontrent den 6i tr: 30(1) der breede, alwaerfe verfchillen connen na t'inhour des 2 voorbeets.
Ten derden vanden 61 tr. 30 (1) tot byden afpunt, daerfe tot fommige tijden clck van 12 uyren fijn,als int Merck des 3 vervolghs.
Ten vierden onder den afpunt, dacr ebbe en vloet altijitelck ontrent 7 daghen duyren alsinti vervolgh.

## s VERVOLGH.

Tiskennelick dat deur de bovefchreven twee voorbeelden en vervolghen, in welcke sloettoppen en ebronden op den Hemelcloot gheteyckent waren, lichtelick can verftaen worden de gherneene regel van ander voorbeelden, dichs vloettoppen en ebront daer op niet en fijn, doch daer op beteyckent connen worden metten ebbenvloettuych daer int begin défes voorftels af
gefeyt

## 3rd SEQUEL.

It appears on the Earth that places nearer to the pole than the Moon is to the equator are not reached by the ebb circle, so that at that time they do not get as low an ebb-tide as when the ebb circle passes through them.

## NOTE.

When his PRINCELY GRACE examined the contents of the foregoing 3rd sequel by means of a Celestial Globe, he wanted to know at the same time how much time elapses in that place between the lowest point of the ebb-tide and the highest point of the flood-tide. But he found (as will anyone who does so) this was always 12 hours. From this he concluded that this case would sometimes have to occur for all those places whose latitude is more than $61^{\circ} 30^{\prime}$, for this is what remains when the Moon's greatest equatorial latitude of $28^{\circ} 30^{\prime}$ is subtracted from $90^{\circ}$.

Now I remember that I have heard certain mariners assert that they had been in places where the water ebbed during 12 hours and flowed during 12 hours, but that this did not last long and was followed again by an irregular ebb and flow. But whether this is due to this cause might become known if the experiences to be dealt with in the 9th proposition were put to use.

## 4th SEQUEL.

It is evident that the one of the two flood tops which comes nearest to a given place causes a higher flood-tide there than the other. From this it follows that when the Moon is on the north side, the places on the Earth lying on the north side will get a higher flood-tide from the Moon's flood top than from the flood top of its opposite. But when the opposite is on the north side, the contrary will happen.

## NOTE.

From the foregoing it is to be concluded that on the Earth there are four notable diversities between the tides as to their alternating duration.

Firstly, on the equator always about $61 / 4$ hours, as in the 1 st example and the 2nd sequel.

Secondly, outside the equator, up to about $61^{\circ} 30^{\prime}$ of latitude, where they may differ, according to the 2nd example.

Thirdly, from $61^{\circ} 30^{\prime}$ to near the pole, where at some times they both last 12 hours, as in the Note to the 3rd sequel.

Fourthly, at the pole, where ebb- and flood-tide each always lasts about 7 days, as in the 1st sequel.

Sth SEQUEL.
It is evident that from the above two examples and sequels, in which flood tops and ebb circles were drawn on the Celestial Globe, the general rule for other examples can easily be understood, for which the flood tops and ebb circle are not present thereon, but can be drawn thereon with the tidal instrument

VandeSpiegeling der Ebbentioet.
gefeytis. Tbesivyt. Wy hebben dan onderfocht de gemeene gedaente van cbbeen vloet, na den eyfch.

## 2 VOORSTEL.

Te verclaren d'oirfaèck vvaerom na de hooghe fprinckvloeden leegher ebben volghen dan na leeghe vloeden.

T'wort dadelick bevonden dat de ebbe die nae fprinckvloet volght, leegher comt dan de ebbe na vloet ontrent vierdefchijn : Sulcx datmen in zeewercken die opdiepe drooghe gront moeten ghemaeckt worden, als onder anderen nut ter tijt inde belegherde Stadt Oftende, na princkvloet wacht, om het ftrant leeghe drooch te hebben. D'oirfaeck hier afís openbacr om defe, reden : Anghefien inde form van d'eertte bepaling t'water met fprinckvloet, die in faming en tegheftant ghebeurt, in meerder menichte hoogher ghetrocken wort an FenH ; dan ten tijde van vierdefchijn, foo moctet alfdan opt ebront 1 G meer ghebreken, en daer minder en leegher wefen dan ten tijde van vierdefchijn.

Tbeslvyt. Wy hebben dan verclaert d'oirfaeck waerom nadehooghe fprinckvloeden leegher ebben volghen dan na leeghe vloeden, na den eyfch.
Tot bier toe fijn de voorftellen ghewceft vande ghemeene eyghenfchappen van ebbe en vloet: De volghende fullen van befonder wefen, te weten van de oirfaken waerom ep befonder plaetfen des Eertcloots, de voorgaende ghemeene reghels gheen plaets en houden.

## 3 VOORSTEL.

## Te verclaren de reden, vvaerom cleene vvateren vande Maen en haer teghepunt, foo hooch niet ghetrocken en vvorden als groote.

Men merckt niet dat cleene waterkens, als binnelantfche meerkens, grachten, water in een glas of ander vat, vande Maen opghetrocken worden : Nochtans mochr ymant dencken, fo de eyghenfchap der Maen waer t'water na heur inde hooghde te trecken, dat foude fo wel over fulcke cleene behooren tegefchien, als over ander der groote zeen:Ia datfe de cleyne noch hoogher behoort te trecken, deur dienfe lichter fijn dan de groote. Om hier af de redente verclaren, laet A B C D E FG een vat vol waters fijn, elcke fijde als A B CD een rechthouck wefende 4 voet lanck, en 4 voet breet, en fal tegen defelve fijde $A$ B C D perfien een ghewicht even an t'ghewicht van 32 voeten waters deur het is voorftel vande beginfelen des waterwichts, en t'geheel waterfal begrijpen 64 voeten. Ghenomen voort dat elcke fijde die wy geftelt hebben op 4 voet lanck en breet; ghemaeckt fy van 4 plancken elck lanck 4 voet,en breet I voet, als de planck A H I D met dierghelijcke, en fal teghen elcke planck ancommen een ghewicht even an t'ghe-

mentioned at the beginning of this proposition. CONCLUSION. We have thus examined the general figure of ebb and flow; as required.

## 2nd PROPOSITION.

To explain the reason why the high spring-tides are followed by lower ebbtides than are low flood-tides.

It is found in practice that the ebb-tide following spring-tide is lower than the ebb-tide after flood-tide at quadrature, so that builders of coastal defences, which have to be made on deep, dry ground, such as e.g. at the present time in the besieged City of Ostend, wait until after spring-tide, to have the beach low and dry ${ }^{1}$ ). The cause of this is evident for the following reason: Since in the figure of the first definition the water at spring-tide, which occurs at conjunction and opposition, is raised higher in larger quantities at $F$ and $H$ than at quadrature, on the ebb circle $I G$ there must be a greater shortage and there it must be less and lower than at the time of quadrature.

CONCLUSION. We have thus explained the reason why the high springtides are followed by lower ebb-tides than are low flood-tides; as required.

Up to this point the propositions related to the general properties of ebb and flow. The following are to relate to particular properties, to wit, to the reasons why in particular places of the Earth the foregoing general rules do not apply.

## 3rd PROPOSITION.

To explain the reason why small waters are not raised as high as big waters by the Moon and its opposite.

Small waters, such as inland lakes, canals, water in a glass or some other vessel are not perceived to be raised by the Moon. And yet a man might think that if the property of the Moon were to raise the water up to it, this would have to happen with such small waters just as well as with others, of the big seas; nay, that it even ought to raise the smaller ones higher still, because they are lighter than the big ones. In order to explain the reason of this, let $A B C D E F G$ be a vessel full of water, each side (e.g. $A B C D$ ) being a rectangle 4 feet long and 4 feet broad; against this side $A B C D$ there will press a weight equal to the weight of 32 [cubic] feet of water, by the 15 th proposition of the elements of hydrostatics, and the whole of the water will be 64 [cubic] feet. Assuming further that each side, which we have said to be 4 feet long and broad, be made of 4 boards, each 4 feet long and 1 foot broad, such as the board AHID and the like, then the weight pressing against each board will be equal to the weight

[^63]
## 1866 Bovce des Eertciootschrifts,

wicht van 8 voeten waters, als vierendeel vande 32 voeten, en füllender in als fijn 16 fulcke plancken. Ghenomen voort datelcke planck om in die ftandt ghehouden teworden, een teghendrucking moet hebben van buyten, even fo ftijf als t'water van binnen, dat ist'ghewicht ghelijck voor ghefeyt is van 8 voct waters: Hier toe neem ick te wefen 64 verfcheyden crachten, of om by claerder voorbecit te fpreken 64 mannen, te weten foo veel alfier voeten waters int vat fijn, en fal commen tegen elcke planck 4 mannen. Laet nu K een ander cleen. der vat vol waters fijn, ghemaeckt alleenelick van 4 plancken, even en ghelijck mette voorgaende, en fal dat vat begrijpen 4 voet waters, ftaende 4 voei hooch. Dit foo fijnde, dat ymant nu aldus feyde: Anghefien 64 mannen ant groot vat connen houden 64 voeten waters 4 voet hooch, foo connen 4 mannen ant cleen vat houden 4 voet waters 4 voet hooch, en wilde over fulcx teghen elcke der vier plancken des cleen vats $K$, hellen alleenclick een man, daer tegen yder planck des groot vats gheftelt finn 4 mannen, dat waer ghemift, om dat teghen elcke planck des cleen vats, even foo veel ghewicht perft als teghen elcke planck des groot vats deur het 11 voorftel vande beginfelen des waterwichts. Sulcx dat teghen de 4 plancken des cleen vats, niet en fouden moeten gheftelt fijn 4 mannen, om 'water in dieftandt te houden, macr 16 mannen: En vervolghens 4 mannen en fulten 4 voeten waters int cleen vat foo hooch niet connen opperffen, als 64 mannen fullen connen opperffen 64 voeten watersint groot vat. Waer uyt wijder volght, dat foo een bevelhebber over fulck volck, tot een cleen water een menichte van mannen veroirdende, in fulcken reden totte mannen teghen cen groot water, als het cleen water tottet groot, dat hy daer me de cleene watéren foo hooch niet perffen en fal als de groote: En alfoo isderghelijcke te verftaen metre Maen en haer teghepunt, welcke deur haer trecking. over eveveel waters eveveel ghewelts-doende, en trecken de cleene wateren. 00 hooch niet als de groote: En vervolghenshoe wel fy heurtreckendewerck foo fletck doen op clecrie waterkens als óp groote, 500 cn cant nochitans op de clec. ne om de bovcfchreven oirfaken niet bemerckt worden.

TBesLyyT. Wyhebben dan verclaert de reden waeromeleene wateren vande Maen en haer teghepunt,fo hooch nier ghetrocken en worden alsgroote, , a den cyfah.

## 4 VOORSTEL.

Te verclaren de reden vvaerom de vloct tot veel plaetfen niet an en comt van ooften na vveften, ghelijckdegemeene reghel der fpiegheling mebrengt.

Het blijckt deur het 2 voortel, dat cleene waters foo hooch niet ghetrocken en worden als groote: Hier uyt volght dat rivieren cleene watersfijnde, in haes felven gheen vloet en hebben, en dat de vloet diemender in fiet, niet uyt de rivier, maer uyt de zee comt, waer uyt wijder volght, dat alft vande moneder rivier opwaert, of na de lantfijde, van weften na :ooften ftreckt, dat dan de vloet daer in moer loopen, teghen de ghemeene reghel van weften na ooften, en die ftrecking der ripier anders fijnde,fo comt den vloct oock anders in. Als de vloet conmende uyt zee in Schelde loopt van Berghen opZoomna Antwerpen zuytwaert van daer na Baeftroo ghelijck haer de form der rivier leyt. T'genewy hier ghefeyt hebben vandezee en een rivier, venfact hemoock alfoo met een
groote
of 8 [cubic] feet of water (being one fourth of the 32 [cubic] feet), and there will be 16 such boards in all. It is further assumed that each board, to be kept in that position, must be subjected to a counter-pressure from the outside as great as that of the water on the inside, i.e. the weight of 8 [cubic] feet of water, referred to before. For this I assume there are 64 distinct forces or, to give a clearer example, 64 men , to wit, as many as there are [cubic] feet of water in the vessel; then against each board will press 4 men. Now let $K$ be another smaller - vessel full of water, made of only 4 boards, equal and similar to the foregoing; then that vessel will contain 4 [cubic] feet of water, standing 4 feet high. This being so, if a man now said as follows: Since at the big vessel 64 men can retain 64 feet of water, 4 feet high, at the small vessel 4 men can retain 4 feet of water, 4 feet high, and because of this he wanted to put only one man against each of the four boards of the small vessel $K$, whereas against each board of the big vessel are placed 4 men, this would be wrong, because the same weight presses against each board of the small vessel as against each board of the big vessel, by the 11 th proposition of the elements of hydrostatics 1 ); so that against [each of] the 4 boards of the small vessel there would not have to be placed 4 men to keep the water in that position, but 16 men. And consequently 4 men will not be able to raise 4 feet of water in the small vessel to the same height as 64 men will be able to raise 64 feet of water in the big vessel. From this it follows further that if a commander of such men were to order to a small water a number of men having the same ratio to the men he ordered to a big water as the small water itself has to the big water, he will not thus raise the small as high as the big waters. And the same is to be understood for the Moon and its opposite, which, by their attraction exercising the same force on the same quantity of water, do not raise the small as high as the big waters. And consequently, though they exercise their attraction as much on small as on big waters, nevertheless it cannot be perceived on the small ones, for the abovementioned reasons.

CONCLUSION. We have thus explained the reason why small waters are not raised as high as big waters by the Moon and its opposite; as required.

## 4th PROPOSITION.

To explain the reason why in many places the flood does not come from east to west, as would be in accordance with the general rule of the theory.

It appears from the 2nd proposition that small waters are not raised as high as big waters. From this it follows that rivers, being small waters, do not in themselves have a flood, and that the flood seen in them does not come from the river, but from the sea; from which it follows further that if the direction from the mouth of the river upwards, or to the side of the land, is from west to east, the flood must enter, against the general rule, from west to east, and if the direction of the river is different, the flood also enters differently. Thus the flood coming from the sea to the Scheldt passes from Berghen op Zoom to Antwerp southwards, from there to Baestroo according as the form of the river

[^64]Vande Spiegeing der Ebbenvioet. 187
groote zee en een cleene: Als by voorbeelt,men fiet langs de Franfche, Vlaemfche en Hollantiche ftranden, den vloet incommen uyt weften na ooften, en dat deur dien de groote wijde Spaenfche zee ftreckende tot America toe, ghefcheyden wort met Engelant en Schotlant, vande cleene Duytfhe zee, in welcke fulcke verheffing niet wefendeals ind ander, foocomt de groote vloet uyt de groote zee tufichen Enghelant en Vranckrijck daer invallen van weften na ooften, ghelijck wy vooren van t'vallen des vloets in een rivier ghefeyt heb. ben; T'welck in veel zeen fchijnende teghen de ghemeene reghel der fpiegheling te wefen, nochtans om bekende oirfaken foo wefen moet.

Tbeslvy t. Wy hebben dan verclaert de reden waerom de vloet tot veel plaetfen niet an en comt van ooften na weften, ghelijck de ghemeene regel der fipiegheling mebrengt, na den eyfch.

## 5 VOORSTEL

Te verclaren d'oirfaeck, vvaerom dattet tot veel plaetfen gheen hoochfte vateren is, vvefende de Maen of haer teghenoverpunt int middachront, ghelijck de ghemeene. reghel der fpieghelingmebrengt.
A ngefien de vloct der cleene zeen, veroirfaeckt wort deur de vloet der groote ghelijck int 4 voorttel ghefeyt is, foo volght daer uyt dat de plaetfen der cleene zee naeft de groote ghelegen, eer hooch water moeten hebben als andex verder: plaetfen der cleene zec: Daerom alwaert inde groote zee alijit hooch water wefende de Maen of haer teghepunt int middachront, foo en cant op den felven tijt tot ander plaetfen verre ghenouch inde cleene zee gheen hoochfte water fijn:Ghelijckmen fiet in ons cleene Euyifche zee, alwaer de ooftlicker plaetfen later vloet hebben dan de weftelicker. TBESL V YT. Wy hebben dan verclaert d'oirfaeck waerom dattet tot veel plactfen gheen hoochite water en is. wefendede Maen of haer teghenoverpunt int middachront, ghelijck de ghemeene reghel der fpiegheling mebrengt, ina den eyfch.

## 6 VOORSTEL.

Te verclaren d'oirfaeck vvaerom fprinckvloettot fommighe plaetfen deurgaens eenighe dagen later comt dan met volle of nieu Maen.

Int s voorftel is ghefeyt, dattet hooch fte water tot ettelicke plaetfen eenighe uyren ghiefchiet na de comitder Maen of haer teghenoverpunts int middache ront, waer uyt niet vreemt en is dat de frinckvloeden die alijt metten hoogen. vloci commen; aldaer oock foo veel uyren later vallen dan na de ghemeene reghel: Maer etrelicke daghen van volle en nieu Maen te verfchillen ghelijck dadelick bevonden wort (want voor Hollandt, foo ick van zeevolck verflae, verfchillet over de twee daghen, weftwaert min, oof waert meer) dat mocht ymant bedencking gheven. Om hier afd'oirfaeck te verclaren, ick fegh voor al kennelick re wefen deur tghene ghefeyt is int 4 voorftel, dat fprinckvloet der rivieren en cleene zeen, niet en commen uyt haer felven, maer veroirfaeckt fijn deurde fprinckvloet der groote zee, waer uyt volght dattet verfehil des tijts tuffehen de.
fprinck-
directs it 1). What we have here said about the sea and a river applies in the same way to a big and a small sea. For example, along the French, Flemish, and Dutch shores the flood is seen to come from west to east, such because the big, wide Spanish sea, extending to America, is separated by England and Scotland from the small Dutch sea, and since in the latter there is not the same elevation as in the other, the big flood enters from the big sea between England and France from west to east, as we have said before about the entrance of the flood into a river; and though this seems to be against the general rule of the theory in many seas, this must be so for known reasons.

CONCLUSION. We have thus explained the reason why in many places the flood does not come from east to west, in accordance with the general rule of the theory; as required.

## 5th PROPOSITION.

To explain the reason why in many places the tide is not highest when the Moon or its opposite is in the meridian, as would be in accordance with the general rule of the theory.

Since the flood of the small seas is caused by the flood of the big seas, as has been said in the 4th proposition, it follows that those places of the small sea which are situated nearest to the big sea must have high tide sooner than other remoter places of the small sea. Therefore, even if it were always high tide in the big sea when the Moon or its opposite is in the meridian, at the same time the tide may not be highest in other places far enough away in the small sea, as is seen in our small Dutch sea, where the more eastward places have the flood-tide later than the more westward places. CONCLUSION. We have thus explained the reason why in many places the tide is not highest when the Moon or its opposite is in the meridian, as would be in accordance with the general rule of the theory; as required.

## 6th PROPOSITION.

To explain the reason why in some places spring-tide usually occurs a few days later than full or new Moon.

In the 5th proposition it has been said that in several places the highest tide occurs a few hours after the Moon or its opposite is in the meridian, so that it is not strange that the spring-tides always occurring at the high flood-tide also occur there so many hours later than according to the general rule. But that they should differ several days from full and new Moon, as is found in practice (for in Holland, as I understand from mariners, the difference is more than two days, to the west less and to the east more), this might give rise to objections. To explain the cause of this, I say first of all that it is evident from what has been said in the 4th proposition that spring-tides of rivers and small seas are not due to themselves, but are caused by the spring-tide of the big sea, from which it follows that the difference in time between the spring-tides of a big and a small

[^65]
## I88 6 BOVCK DESEERTCLOOTSCHRIFTS,

yrinckuloeden van een groore en cleene zee,grooter can fijn dan t'verfchil des tijits tuff hen de frinckyloct der groote zee en een rivier, uytoirfaeck dat de rivicrens fprinckvloet om het afcommende water datachter veel hoogher is, niet foo verre loopen en can als de fprinckvloet der cleenezéé, die van achter foo veel niet hoogher enis. Om hicr af deur cen form breeder verclaring te docn, laet A B C D EFG het oppervlackder cleene zee beteyckenen, waer af de verheventhegt $A$, fy ande mont der groote zee beduydendeden hooghen (princkvloet, welcke binnen fes uyren daer na ten leeghften fijnde, en fes uyren daer na wecrom ten hoochtten, foo wort die cleene zee in gheduerlicke beweging ghehouden, met verfcheyden hooghe fprinckyloederi, en ebben uffichen beyden, d'cen achter d'ander, al veroirfacckt uyt den eeffen hooghen fprinckvoet $A$, wordende allencx cleender en cleender, fulcx datmen ten laciften geen

ebbe en vloet meer en merckt. Maer wantet eenighe dighien can anloopen eer den eerften hoogen fprinckvloet A, coms toten laciften hooghen fptinculoet G, en dat de hooghe vloeden in alle nieu en volle Maen oock den fprinck me brenghen alsghefeyt is, fooen can den groorften vloet diemen fprinck noeme an A ten grootten wefende, hacr aldergrootften vloette weten fprinck an $G$, niet veroirfakend dan foo veei tijits na nieu of volle Maen, als den cerften fprinck an A, behouft om over alde fprinckvloeden B, C, D, E, F, tot G te commen, t'welck na dattet verre is ettelicke daghen an can loopen:Als by voorbeet: Angefien het na luytder Almenacken, met volle en nieu Maen hooch water is tot Calis ten 10 uyren: Tot Nieupoort ten in uyten : Tot Oftende ten 11'- uyren. Tot Blanckeberge te 1 uyr:Tot Vlifinghen ten 2 uyren: Tot Bergen op Zöom ten 4 uyren: Tor Antwerpen ten 6 uyren : Tot Baeftroo ten 8 uyren :Soo is de vloeti uyr doende met te commen van Calis tot Nietpoort: $\frac{1}{2}$ uyr van Nieupoort tot Oftende: 2 uyren van Oftende tot Blanckeberghe: $\frac{1}{2}$ uyr van Blanckeberghe tot Vlifing: 2 uyren van Vliffing tot Berghenop Zoom: 2 uyren van Berghen op Zoom tot Antweipen : 2 uyren van Antwerpe tot Baeftroode: Maecktt'famen om den vloet te commen van Calis tor Baeftroo 10 uyren. Waer uyt blijckt dat wannieert te Calis f princkvloet is, fo moetet te Baeftroo ro uyren daer na eerff fprinckv loer wefen. En die derghelijcke berekende op een plaets van Baeftroo veel verder weftwaert dan Calis, foude alfo in plaets van 10 uyren meughen vinden verfchil van eenighe daghen : Daerom al ift dat frinckvloet ter plaets daer geen hinder en is, mẹt volle Maen comt, volghende de ghemeene reghel der fpiegheling, foo moet nochtaisom t'belet der uytfekende landen, tot fömmighe plaetfen de fprinckyloet eenighedaghen nae volle en nieu Maen commen. Tbeslyyt. Wy hebbendan verclaert d'oirfaeck, waerom f princkvloct tot fommigheplaetfen deurgaens eenighe daghen later comt dan met volle of nieu Maen, na den eyfch.

## 7 VOORSTEL.

Teverclaren doirfaeck vvaerom tot fommige plaeten verder vanden vloettop gheleghen als ander, nochtans hooghervloet comt.
sea may be greater than the difference in time between the spring-tide of the big sea and a river, because the spring-tide of a river, on account of the water flowing downward, which is much higher behind, cannot proceed as far as the spring-tide of the small sea, which is not so much higher behind. In order to explain this more fully by means of a figure, let $A B C D E F G$ denote the surface of the small sea, of which let the elevation $A$ be at the mouth of the big sea, denoting the high spring-tide, and since this is lowest six hours afterwards and six hours later highest again, this small sea is kept in continual movement, with several high spring-tides and ebb-tides between them, one after the other, all caused by the first high spring-tide $A$, which gradually become smaller and smaller, so that finally no ebb and flow is perceived any more. But because it may be some days before the first high spring-tide $A$ reaches the last high spring-tide $G$ and the high floods at every new and full Moon also bring on the spring-tide, as has been said, the greatest flood-tide, which is called spring-tide at $A$, when at its greatest, can only cause its greatest flood of all, to wit, the spring-tide at $G$, as much time after new or full Moon as the first spring-tide at $A$ requires te reach $G$ via all the spring-tides $B, C, D, E, F$, which may be several days, according to the distance. For example 1): according to the Almanacs at full and new Moon it is high tide at Calais at 10 o'clock, at Nieuwpoort at 11, at Ostend at 11.30, at Blankenberge at 1, at Flushing at 2, at Bergen op Zoom at 4, at Antwerp at 6, at Baestroo at 8. The flood thus takes 1 hour to come from Calais to Nieuwpoort, $1 / 2$ hour from Nieuwpoort to Ostend, 2 hours from Ostend to Blankenberge, $1 / 2$ hour ${ }^{2}$ ) from Blankenberge to Flushing, 2 hours from Flushing to Berghen op Zoom, 2 hours from Berghen op Zoom to Antwerp, 2 hours from Antwerp to Baestroode. This makes together 10 hours for the flood to come from Calais to Baestroo. From this it appears that when it is spring-tide at Calais, it must be spring-tide at Baestroo as much as 10 hours later. And if anyone were to calculate this for a place much further to the west of Baestroo than Calais, he might find instead of 10 hours a difference of some days. Therefore, though spring-tide comes at full Moon in a place where there is no impediment, according to the general rule of the theory, nevertheless in some places, on account of the impediment formed by lands sticking out, the spring-tide must come some days after full and new Moon. CONCLUSION. We have thus explained the reason why in some places spring-tide usually occurs a few days later than full or new Moon; as required.

## 7th PROPOSITION.

To explain the reason why in some places situated further away from the flood top than others the flood-tide may yet be higher.

[^66]
## Vande Spiegeling der Ebbenvloet. 180

Na de ghemeene reghel der fpiegheling,fo behoort den vloet ten hoochfiten te wefen anden vloettop,en da plactfen die den vloettop niaerder fijn, behooren den vloet oock hoogher te hebben als ander verder daer af ghelegen; nochtans fietmen dadelick tot veel phatfen t'verkeerde ghebeuren. Om hier af d'oirfaeck te verclaren, foo fegh ick eerft by voorbeelt aldus: Men fiet dat een bare waters commende teghen cen hooft in zec uyttekende, datfe daer vooren verhoocht,ja daer ovcrloopt veel hoogher als ander baren in zee:De reden daer af is defe : Soo t'voortte der baer reghen t'hooft teutende alleen waer fonder vervolgh van water, het foude als kennelick is fracx te rugghe keeren fonder fulcke hooge verheffing te doen: Maer de reft der fware groote baer op haer ganck welende, en can op foo corten tijt niet kecren, dan het voorfte water wort opghehouden tarr het volghende, en dat volghende oock van ander volghende, fulcx dat t'een t'ander onderhoudende en voortdringhende, het ghcraeckt tot die voorfchreven verheffing, hoogher dan t'ghemeen water der zee. Dit verftaen fijnde, laet ons liet heel verheven water eens vioets nemen voor een baer,welcke ettelicke mijlen lanck fijnde, ten is gheen wonder dat dact af tot fommighe plaetfen dacrfe rechttegen an comt, hoogher verheffing ghefchiet dan in zee, als by voorbeelt de vloct der groote Spaenfche zee, trickende na de leeghe cleyne Duytche zee als boven gefeyt is,en vallende teghen de landen des inhams van Bretaigne , crijcht een verheffing boven de ebbe van 10 of 11 vamen, dats hoogher dan de vloet tot ander plaetfer die den vlocttop naerder fijn,ja hooger dan onder den vloettop felf, en dat om bekende reden. Tbeslvyt. Wy hebben dan verclaert d'oirfaeck; waerom tor fommighe plaetfen verder vanden vloettop ghelegen als ander, nochtans hoogher vloet comt,na den eyfch.

## 8 VOORSTEL.

## Te verclaren d'eygenfchappen dieder van ebbe en vloet

 fijn fouden, foofe ghefchiede deur perfing der Maen en haer teghepunt.Wy hebben tot hicr toe de facck ghenomen, al of de Maen en haer teghepunt het zeewater na hun trock of foghen, volghende tinhoudt van d'eerte begheerte: Maer fooder een verkeerde eyghenfchap van perfing in waer, foo fouden eenighe reghelen verkeert vallen. Om van t'welck by voorbeelt te fpreken, laet inde volghende form de letteren van beteyckehing wcfen als inde form der a bepaling, uytghenomen dat de Maen $K$,en haer teghepunt $L$, nut'water niet en trecken als daer, maer pcrffen als hier, fulcx dat de liniFH nu corter $f$ y dan I G. T'welck foo ghenomen, F en H fullen ebtoppen fijn, I $G$ vloetront, en veel gedaenten van ebbe en vloct fullen op verkeerde wijfe commen vande voorgaende des 1 en 2 voorbeelts, oock des $\mathrm{I}, 2,3, \mathrm{en} 4 \mathrm{ver}$ volghs cant ivoorftel.
Ten ecrten,foo falt ter plaetfen daer de Maen boven is leegh water fijn, teghen d'eerte ftelling.
Ten twecden, gaende de Maen onder des duyfteraers 90 tr.foo fal t'ghene int 2 voorbcelt des I voorftels berekentwort op 8 uyren $s$ (1), fijn van 3 uyr ss (1); En weerom verkecrt dat daer berekent wiert op 3 uyr $s s$ (1), fal fijn van 8 uyr $s$ (1).

Ten

According to the general rule of the theory the flood-tide ought to be highest at the flood top, and the places which are nearer to the flood top also ought to have the flood-tide higher than others which are further away from it; nevertheless, in practice the contrary is seen to occur in many places. In order to explain the cause of this, I first say as follows, by way of example: It is seen that a billow of water striking on a mole sticking out into the sea is raised in front of it, nay; overflows it, much higher than other waves in the sea. The reason of this is the following: If the foremost part of the billow striking on the mole were by itself, without any water following it, it would - as is evident - at once turn back without rising to such an elevation. But the rest of the heavy billow, being already on its way, cannot turn back in so short a time; then the foremost water is retained by the next, and this next also by more that follows, so that, one retaining and urging on the other, the aforesaid elevation, higher than out at sea, is reached. This being understood, let us take the whole of the elevated water of a flood-tide for a wave; then since this is many miles long, it is no wonder that in some places against which it strikes directly it gives rise to a higher elevation than occurs out at sea; thus, for example, the flood-tide of the big Spanish sea, flowing to the low, small Dutch sea, as said above, and striking against the lands of the bay of Brittany, gets an elevation of 10 to 11 fathoms above ebb-tide, i.e. higher than the flood-tide in other places which are nearer to the flood top, nay, higher than at the flood top itself, such for known reasons. CONCLUSION. We have thus explained the reason why in some places situated further away from the flood top than others the flood-tide may yet be higher; as required.

## 8th PROPOSITION.

To set forth the properties which ebb and flow would have if they were occasioned by pressure from the Moon and its opposite.

Up to this point we assumed that the Moon and its opposite attracted or sucked the sea-water towards them, according to the contents of the first postulate. But if it were due to the opposite property, namely pressure, some rules would become reversed. In order to speak of this by way of example, in the following figure let the reference letters be the same as in the figure of the 1st definition, except that the Moon $K$ and its opposite $L$ do not now attract the water as there, but press it as here, so that the line $F H$ be now shorter than $I G$. When this is so taken, $F$ and $H$ will be ebb tops, $I G$ the flood circle, and many qualities of ebb and flow will be the converse of the foregoing of the 1st and 2nd examples, as also of the 1 st, 2 nd , 3 rd , and 4 th sequels to the 1 st proposition.

Firstly, in those places where the Moon is in the zenith it will be low tide, contrary to the first theory.

Secondly, when the Moon is under $90^{\circ}$ of the ecliptic, the interval which in the 2nd example of the 1st proposition is calculated to be 8 hours 5 minutes will be 3 hours 55 minutes; and conversely, what was calculated there to be 3 hours 55 minutes, will now be 8 hours 5 minutes.


Ten derden, fal t'water op des Eertcloots afpunten ten hoochften fijn, loopeade de Maen onder den evenaer, en ten leeghtton wefende in haer uyterfte noortiche en zuytifhe breede, teghen de reghel des i vervolghs vant i voorftel.

Ten vierden,een der twee ebroppen dat cen gheftelde plaets naeft comt, veroirfaeckt aldacr leegher ebbeals t'ander: T'welck verfchil heeft vant 4 vervolgh des i voorftels.

Ten vijfden, blijeket dat plaetfen naerder den afpunt, dan de Maen den Evenaer, alfdan vant vloetront niet gherocht worden, fulcx datfe op dien tijt fo hooghen ploet niet en crijghen, als plaetfen daer het vloctront over comt, tegen de reghel vant ; vervolgh des i voorftls.

Nu welcke ftelling van beyden recht is, of wat ander derde int natuerlick wefen mach fijn, daer af acht ick ons dadelicke ervaringhen te ghebreken; maer hoemen duer toe foude meughen commen, van dies fal ick mijnghevoelen int volghende voorftel fegghen. Tbesly y t. Wy hebben dan verclaert d'cygenfchappen dieder van ebbe en vloet fijn fouden,foofe deur perfing der Maen en haer teghepunt ghelchiede.

## 9 VOORSTEL.

Te verclaren hoet fchijnt datmen de faeck an foude meugenlegghen, om te gheraken tot grondelicker kennis van ebbenvloetdander nu af is.

Thirdly, the water will be highest at the poles of the Earth when the Moon moves under the equator, and lowest when it is at its extreme northerly and southerly latitudes, contrary to the rule of the 1 st sequel to the 1st proposition.

Fourthly, the one of the two ebb tops which comes nearest to a given place causes there a lower ebb-tide than the other; which differs from the 4th sequel to the 1st proposition.

Fifthly, it appears that places nearer to the pole than the Moon is to the Equator are not then reached by the flood circle, so that at that time they do not get as high a flood-tide as places through which the flood circle does pass, contrary to the rule of the 3 rd sequel to the 1 st proposition.

Now I consider that we lack practical experience to decide which of the two theories is the right one, or what other (third) theory may be in accordance with nature; but in the following proposition I will give my opinion about the way in which such experience might be obtained. CONCLUSION. We have thus explained the properties which ebb and flow would have if they were occasioned by pressure from the Moon and its opposite.

## 9th PROPOSITION.

To explain how it seems we might proceed to gain fuller knowledge of ebb and flow than we now have.

When ebb-tide, flood-tide, and spring-tide are not in accordance as to time and magnitude with the general calculation of the tides to which mariners

## Vande Spiegeling der Ebbenvioet. git

Als ebbe, vloet en fprinck, nieten overcommen in tijt en groothcyt, mette gemeene rekening der ghetijden daer de Schippers hun na ghevougen, als wat vrougher of later ghebcurde, of datter leeghe vloet comt, met wint die nochtans hooghe vloct veroirfacckt, of verkeert hooghe vloct met wint die cleene vloet mebrengt, men fegt dan ghemeenclick daer moct ander wint in zee fijn, of gheweeft hebben, daert nochtans miffchienfal meugen ghebeurt fijn om redenen der ghemeene reghel die wy boven befchreven hebben, of byanderen daer af befehrijvelick fijn. Doch want hier uyt fomwijlen volcht verlies van fchiplijfen goet, foo en fehijnet niet buyten reden datmen tracht na fekerheyt en kernis der oirlaken defer fof. Maer want uyt veel ghewiffe ervaringhen de fekerfte reghels gemaeckt worden, fo fouder feer voorderlick fijn dat veel menfehen, tot allen plactien des Eertcloots daert te pas can commen, daghelicx gafloughen en opfchreven al tghene fy dadelick daer af lien gebeuren, als tot wat uyr ebbe, tot wat uyr vloet comt, metende oock de hooghde van yder vloet, en de leeghde van yder ebbe, dacr by opteyckenende de winden of ftilten dieder dan fijn, filcke fchrifien dacr na int ghemeen, en (fooden Gaflagher felfgheen fpieghelaer en is) ter hant der ficghelaers commende, fy fouden fien hoe alles metre ghemeene fpicgheling overquaem, acht nemende op des ghemeene reghels belet van landen en winden. 'Tis oock te weten dat d'onderfoucking der ghemeene ghedaenie van ebbeen vloet daer int 2 voorftel afghefeyt is, bequamelicxt foude meughen ghefchien op cleene Eylandekens in een groote zee geleghen, en (omgeen hinder der ebbe en vloer te hebben) feer verre van lant, als Sint Helena en dicrghelijcke. Hier uyt foudemen meughen mercken, ten cerften ofier recht onder de Maen en hacr tegepunt twee vloettoppen loopen met cen ebront, volghende t'ceritc ghefldde: Of twee cbtoppen met een vloctront, volghende het tweede gheftelde des 8 voorltels.

Ten tweeden, als de Maen onder den evenaer loopt, of dan ebbeen vloet 6': uyren achter malcander volghen nat'inhout der fpiegheling verclaert in des i voorftels a voorbeelt.
Ten derden, als de Maen met groote afwijcking vanden ëvenaer loopt, of dan fulcke tijden tufichen ebbe en vloet, verfchillen nat'inhout der ficgeling verclaert in des i voorftels 2 voorbcelt; of nae t'inhoudt des 2 lides vant 8 voorttel, want ons dat ocek verickeren foude van fuyging of perfing.

Ten vierden, ef fwater ontrent des eertcloo:s afpumen ten leeghtten is loopende de Maen onder den everaer, volghende teerne gheftelde, ais int i vervolgh des i voorftels, of ten hoochiten volghende het tweede gheftelde, als int $\mathbf{8}$ voorftels derde lidt, t'welek ons van fuyging of perfing oock foude wetenfchap gheren.

Ten vijfden, of alfdan dien vloet hoogit comt, wiens treckende cracht te weten der Maen of haer teghepunts, naeft des* Doenders toppunt is, na tinhout Efficents der fpiegeling verclaert in des 1 voorftels 2 voorbectr; Ofanders dat de vloeden prunium even hooch commen, maer datier fulek rerichil inde cbben ralt, t'welck uyt verticale. perfing volghen foude. Alle welkke dinghen foofe bevonden wierden te overcommen met een der twee voorgaende fieghelinghen, 'foude verftrecken tot fekerheyt des handels: Maer verfchillende men foude deur dat ghevonden meughen trachicn na verbetering. Tbe sivyt. Wy hebben dan verclacrt hoet fchijur da men de faeck an foude meughen legghen, om te geraken tot grondelicker kennis van ebbe en wloet d'ander nu af is, na den cyfch.

```
Ebbenviotets E Y N DE.
```

conform, namely their setting in a little earlier or later, or that the flood-tide is low with a wind which nevertheless occasions a high flood-tide, or conversely the flood-tide is high with a wind which causes a low flood-tide, it is usually said that there must be or must have been a different wind at sea, thought it may perhaps have happened on account of the general rule we have described above, or according to others still to be described. But because loss of ship, life, and property sometimes results from this, it does not seem inopportune to try to get certainty and knowledge of the causes of this matter. But because the surest rules are made from many certain experiences, it would be very propitious if in all places of the Earth where this may be appropriate many people were to observe and write down daily what they see happening in actual fact, e.g. at what time there is ebb-tide, at what hour flood-tide, measuring also the height of every flood-tide and the depth of every ebb-tide, and also noting the wind or calm at that moment; if such writings thereafter become public and (if the Observer himself is no theoretician) fall into the hands of the theoreticians, these will have to find out how far everything was in accordance with the general theory, taking into account the impediment to the general rule caused by lands and winds. It is also to be noted that the examination of the general qualities of ebb and flow, as referred to in the 2nd proposition, might be effected most efficaciously in smal islands situated in a big sea and (in order not to have ebb and flow impeded) very far from the land, e.g. St. Helena and the like. From this, one might note: firstly, whether directly under the Moon and its opposite there are two flood tops with one ebb circle, according to the first theory, or two ebb tops with one flood circle, according to the second theory of the 8th proposition.

Secondly, whether when the Moon moves under the equator, the tides succeed one another after $61 / 4$ hours, according to the contents of the theory set forth in the 1st example of the 1st proposition.

Thirdly, whether when the Moon has great deviation from the equator, these intervals between ebb-tide and flood-tide differ according to the contents of the theory set forth in the 2nd example of the 1st proposition, of according to the second section of the 8th proposition, for this would also give us certainty whether it is a matter of suction or of pressure.

Fourthly, whether the water is lowest about the poles of the earth when the Moon moves under the equator, according to the 1st theory, e.g. in the 1st sequel to the 1st proposition, or highest according to the second theory, e.g. in the third section of the 8th proposition, which would also furnish us with knowledge as to suction or pressure.

Fifthly, whether then that flood-tide will be highest for which the attraction, to wit, that of the Moon or its opposite, is nearest to the zenith of the Observer, according to the wording of the theory set forth in the 2nd example of the 1st proposition; or otherwise whether the flood-tides will be the same height, but there is such a difference between the ebb-tides, which would result from pressure. And if all these things were found to be in agreement with one of the two foregoing theories, this would provide certainty in the practical work. But if no agreement were found, one might strive for correction by means of the data found. CONCLUSION. We have thus explained how it seems we might proceed to gain fuller knowledge of ebb and flow than we now have; as required.

## END OF EBB AND FLOW.



# THE NAUTICAL WORKS <br> OF <br> <br> SIMON STEVIN 

 <br> <br> SIMON STEVIN}

## DE HAVENVINDING

## THE HAVEN-FINDING ART

## INTRODUCTION

## § 1 <br> INTRODUCTION AND GENERAL REMARKS

The main rules followed in Stevin's day - and even for a long time after in conducting a ship safely across the ocean to her destination were:
a. conduct the ship to the latitude of the parallel through the place she is bound for;
b. sail east or west along this parallel.

A place situated on the seaboard of the continent was certain to be reached in this way, but the time of arrival could not be predicted. The rules equally applied if the land to be made was an island, but this involved considerable risk, as was proved all too frequently in actual fact. Indeed, a navigator would sometimes guess he was west of an island, whereas actually he was east of it. If in such a case he headed east, he went in the wrong direction, an error which was not detected until much later and after much doubt. Stevin refers to such a case (p. 427), where a ship sought for St. Helena for several weeks and the navigator "sailed several times around it before he got there" 1 ).

The resultant prolongation of the voyage and the complete uncertainty as to the time at which a landfall would be made formed two out of the numerous and very great dangers attendant on navigation in those days. In fact, prolongation of the voyage entailed longer exposition to all sorts of wind and weather, a greater risk of water shortage, illness, and loss of lives. Such uncertainty involved the possibility that in the hours of the night one might suddenly approach land, land which was usually a lee shore and not lit by warning lighthouses. Under such circumstances good seamanship demanded that navigators should keep a very sharp look-out and exercise the greatest caution, while the ship must. make no headway during the night, when dangers could not be sighted. Further, the lead had to be kept going. But in spite of all this, in many cases when land suddenly loomed ahead, there was neither time nor opportunity to turn the ship round and avoid peril of death. Indeed, how often a sailing-vessel is driven on by the wind at haphazard, thus meeting its doom, generally with disastrous consequences!

If the determination of longitude by land and by sea had been possible, the seaman would have found coasts and islands in the right place on the chart. He would have been able to mark the position of his ship on the chart and thus

[^67]would have known its position relative to the coast, in consequence of which the uncertainty would have been removed. But this possibility did not exist. From the early sixteenth century the basic idea of the method of determining longitude with the aid of the chronometer and by means of lunar distances indeed had been known. But the practical application of both these methods was not arrived at until the second half of the eighteenth century. Aboard they were not commonly used until the nineteenth century.

During the sixteenth, seventeenth, and eighteenth centuries a solution of the great problem was diligently and passionately sought in countries like Portugal, Spain, France, England, and the Netherlands, where the seafaring trade flourished and the art of navigation was practised and developed scientifically. The problem was studied in those countries both by sailors, who daily felt the lack of knowledge, and by scholars. The latter made proposals on a great many points. But many more ideas - fantastic ideas in our eyes - were advanced by seafaring and non-seafaring men, who thought they could make useful suggestions and thus hoped to receive the high pecuniary rewards offered for the solution of the problem. The thought and endeavours of all these people form the subject-matter of an important and fascinating chapter of the history of navigation, a chapter which bears the heading "'The Problem of Longitude".
A self-contained and completed section of this chapter must be considered to be formed by the efforts which sought the solution in the deviation of the magnetic needle from the astronomical meridian ${ }^{2}$ ). The title of this part should
${ }^{\text {a }}$ ) The vertical plane through the vector representing the geomagnetic force bears the name of the plane of the magnetic meridian, and the intersection of this plane with the horizontal plane is called the magnetic meridian, direction of the magnetic north, or magnetic north and south line. It is the direction in which a magnetic needle pivoting on a vertical pin aligns itself under the influence of terrestrial magnetism. In general this direction does not coincide with the astronomical meridian, which is also called the true north and south line. The magnetic meridian may deviate to the east or to the west of the astronomical meridian. The angle between these two meridians is called declination. The merchant navy speaks of variation of the compass, a name which will be used henceforth. In the navigable parts of the world the variation is an acute angle. (see the figure on page 368 )
For a given place on the earth the amount of the variation is not constant. It is liable to a very slow increase or decrease (secular variation), further to a small diurnal fluctuation, and sometimes to sudden irregularities.

At the present day maps exist on which lines have been drawn joining the places where the variation has the same value, expressed in degrees; these lines are called isogonics. The lines joining the places at which the variation is nil are called agonics. These maps mention the secular variation. They make it possible to find the amount of the variation for a given point at sea and for a given year. It is clear that the diurnal fluctuation and the above-mentioned irregularities cannot be taken into account.

When a magnetic needle is not directed exclusively under the influence of earth magnetism, but mounted on board a ship where disturbing influences due to surrounding iron occur, the magnetic needle will deviate from the magnetic north and south line. This is called deviation.

In those days ships were made of wood. Deviation thus could not be due to the ship's iron, but it could be caused by the nearness of guns, objects of iron in the neighbourhood of the compass, knives in the pockets of the helmsman, etc. It is known that a warning was sounded against such influences as far back as the seventeenth century. It may therefore be assumed that navigators were on their guard with regard to this point and that the compasses referred to in the present introduction showed no deviation, so that this deviation will not be taken into account and no more reference will be made to its existence.
be: "the determination of longitude at sea by means of the variation of the compass" ${ }^{3}$ ). The matter played a part around 1500 to the second half of the eighteenth century.

A good many people in Holland as well as elsewhere thought and wrote about this subject. In the sixteenth century opinions about the possibility of using the variation for the determination of longitude differed widely, between absolute rejection and hopes of complete success. Stevin was among the convinced champions. His Haven-Finding Art, published in $1599^{4}$ ), is a lucid scientific treatise, in which the author, making use of existing observational data, states his view of the magnetism of the earth. In an intelligible idiom he sets forth a method which is to enable the seaman, on the strength of the variation of the compass needle observed by him, to conduct his ship unerringly to her destination, without being kept in uncertainty and without having to know either the geographical longitude of the place for which the ship is bound or the longitude of the ship at sea. In Stevin's time, however, the data about the magnetism of the earth were extremely scanty and quite insufficient to base thereon such a method of determining longitude. It was not until the eighteenth century, when more information about the variation of the magnetic needle on the oceans had been collected, that the method became of practical value and, for want of anything better, was used and appreciated by mariners. The basic idea of Stevin's system then proved to be correct. At the present day, when the variation has been measured everywhere and charts show its value for any given place in any given year, a rough determination of longitude by this method would be possible. But the need of this solution is no longer felt. Nowadays ships are steered across the ocean by astronomical navigation, while the chronometer, checked by means of radio time-signals, forms the backbone of this system. It is hardly necessary to refer to up-to-date electronic aids to navigation in this place.

However, all this does not alter the fact that Stevin has supplied the material for a particularly interesting page out of the history of navigation. His treatise may be called a very remarkable book, remarkable for its place in this history as well as for its contents.

## § 2

## THE PLACE OF THE HAVEN-FINDING ART AMONG SIXTEENTH-CENTURY TEXTBOOKS ON NAVIGATION

The question may be asked whether The Haven-Finding Art is one among the early publications on navigation in Holland.

The navigator of the second half of the sixteenth century, sailing along the seaboard of western Europe and to the Baltic was in a position to consult short elementary treatises on navigation, which were included in some "rutters" and atlases destined for this trade. Such books gave a description of the route as well as some information about the compass, about the calculation of the hours of high and low water, about plane charts, etc., the latter with a view to the

[^68]compilation of maps ${ }^{5}$ ). But in consequence of the rapid development of deep sea navigation in Holland there was a growing need of wider nautical knowledge, required for carrying on this trade. It is natural that people looked to the country which had long been in possession of knowledge and experience of deep sea navigation to supply this want. It was Spain which provided the required instruction, both directly and also indirectly via England. This development may be briefly outlined here.

In 1580 a Dutch translation of Medina's Atte de navegar ${ }^{6}$ ) appeared at Antwerp ${ }^{7}$ ). Although the book had been written by one who was no sailor, it was looked upon as a standard work, and it had become very famous and widely diffused. Of the original work, which had appeared 35 years earlier, Italian, French, and English translations had long been in existence. To the Dutch edition the Antwerp mathematician and nautical expert Michiel Coignet added an excellent commentary, Nieuwe Onderwijsinghe 8). This latter work, which was better adapted to practice than was Medina's Arte, argues the great nautical knowledge of the expert author. The said translation of Medina, combined with Coignet's appendix, was reprinted several times at Amsterdam, invariably by Cornelis Claeszoon, publisher of a great many books on nautical subjects. In 1598 he already published the fourth edition, which points to a rapid diffusion even in Holland. It appears that the book, in its combination with Coignet's treatise, played a useful part in the advancement of nautical knowledge.
The textbook of Zamorano ${ }^{9}$ ), which was greatly valued in Spain and passed through four reprints there, appeared in a Dutch translation at Amsterdam in 1598 10). The book of William Bourne 11), based on Spanish sources, which was highly popular in England and was repeatedly reprinted there, appeared in a Dutch translation at Amsterdam in 1594 and once again in 1599 12).

The fact that the enumeration of the textbooks available in Holland in 1599 is thus exhausted shows that Coignet in the southern and Stevin in the northern Netherlands were foremost among those who devoted treatises to scientific navigation, although mention must also be made of Adriaan Veen, who in the same period and during the early years of the seventeenth century tried to serve ocean navigation with his charts in the form of a spherical cap 13). The sailors, who traditionally learned to sail and find their way at sea in practice, through instruction by old salts and their own watchfulness, and who regarded this as

[^69]sufficient, were as a rule reluctant to learn from arm-chair theorists, unacquainted with day-to-day practice. Stevin was of course aware of this reluctance, but it did not deter him, sound scientist as he was, from putting his work and his. discoveries at the disposal of seamen. Stevin, being convinced that he had something valuable to offer, made an attempt to improve safety at sea and, if possible, to solve a burning question, a problem which the navigational world was yearning to solve. His work roused the interest of Prince Maurice, for he gratefully relates (p. 431) how the Stadtholder had acquainted himself with the subject and. had become convinced of the possibility thus opened for greater safety in navigation. The Prince gave orders for navigators henceforth to determine carefully, with the aid of suitable instruments, the variation of the magnetic needle in the places at which they touched, and to submit the results of their observations to the Admiralty. The latter was to publish the data thus collected. In this way the Stadtholder backed up Stevin. His measures advanced the research on terrestrial magnetism, the result of which was expected to benefit navigation.

Finally it may be observed that the "Privilege" with which The Haven-Finding Art opens shows that the States General of the United Netherlands by letters patent of 18 th March 1599 granted to Christoffel van Raphelingen, printer at Leiden and a grandson of the famous Christoffel Plantijn (Christophe Plantin) at Antwerp, for a period of six years, the sole right of printing, publishing, and selling this book. We also read there that Van Raphelingen intended to publish the treatise not only in Dutch but in Latin, French, and other versions as well.

Van Raphelingen brought out Latin and French editions almost simultaneously, but he did not after all publish the treatise in other translations. The English translation, which we owe to Edward Wright, was printed and published in London, also in 1599 14).

The name of the writer does not occur in the original Dutch book. Stevin's authorship appears from the Latin translation, which is due to Grotius. In the "dedication', dated 1st April 1599, Stevin is mentioned as such (p. 4), and the same is the case in Wright's preface (page B-2 verso) to his translation, the title of which is: The Haven-finding Art. Reference may further be made to Snellius, who says in his Tiphys Batavus 15): "But this subject has been treated by others and it induced our Stevin' (Stevino nostro) to write his Haven-Finding Art (suae Limeneuretices). You will find it in the work Wisconstighe Ghedachtenissen of H.R.H. Prince Maurice, which was translated into Latin and published by us previously."

## § 3

## THE CONTENTS OF THE HAVEN-FINDING ART OF 1599

## a. STEVIN'S "CONJECTURE" ABOUT TERRESTRIAL MAGNETISM

It is known, says Stevin, that for a long time past, especially after the great. voyages of exploration to the Indies and America, people have sought for means to determine longitude at sea, so as to make it possible to reach one's destination. However, all these attempts failed. Some investigators had hoped that the vari-

[^70]ation of the compass might furnish the basis of a method for the determination of longitude, and they had assumed a magnetic pole, by which they understood a point on the earth towards which any magnetic needle, no matter where it was mounted, would point. But experience had taught that the variation had nothing to do with such a pole. This idea therefore had been found to be unsound. By emphatically rejecting such a magnetic pole, Stevin reveals one of the foundations of his standpoint, which was diametrically opposed to that of his great contemporary Petrus Plancius, the famous cartographer and scholar who prepared the ground scientifically for the important first nautical expeditions of the Dutch and taught the navigators who were sent out on these voyages.

Stevin goes on to say that investigations had indeed furnished a method which made it possible to head for the desired harbour unerringly, even if neither the longitude of the place of the ship nor that of the harbour in question was known. The only requirement was that one had to know the amount of the variation for the place of destination and had to be able to determine this for the place of the ship by observation. One then had to follow the parallel of the port of destination to a point where the variation was identical with that holding for that place. By observing whether the variation measured was increasing or decreasing the navigator learned whether he was sailing in the right direction. This method appeared so sound to Stevin that in his opinion the position found by dead reckoning had to be considered less reliable than the result obtained in this way. He regards
 the variation of a given place as constant.

Stevin dismisses the objection that several places with the same variation might be situated on the same parallel. This need not cause errors, since such places were very far: apart.

There was yet another reason why knowledge of the variation was necessary. The navigator of an ocean-going ship had to know it if he was to be able to deduce the true course from the course steered by the compass, in order to learn how the ship was moving on the surface of the earth in relation to the meridians ${ }^{16}$ ). As a rule the seaman assumed that his compass -

[^71](Continuation on next page).
constructed in such a way as to allow for the variation found at his port of departure - continued to point to the true north throughout the voyage. Most sailors had no idea that the variation changed as they moved across the earth. In consequence errors arose in the data about directions, or in the positions of places, which data they submitted upon coming home, with the object of marking them on charts and on globes. Large-scale inquiries and collection of data in the matter of measurement of the variation were desirable to avoid such inaccuracies. As has been said, the Stadtholder urged home this desirability by his measures and orders.

It is in this connection that Stevin recommends the use of a compass with an adjustable needle, a type which was in use side by side with other compasses in Holland as well as elsewhere. With such instruments it was possible to set the needle for the value of the variation at the place in question, so that the north and south line invariably indicated the true north or the direction of the astronomical meridian and the courses steered by such a compass were true courses. Compasses of this type continued to be made and used by the Dutch until far into the nineteenth century.

For the benefit of those who wanted to study this matter the book contains a table of the values of the variations in a number of places, in so far as they had already been observed, which values Plancius had "collected by protracted labour and not without great expense from different corners of the earth, both far and near". It was to Plancius, writes Stevin, that credit would be chiefly due if by this system it were to be possible for the seaman to reach different lands and harbours. Stevin feels obliged to express his gratitude, for the numerical data were taken from Plancius, and it must have been quite a job indeed to collect, elaborate, and arrange them. But in his theoretical discussions Stevin does not follow the train of thought of Plancius. He adopts a course of his own, which - as has been said - was of importance for the pratice of navigation during a period long after his day, whereas the theories of Plancius were soon exploded.

Before publishing the table and proceeding to discuss it in detail, Stevin, being a scientist who hopes to make a contribution to the solution of the problem of determining longitude at sea, addresses the seaman who will have to supply the further data. He provides him with a golden rule aiming at the advancement of both theory and practice. Even if further observations of variation, latitude, and longitude should furnish values different from those listed in the table and if consequently different explanations should have to be framed, this was not to deter the seaman from the inquiry; on the contrary, he was to do everything that might help to collect more information about the method, with the ultimate object of jointly finding its true character. In his concluding sentence (p. 459) Stevin says once more that if the results of later inquiries should be different from the outlook on the
(Continuation of note 16)

[^72]variation based on the table of Plancius, it will be necessary to modify the conclusions.

It was actually in this way that the theory was developed. The orders of the Stadtholder were obeyed and Stevin's wish was fulfilled, though much later than he may have hoped. Indeed, we know that the gaining of an understanding of terrestrial magnetism was a process which required several centuries. The seaman may consider himself fortunate in having advanced the art of navigation by making ample contributions to the knowledge concerning the indications of the magnetic needle on the earth (see §5). Even in the present century he made some valuable contributions. The scientific investigation of terrestrial magnetism is still far from being complete even to-day, but it is no longer a subject of study for the seamen.

For 24 places on the northern and for 19 places on the southern hemisphere the table gives the variation, the latitude, and the longitude, the latter being reckoned by reference to the meridian through Corvo, one of the westernmost islands of the Azores. The easternmost places given are situated in longitude $160^{\circ} \mathrm{E}$. They are the mouth of Canton River in China in latitude $23^{\circ} \mathrm{N}$. and "Bunam, 46 German miles to the east from the eastern end of Java" in latitude south 17). No data are supplied for the part of the world to the west of Corvo and to the east of Canton, i.e. a part comprising 200 degrees of longitude. The observations which Plancius had received about that part of the world from Spanish, English, and Dutch sailors were not in conformity with one another, 'because they had been taken without suitable instruments and sufficient knowledge". Plancius was looking forward to receiving new and more accurate data.

The variation is nil in the island of Corvo. Going eastward on the northern hemisphere, we find easterly variation which increases to $13^{\circ} 24^{\prime}$ at Plymouth, upon which it decreases to zero at the island of Hjelmsöy, at about 30 miles west of the North Cape, and according to the table in longitude $60^{\circ} \mathrm{E}$. On the southern hemisphere, east of the meridian through Corvo, the variation is also easterly, increasing from zero to the maximum of $19^{\circ}$ in the vicinity of Tristan da Cunha and then decreasing again to zero in longitude $60^{\circ} \mathrm{E}$. It appears that the two maximum values lie in longitude $30^{\circ} \mathrm{E}$., i.e, on the mid-meridian of the lune contained between longitude $0^{\circ}$ and $60^{\circ} \mathrm{E}$.; this lune is called a "perck" (segment) by Stevin.

Stevin draws special attention to the regularity he seems to detect in these figures, and on this ground he arrives at a bold conclusion. In fact, he "concludes" that the value zero of the variation holds for the whole meridian through Corvo - from one pole to the other - and equally for the meridian through Hjelmsöy. The maximum values fall on the mid-meridian of longitude $30^{\circ} \mathrm{E}$. He assumes that the increase of the easterly variation holds for the whole lune

[^73]between longitudes $0^{\circ}$ and $30^{\circ} \mathrm{E}$., and the decrease for that between longitudes $30^{\circ}$ and $60^{\circ} \mathrm{E}$.

The phenomena in the lune between longitudes $60^{\circ}$ and $160^{\circ} \mathrm{E}$. confirm this picture. Here we have westerly variation, increasing from zero to the maximum value of $33^{\circ}$ near Novaya Zemlya in the northern, and to $22^{\circ}$ at the island of St. Brendan's in the southern hemisphere, upon which it decreases to zero in the meridian of longitude $160^{\circ} \mathrm{E}$. again in both hemispheres. The places in which the two maxima occur again lie on the mid-meridian of the lune, viz. in longitude $110^{\circ} \mathrm{E}$.

The conclusion now is obvious. The meridian of longitude $160^{\circ}$ E. is a line joining points where the variation is nil, a line which is now called an agonic. The meridians of longitude $0^{\circ}$ and $60^{\circ} \mathrm{E}$. too are agonics. The increasing variation holds for the whole lune between longitudes $60^{\circ}$ and $110^{\circ} \mathrm{E}$., the decreasing variation for the lune between longitudes $110^{\circ}$ and $160^{\circ} \mathrm{E}$.

When in his attempt to give a picture of terrestrial magnetism Stevin here assigns a particular property to all places situated on the same meridian because in one or two points of that meridian either a value zero or a maximum value is found for the variation, he takes a view held by others before him. This point is to be discussed more fully later on. Stevin leaves it an open question how one is to conceive the difference of the variation on the mid-meridian, considering that unequal values are found in the northern and the southern hemisphere. To him the main thing is whether during a movement either to the east or to the west an increasing or a decreasing variation is observed.

For the part of the world comprising 200 degrees of longitude for which Plancius possessed no observational material, but for which he was expecting. fuller and more reliable data, Stevin merely states how he "somewhat suspects" the magnetic needle will point there. On the same lines he now continues as follows.

The property of the magnetic needle of pointing to the north on the meridian through Corvo and through those of longitude $60^{\circ}$ and $160^{\circ} \mathrm{E}$. is also assumed by him for those of longitude $180^{\circ}, 240^{\circ}$, and $340^{\circ}$ E., i.e. the meridians in the longitudes $180^{\circ}$ away from longitudes $0^{\circ}, 60^{\circ}$, and $160^{\circ}$. All these lines are agonics. In this way the surface of the earth is divided into six lunes, with alternate easterly and westerly variation, each subdivided into one half with increasing and one with decreasing variation. In each of these lunes the maximum falls on the mid-meridian, i.e. the 30th, the 110 th, the 170 th, the 210 th, the 290 th, and the 350 th meridian.

In a remark at the end of his theoretical discussion Stevin cautiously calls his picture a "conjecture", which may not be confirmed by observation. He regards the whole picture as descriptive of the division of the earth's surface in connection with the behaviour of the magnetic needle. However, he has great confidence in the core of his idea, viz. the possibility of reaching a place on the earth with the aid of the latitude and the value of the variation. This confidence appears from the instance given on Pp. 456-458 of a voyage from Amsterdam to Brazil. Here again he considers the results more reliable than the longitude deduced from the course and the distance sailed. Thus he is able to conclude his discussion with the hopeful expectation: "If therefore the needle-pointing and the latitude are duly observed in all corners of the world and made known to everybody, it will be possible to sail the world in another way than hitherto".

Stevin's method also enables ships - which have been scattered by a storm, for instance - to assemble at an appointed place at sea.

We have thus seen how the learned author ventures to draw conclusions from a small number of observations, holding only for one sixth of the earth's surface. The regularity he has found is met with again in the lune between longitudes $60^{\circ}$ and $160^{\circ} \mathrm{E}$., upon which he utters the "surmise" that it will also hold for the rest of the earth's surface. The picture here outlined was to help the seaman to find his destination as long as the great problem of the determination of longitude at sea had not yet been solved.

Stevin makes no attempt to account for all these things in his treatise. He explicitly rejected a magnetic pole, a point on which he was right as long as this pole was considered the centre at which the magnetic needle had to point. In his refusal to assume a magnetic pole Stevin took up a standpoint diametrically opposed to that of Mercator as well as Plancius.

In our view his "conjectures" and "surmises" appear extremely speculative. Many contemporaries, hankering as they were after the possibility of determining longitude at sea, held a different view of the matter from ours.

## b. THE MEASUREMENT OF THE VARIATION OF THE COMPASS ACCORDING TO STEVIN

As was to be expected, Stevin's treatise expounds in what way the variation of the compass can be determined on board a moving ship, even though - according to the author - many people were acquainted with this subject.

The instructions found on pp. 461-465 do not call for much comment. They state that if a mariner's compass is used, this should be one in which the magnetic needle coincides with the north and south line of the compass card. In taking. a bearing one has to hold a vertically suspended cord near the compass in such a way that the shadow cast by it passes through the centre of the graduation. The place of the shadow on the graduation is read before and after noon at equal altitudes of the sun. The point situated midway between the two observations indicates the direction of the meridian. Since the needle coincides with the north and south line, the amount and the direction of the variation are thus found.

The observation could also be taken by means of a compass-needle pivotally mounted in a box, against the inner wall of which the graduation had been marked. During the observation the box had to be held in such a way that the needle coincided with the zero line of the graduation. Otherwise the method remained unchanged.

There were some navigators who used a compass fitted with an adjustable azimuth circle, which is described on p. 467. On p. 468 it is illustrated, unfortunately not completely, for though the drawing does show the bowl, the needle, and the azimuth circle, it does not include the system of suspension. The latter it said to have been an invention due to Reynier Pietersz, who had suspended the instrument "on two different pins, in the manner of the mariner's compass". For steering compasses this suspension system was quite familiar at the time. It is usually called an invention of Cardanus (1501-1576), an Italian mathematician and physicist, astronomer, and professor of medicine at Pavia. But with regard
to an azimuth compass it was indeed justifiable to speak of an invention, as will appear in § 4 b .

Along the graduated circumference of the quadrant an alidade, equipped with sights, was adapted to pivot. This made possible a rough measurement of the altitude of the sun or another heavenly body. The azimuth quadrant turned on a pivot mounted in the centre of the glass cover. To ensure its remaining perpendicular to the glass cover of the bowl as it turned, it was provided with two lateral supports, as mentioned in the text. The bowl was weighted on the underside so as to ensure the horizontal position of the cover. Along the circumference of the bowl as well as on its inner wall, graduations had been provided, in such a way that the zero points of the two coincided. On the former the direction of the quadrant could be read. The needle was set to the zero point of the latter.

The observation took place as follows. The adjustment of the compass needle was brought about by the rotation of the compass bowl within its gimbal ring. Owing to the deviations from the course to left and right due to the movement of the ship as she sailed, this adjustment was undone. Accordingly, for the neutralization of this so-called yawing the bowl had to be repeatedly turned to the right and to the left by hand. At the same time the quadrant had to be directed towards the sun. Once the quadrant had been given the right direction, the turning and readjustment of the bowl alone sufficed to maintain the proper adjustment of the needle as well as that of the quadrant. When this had been achieved, the angle between the quadrant - or, which comes to the same thing, the azimuthal direction of the sun - and the compass needle was read on the graduated circumference.

Later in the day a second bearing was taken at an altitude of the sun equal to that of the morning observation, after which the amount of the deviation of the needle from the meridian appeared from the readings of the morning and the afternoon, i.e. the deviation was equal to half the difference between these readings.

In the same way it was possible to determine the deviation by night at equal altitudes of the same star. With the aid of the moon this was impossible - as Stevin writes - in view of its rapid proper motion and its large parallax, due to its short distance from the earth 18).

The allegation that the rapidity of the moon's motion gives rise to errors is already to be found in William Bourne, A Regiment for the Sea, in the chapter on "How to find the true meridian" (in the edition of 1577 on p. 28). About the taking of bearings it is stated: "you may do the like by night by any of the starres that you perfectly do know, doing as you do by the sun in all points, but you cannot do it so wel and truly by the moone, by the meanes of the swiftnesse of the moones motion in the Zodiack'. There exist Dutch translations of Bourne's book, published at Amsterdam in 1594 and 1599. It seems fairly probable that this work was available to Stevin.

[^74]At the end of the chapter there is yet another warning. When the ship is in a region where the variation changes rapidly as one sails eastward and westward, so that the variation is not the same for the morning and the afternoon position, this appears from the fact that the deviation found by combining the first forenoon and the last afternoon observation does not agree with that obtained by the combination of the last forenoon and the first afternoon observation. According to Stevin this need not point to inaccuracy on the part of the navigator. The phenomenon might even serve to gain some idea of the speed with which the variation changed during a known number of sailing hours ${ }^{19}$ ).
Let us devote some attention to this remark of Stevin's.
It is only if the change of the variation due to the movement of the ship is considerable and moreover is not equal during equal movements -. i.e. if the change is irregular - that the phenomenon referred to can be revealed. In that case high demands as regards accuracy of measurement are made on the compass. It is beyond doubt that the compasses of those days could not yet meet these demands.
But Stevin, who knew no more about the amount of the variation in various points on the earth than he mentions in The Haven-Finding Art, can have had no idea of the speed with which the variation changed in consequence of the said movement of the ship, nor can he have known whether this change was regular or irregular. He is not likely to have possessed observational data about this. If this had been the case, he would no doubt have mentioned it in this context.
In answer to the question what may have induced Stevin to make the above remark two suppositions may be suggested. Either we have to regard it as an entirely theoretical one, which arose in the mind of a mathematician who had reflected profoundly about his problem, or - what is more likely - the source must be sought in England again. In fact, in this connection attention may be drawn to an interesting booklet, viz. Robert Norman's The Newe Attractive, London $1581{ }^{20}$ ).
In Chapter 9 Norman ${ }^{21}$ ) disputes the view of those who assume that the change of the variation from one place to another is regular; he explains quite clearly that he feels justified in speaking of regularity if with an equal move-

[^75]ment of the ship is associated an equal change of the variation. Martin Cortes, too, had assumed this regularity. But Norman calls the assumption an error. According to him no such regularity exists. In some regions the change is rapid and sudden, in others it is slow. For the same place on the earth, however, the deviation remains constant.
Norman expresses the wish that sailors on their voyages may observe the variation with accurate instruments, a practice which will benefit them at a later date, in particular in those regions where the variation changes rapidly over short distances. Norman does not state how the phenomenon is revealed by observation, as Stevin does.

It may be considered probable that Stevin was acquainted with Norman's view. Further it is quite conceivable that the wish of Norman just mentioned was the origin of Stevin's similar wish, as well as of Prince Maurice's order of 1599 about the collecting of observational data.

## c. THE LATIN TRANSLATION

The jurist Hugo Grotius (1583-1645), a figure famed in world history, at the age of 16 years had translated The Haven-Finding Art faithfully into elegant Latin. The title of the translation is:

Limenbeuretica, sive portuum investigandorum ratio. Metapbraste Hug. Grotio Batavo.
Ex officina Plantiniana apud Cbristophorum Rapbelengium.
Academiae Lugduno-Batavae T'ypographum. 1599. 22)
Grotius wrote for the booklet a dedicatory epistle, addressed to the Doge, the Senate, and the people of Venice and dated Delft, 1st April 1599. This date shows that the translation appeared almost simultaneously with the original Dutch version. It is not merely on account of the courtesy of the wording that this dedication is worth reading. It also contains some personal impressions of the author. It drives Stevin's meaning home to the reader more clearly than he himself had done and it throws full light on the importance attached to Stevin's work by the leader of the country, Lieutenant-Admiral Prince Maurice.

Grotius relates that he had met the Venetian ambassador while accompanying the Dutch embassy sent to Paris. After making a polite comparison between Venice and the Republic he states he had resolved to dedicate a work to the Venetians. The favourable occasion which was worthy of them and which enabled him to add a contribution of his own - a reference to his dedicatory epistle had now arisen. He was able to offer and recommend a booklet containing instructions given by the Prince to the commanders of the navy and to their boards, to be followed by them. The Lieutenant-Admiral himself had previously studied the subject.

After a circumstantial discussion of the development of ancient navigation and the knowledge of the compass, Grotius recalls how on voyages from east to west the compass-needle had been found to deviate gradually and not inconsiderably

[^76]from the true north, which had caused great doubt and uncertainty among seamen. Thanks to prolonged observation of the magnetic declination at different times and places it had been found by the most learned mathematicians - as one of whom he considers Prince Maurice - that this was no mere accident, but that in nature a certain regularity (ratio et norma) existed according to which the pointings of the needle varied. The Prince had now presented these instructions, written about the matter by his mathematician Stevin, to those in authority in maritime affairs, in order that, if there should be found to exist disagreement between theory and personal observation, every effort might be made to deduce a rule from different experiments.

In order that as many data as possible might be collected, the Prince had decided to present the booklet to the Doge, so that the Venetian navigators might take similar observations, which would make for greater certainty in the finding of any destination:

Grotius concludes his dedicatory epistle with a general recommendation of the method and with the wish that "this small present" might be sympathetically received, "which will be of benefit to both parties and to the whole of the human race".

The high expectations that were entertained - by the Prince in particular of the fruits of Stevin's work could hardly be expressed more eloquently.

## d. THE ENGLISH TRANSLATION 23)

Not long after the appearance of the Dutch edition of The Haven-Finding Art an English translation was published, prepared by the mathematician and nautical expert Edward Wright (1558-1615), famed in the history of navigation. He added a solemnly worded dedicatory epistle to Charles, Earl of Nottingham, Lord High Admiral of England, dated 23rd August 1599. Wright very urgently solicits the admiral's interest in the subject, which was considered by Prince Maurice to be of exceptional value for deep-sea navigation.

Wright had undertaken the translation in order to spread the knowledge of this method among all English seafarers, although he was aware that there were English navigators who had found the position of their ship by means of latitude and variation "more then ten yeres since". However, his countrymen were not to be behind the Dutch, and that was why he recommended this useful booklet he calls it "this Dutch Pilot" - to the admiral, requesting him to induce English seamen to test the method and to take observations all over the world. "Proofe already made by some of our skilfullest English navigators" had already raised good hopes of success, a success which would benefit not only seamen, but also "the whole body of the Christian commonwealth".

After this, in an introduction Wright wishes "Richard Poulter, the maister and brotherhood of Trinitie House and all English mariners and sea-men in generall that love the perfection of their owne profession, health and happiness". Wright here uses the words in which Grotius had addressed the Doge and the Venetians, and he expatiates on the wide importance of the knowledge of the variation for the improvement of navigation.

The two introductions are followed by the translation of the body of The

[^77]Haven-Finding Art, with the exception of the Appendix at the end. The figures are reproduced extremely faithfully.

The name of Edward Wright lives on in the history of navigation on account of his famous book Certaine Errors in Navigation Detected and Corrected, of which three editions appeared, viz. in 1599, in 1610, and the last in 1657, published posthumously and edited by Joseph Moxon. When Wright revised the work for the second edition and addressed Henry; Prince of Wales, in a dedicatory epistle, in which he described in glowing colours the perfect state of shipping and navigation at that time, he evinced such great confidence in the system of haven-finding that this nautical writer, who was one of the greatest experts of his country and his age, wrote: "this variation performeth almost so much in effect as the invention of the longitude".
Since the translation of The Haven-Finding Art already existed, Wright did not consider it necessary in 1610 to include this treatise in his book, but he did add An Addition Touching the Variation of the Compasse, an essay of only three pages. There was a definite reason for his writing this addition. The opening paragraph at once gives the explanation of it. In fact, it is stated that "some have been of opinion that there be two magneticall poles". The author mentions no names, but the identity of his adversaries is revealed by Moxon, in his preface to the reader in the third edition of Certaine Errors referred to above. It was Anthony Linton and his followers who propagated this theory, which resembles that of Plancius. Linton published a small book ${ }^{24}$ ) containing an enumeration of all sorts of improvements to be made in navigation. One of them concerned the possibility of determining the longitude from the variation. The starting-point was that although "a great learned man and his followers absolutely denie that there is any fixed pole magneticall", there must be two fixed magnetic poles, which furnished the basis for the possibility of determining a ship's position. Both magnetic poles were situated on the surface of the earth, within the arctic circles, one in the Arctic and the other in the Antarctic regions. They were altogether different from the geographical poles and were unlike anything written up to that time about magnetic poles. Linton imagined these two poles to be joined by a magnetic axis passing through the centre of the earth. A magnetic equator with parallels and meridians could be imagined at right angles to the line joining these poles. The meridian through the two magnetic and the two geographical poles had to be regarded as the prime meridian. If the variation and the latitude of a place were known, it was assumed to be possible to determine the longitude of this place by "arithmeticall calculation". Conversely, if the latitude and the longitude of a given place were known, the variation for this place could of course also be calculated.

In his Addition Wright refutes this opinion. In accordance with his views, always assuming that the magnetic pole must be the central point towards which the magnetic needle points, wherever it is placed on the earth, logically there would have to be as many pairs of magnetic poles as agonics were known. All those poles cannot be reduced to two. Wright draws a brief conclusion: Linton's

[^78]supposition "is absurd and therefore no such magneticall poles". In other words: away with them!

Wright finds the impossibility of such magnetic poles confirmed in a series of values of the variation of the compass which follows the Addition. The observational data had partly been supplied by the author himself, but he had obtained the majority from English and foreign mariners. The table runs to twelve pages and contains 283 values for places widely dispersed over the earth, a very considerable extension indeed of the original material of Plancius of 1599, published by Stevin at the time.

It thus appears that Wright made no alterations in Stevin's train of thought. There can be no magnetic pole, at least none of the kind imagined at that time. The variations of the compass are enumerated and listed such as they had been observed. No attempt is made to give an explanation of terrestrial magnetism.

And there the matter rested. As already said, Moxon published the third edition of Wright's book, because he considered it undesirable for the English nation "that this so usefull a book should sleep it self to death". The Addition of 1610 was printed unchanged at the end, along with the list of the observed variations. As an appendix he included The Haven-Finding Art, the text being that of the translation of 1599 . It is curious that the same book thus contains both the list of the variations of 1599 and the enlarged list of 1610 , now published again after almost fifty years. Although this seems to indicate stagnation, progress did exist in the matter of the knowledge of the variation; this will be discussed in § 5 .

## e. THE FRENCH TRANSLATION

The French translation 25 ) bears the following title:
Le Trouve-Port, traduict d'Alleman en Francoys à Leyde en l'Imprimerie de Plantin, par Cbristoffle de Ravelengien, Imprimeur juré de l'Université de Leyde, 1599, avec privilège. ${ }^{26}$ )
The vignette on the title-page is the same in the Dutch and the French edition. The unknown translator has closely followed the original text. The booklet contains no dedicatory epistle, like the two other translations, nor any preface to the reader or the like, so that no data are present giving special information about this version. On the last page the Privilege is reproduced. It is given in Dutch and is perfectly identical with that in the original edition. It is probably the same type.

## f. STEVIN'S VIEW OF THE SYSTEM OF 'THE HAVEN-FINDING ART" IN 1608

Nine years after the publication of The Haven-Finding Art the great collective work Wisconstighe Gbedachtenissen, bescbreven door Simon Stevin, Leiden $1608 \mathrm{27}^{2}$ ) appeared, in two volumes.
${ }^{25}$ ) The French translation of The Haven-Finding Art is not present in any Dutch library. Two copies of it are to be found in the Bibliothèque Nationale de Paris.
${ }^{\text {s7 }}$ 27) Works, X.

Volume I includes, as the 'Fifth Book of Geography', the Haven-Finding Art (pp. 163-175) 28). A comparison of the text with that of 1599 reveals points of resemblance as well as differences.

Long passages were taken over literally, such as the description of the finding of the variation of the compass at sea and that of the azimuth compass of Reynier Pietersz. The table with the values of the variations, originating from Plancius, has been reprinted and once more forms the starting-point of the discourse. The expression of gratitude to Plancius too is present. Just as he did in 1599, Stevin also emphatically rejects the magnetic pole in the text of 1608 . In both cases he utters this central idea quite at the beginning.
A sentence has been added in which the author says emphatically that he is going to speak of "haven-finding", not of "longitude-finding, which would be a wider subject and would be of greater worth". The work has been abridged by the omission of several passages. The order of other passages has been changed.

From the omissions a changed view may be inferred.
Whereas in 1599 the statement that the meridians through Corvo and Hjelmsöy were agonics and that a maximum value for the variation occurred on the midmeridian was for Stevin a "conclusion" based on the data; in 1608 he writes: "from this it is suspected that these properties can be assumed". Stevin therefore has grown more cautious in his wording.

The text concerning the agonic in longitude $160^{\circ} \mathrm{E}$. and the meridian of longitude $110^{\circ} \mathrm{E}$., with the maximum value of the variation, is taken over. But the parts east of longitude $160^{\circ} \mathrm{E}$. and west of Corvo are no longer spoken of. The figure illustrating the six agonics and the text concerning the six lunes, each with an increasing and a decreasing variation, have been dropped. Apparently he now considered his earlier "conjecture" too speculative to maintain it.

In 1599 Stevin wrote that Plancius was expecting "any day" to receive new observations, taken on board ships which had been away for more than fourteen months. In 1608 they do not seem to have reached him yet, for he now writes of Plancius: "but he expects to receive more accurate information about it". Although therefore the lack of observations from remote regions is the reason why the list of the variations is neither enlarged nor corrected after nine years, one strongly suspects that acquaintance with newer data induced Stevin to make the above-mentioned alterations in the next and to be more cautious in his wording.

Like the starting-point of his theory, his confidence in his system of finding a destination through knowledge of the latitude and the variation of the compass is unaltered. The text about the deviation of the compass in the vicinity of Amsterdam, the result obtained during the voyage to Brazil, the preference of the position obtained to that by dead reckoning, the story of the ship that missed St. Helena, to be found on pages 4 to 6 in the edition of 1599, all have been taken over literally in the edition of 1608 . Stevin concludes with the following words: "Thus far the appearance of the variations following from the data of the table has been described. If other, more exact observations should prove different in the future, other conclusions will have to be drawn from them, and in navigation the best must always be followed".

The Wisconstighe Gbedachtenissen were translated into. Latin and published in two volumes under the title:

[^79]Hypomnemata mathematica. Leiden 1608. 29)
Volume I contains:
Liber quintus geographiae de Limenheuretica, metaphraste Hugo Grotio Batavo,
with in the margin the words: Portuum investigandorum ratione.
From this title it may be seen that Grotius again prepared the translation, for which naturally he now followed the text of 1608 . No further remarks therefore have to be made about this, with the exception of one.

When in 1599 Stevin had written: "From this it is concluded", Grotius had translated: ex bisce concludere volumus. But when in the edition of 1608 Stevin used a weaker expression and wrote: "from this it is suspected", Grotius still wrote: ex bis concludere volumus. Since the translator thus continued to speak of "concluding", he failed in this respect to render Stevin's meaning accurately.

Finally it has to be mentioned in what form The Haven-Finding Art was included in

Les Oeuvres mathématiques de Simon Stevin . . Le tout reveu. . . par Albert Girard, 1634. ${ }^{30}$ ).

In Volume II, p. 171, we find:
Cinquiesme livre de la Géographie. Du Trouve-Port ou la manière de trouver les Havres.
This again is the text of 1608 . Here the change in Stevin's words has been taken into account. Whereas the French translation of 1599 reads: "de ceci on veut conclure", in that of 1634 we find: "de cecy on a opinion".
There are no indications of any other editions or versions of The HavenFinding Art having appeared since then.

## § 4

THE MEASUREMENT OF THE VARIATION OF THE COMPASS
a. THE MEASUREMENT OF THE VARIATION OF THE COMPASS BEFORE STEVIN'S DAY.

It has been said before that Stevin, when proceeding to discuss the determination of the variation of the compass, begins with the remark that this subject was "known to many people". This was no doubt true. In fact, sixteenth-century navigators had examined special phenomena observed by them at sea and they had the good sense to publish their measurements. Writers of nautical textbooks dealt with the subject. In the latter part of the sixteenth century Dutch seamen too on their ocean voyages determined the amount of the variation and recorded it in their log-books. But in practice most sailors did not concern themselves about the variation. They knew by heart by what courses they could reach their destination and sailed "by sight". The art of finding their way they had "mostly learned by their own experience and by the instruction of old and experienced pilots', as Coignet wrote in his Nieuwe Onderwijsinghe of 1580 and in its later editions. Since for the application of the system of "haven-finding" it was necessary to know the variation of the magnetic needle, it is obvious that for the sake

[^80]of completeness Stevin devoted some space to the subject. What he writes about it is based on foreign works available at the moment, and further - as far as Holland was concerned - on the work of Reynier Pietersz. Stevin was not original on this point, as will appear from the following discussion.

It is known that Columbus on his first voyage across the Atlantic took bearings of Polaris ${ }^{31}$ ) in the early and the latter part of the nights of 13th, 17th, and 30th September 1492. We do not know whether he did or did not take these observations with the aid of a special instrument. A bearing instrument is first desscribed in a Portuguese manuscript of 151432 ), but unfortunately this description is not very clear, so that no reliable idea can be formed of it.

A perfectly clear description is given by Francisco Faleiro, a Portuguese in the service of Spain, in his textbook Arte del Marear of 153533 ). In Chapter VIII, in which the northeasting and the northwesting of the compass-needle are discussed, the author describes the construction of an instrument for determining the variation of the needle. It is a round, flat disc, in the centre of which a magnetic needle has been mounted. About the compass pivot as centre a graduation, consisting of four times $90^{\circ}$, has been marked on the disc. Coinciding with the line $0^{\circ}-180^{\circ}$ and perpendicular to the plane of the disc is a small rectangular plate, which serves as a shadow pin. In the figure illustrating the text the latter is not shown.

The observation is taken at noon. The instrument is held.in the hand in such a way that it is horizontal and the plate casts no shadow. The line $0^{\circ}-180^{\circ}$ then lies in the meridian and the needle indicates the variation on the graduation. It is also possible to take the observation in the forenoon and the afternoon at equal altitudes of the sun and to read the two indications of the needle. During the second observation the mean of the readings indicates the direction of the meridian, while the angle which the needle now makes with this direction is the variation sought. Faleiro prefers the latter method of taking the observation because it can be performed many times a day. The observation at the sun's greatest altitude on the other hand might be inaccurate because the moment of noon could not be determined exactly. Finally observations at sunrise and sunset, of which in the same way the mean is taken, afford a third method for obtaining the desired result. Although nowadays this instrument appears to us to be little suited for use on board, because, while holding it horizontal and at the same time directing it, one has to compensate the rolling, pitching, and yawing movements and changes of the heeling of the ship by movements of the hand, from Faleiro's text it is quite evident that it was destined for use at sea ${ }^{34}$ ).

[^81](Continuation on next page).

In discussing the compass and its properties, Medina ${ }^{35}$ ) draws attention to the taking of bearings during navigation, saying: "the Pilot should adjust his needle to Polaris" ${ }^{36}$ ), waiting for the moment at which the "guardians" or "wheels" ( $\beta$ and $\gamma$ Ursae Minoris.) are northeast and southwest of Polaris, because the latter is then in the meridian. Chapter VI describes how the direction of the needle can be tested by taking two bearings of the sun at equal altitudes, the shadow cast on the card by a style being read before and after noon, when the shadow has the same length. However, this is a method for use on land, to find whether the instrument has been properly made, not for determining the variation of the compass at sea. Medina did not believe in the existence of variation, and thus he made no contribution to the development of this nautical subject.

Zamorano ${ }^{37}$ ) (Chapter XVIII) also teaches the observation of the Pole Star, but he calls the method "uncertain" (ocasionada a error, says the Spanish text). In addition his book contains the above-mentioned testing method. But he presents a new method for the measurement of the variation of the compass at sea and on land, viz. taking a bearing of the sun at sunrise and at sunset. At the end of his book he depicts a simple instrument, by means of which the point of sunrise or sunset in the horizon is found graphically, the declination and the latitude being known. This instrument therefore furnished the solution of the problem, which is essentially one of spherical trigonometry. With one instead of two observations the desired objective was now reached. It was the Englishman Thomas Harriot (1560-1621) ${ }^{38}$ ) who afterwards compiled for this purpose a table of ampli-
(Continuation of note 34)
Libro de las longitudines y manera que hasta agora se ha tenido en el arte de navegar.
This treatise, which he dedicated to Philip II, has been preserved in manuscript at Madrid. The year of its appearance is not recorded, but this cannot be prior to 1536, since he calls himself cosmografo mayor of the king. In 1921 it was published.
He devotes a good deal of space to one of the numerous methods for the determination of longitude discussed by him, viz. to that by means of the northeasting and northwesting of the compass needle. In this context the same instrument as that of Faleiro is described, with the only difference that here a central shadow pin is mentioned. The meridian and the magnetic declination are determined by observation of the sun in the forenoon and the afternoon, at equal altitudes. The inventor of this instrument is reported to be Felipe Guillen, dispenser and inhabitant of Seville, an intelligent and inventive man, who enlisted in the Portuguese navy in 1525. In the treatise the instrument is called "muy comun en Portugal". Although Guillen is looked upon as the inventor, by Al. de Santa Cruz, it is much more probable that it is of Portuguese origin.
A description of the construction and the use of the instrument, equipped with a vertical central shadow pin, is also to be found in Nunes, Tratado da Esphera, 1537 (p. 141) (See the facsimile edition of this book by J. Bensaude, Berne/Munich 1915). Also in: Hellmann, Rara magnetica, and in: Terrestrial Magnetism and Atmospheric Electricity, 1943-1945. Harradon, Some carly contributions to the history of geomagnetism.
${ }^{25}$ ) Pedro de Medina, Arte de navegar. Valladolid 1545. Book 6, Chapter III, p. 83 and Chapter VI, p. 86.
${ }^{36}$ ) "El piloto para marcar sus agujas mira el estrella del norte para las marcar por ella. . .." ( marcar $=$ to adjust).
${ }^{37}$ ) Rodrigo Zamorano, Compendio de la arte de navegar. Seville 1581. Reprints in 1582 , 1586; 1588, 1591, 1596. Dutch translation in 1598 . English translation by Edward Wright, included in his work Certaine Errors in Navigation, 2nd edition of 1610, and again in the 3rd edition of 1657 . The numerous editions and translations indicate the wide diffusion of this book.
${ }^{88}$ ) E. G. R. Taylor, The Mathematical Practitioners of Tudor and Stuart England. Cambridge 1954, pp. 182 and 333.
tudes for every degree of declination of the sun and for every degree of latitude up to $54^{\circ} 39$ ).

A book widely used and valued in England in the last decades of the sixteenth century was the textbook of William Bourne entitled A Regiment for the Sea, which first appeared in $15744^{40}$ ). A Dutch translation, under the title of $D e$ Const der zee-vaerdt, was published at Amsterdam in 1594, and again in 1599. For the determination of the variation of the compass at sea the author gives five methods, viz. observation in the horizon at sunrise and sunset and taking the mean of the readings, taking a bearing of the sun before and after noon at equal altitudes, ditto at noon, when it is in the meridian, two observations of a star, and finally taking a bearing of Polaris. Observation of the moon is stated to be inadvisable.

With the exception of Faleiro, the authors hitherto cited do not say anything about the use of an instrument specially fitted for taking observations on board. It thus has to be assumed that the observation was taken with an ordinary mariner's compass of the type that was being used to steer by, and that the shadow cast on the card by a vertically suspended string or a vertical pin in the middle of the glass cover indicated the azimuthal direction of the sun.

An instrument specially constructed for the purpose, i.e. a true azimuth compass, is first found in William Borough (1537-1598), who during his seafaring years studied the variation of the compass-needle in order to make possible accurate navigation. About this subject he wrote an important treatise 41 ), which he


Instrument for the measurement of the variation after William Borough (See-note 41)

[^82]regarded as a supplement to the work of Robert Norman. In the present context attention is drawn only to two very simple instruments with the aid of which it was possible to take a bearing and which are illustrated and described in the treatise.

As shown by Fig. 2, the first consists of a piece of board, on which has been fixed a round box, on the bottom of which a wind-rose is marked. Mounted in the centre of the latter is the pivot on which the magnetic needle turns. On this piece of board has been mounted a vertical style on which a line has been drawn. A second line has been made on the piece of board, from the foot of the first line and through the centre of the card. This is the centre line of the instrument. A string has been stretched from the top of the style to the end of the line on the piece of board. In order to enable the observation to be taken, the piece of board was put on a horizontal table and turned until the shadow of the string fell on the line through the centre of the card and at the same time covered the line on the vertical style. On the card the position of the needle is read, the angle between the needle and the azimuthal direction of the sun thus having been measured.

Because in Borough's opinion "imperfections" still attached to this instrument, he designed another of improved construction (Fig. 3). The needle is contained

## A new Inflrament for the Variation.



Fig. 3
Improved version for Borough's Instrument (see note 41)
in a narrow box, in consequence of which only small deflections are possible. The instrument always has to be turned until the needle coincides with the zero line of the graduation. In the illustration the instrument has been folded out into the plane of the drawing. It can be seen that it consisted of a horizontal lath (alidade), mounted to turn on a pivot in the centre of the graduation, and of a vertical lath fastened on the first. On both a mark had been made and the ends were joined by a string. In the horizontal lath, above the marks of the graduation, there was an opening, through which the position of the lath could be read.


Navigator, taking a bearing of the sun (Stradanus, about 1600, see note 42)

This adjustable azimuth compass may no doubt be called a considerable improvement and an invention.

When the observation was to be taken, the instrument was put on a horizontal surface or held horizontal in the hand and was turned in the right direction by the setting of the needle to the zero line of the graduation. The alidade was then turned until the shadow of the string fell on the lines of the two laths, upon which the position of the alidade was read on the graduation, and thus the angle between the needle and the azimuthal direction of the sun had been measured. It is to be noted that when the instrument was used on board a ship moving in all sorts of directions, by a movement of the hand the piece of board had to be given the position in which the prescribed adjustment of the needle was maintained. The observer thus was faced with the far from easy task of seeking two adjustments at the same time. In this respect the new azimuth compass of Borough was inferior to the first-mentioned construction, for in that case only the base of the instrument had to be given the right direction.

It is a fortunate circumstance that a fine print has been preserved, which illustrates a navigator who is taking a bearing of the sun. It occurs in a book of prints entitled Nova reperta, published at Antwerp about 160042). The latest inventions known at the time are illustrated. This print, reproduced on the opposite page concerns the system of determining longitude from the declination of the magnetic needle. The useful application is ascribed to Plancius. A particularly heavy ship is shown. Four relatively small, bulging sails are spread. They seem to be drawing well, but curiously enough the sheets are not taut and have the same elegant curve as the sails. Considering the appearance of the sails the ship must be running, whereas the direction in which the flags are fluttering shows that the wind is approximately ahead instead of aft. The anchor, the flukes and the stock of which lie in one and the same plane instead of being at right angles to one another, is unfit for use in this way. The artist of the time therefore appears to have proceeded very freely indeed. We have to interpret his print with the greatest caution.

On the raised quarterdeck there is a small table, covered with a cloth, at which the navigator is sitting on a seat. The compass is in front of him on the table. The bowl is a round box. Fixed on its edge is the azimuth quadrant, which consists of a small vertical style and a quarter circle. It appears not to be adjustable, nor has it got an alidade, but perhaps a sight could move along the circumference of the quarter circle, by which means it may have been possible to determine roughly the altitude of the sun. The quadrant is directed towards the sun, a position which the observer must have obtained by turning the box. If we rely upon the print in this respect, we may therefore conclude that this instrument was directed and manipulated like the first azimuth compass of Borough, but that the non-adjustable quarter circle, probably with a sight, is a new addition.

An extremely important stride forward in the system of "taking a bearing of a heavenly body" is due to the Rev. William Barlow (1544-1625), a son of the bishop of Chichester, who was greatly interested in navigation and engaged in investigations on magnetism. His book The Navigator's Supply (1597) contains an illustration of the "compasse of variation" designed by him and constructed by the instrument-maker Charles Whitwell. It may be described as follows.

[^83]In a square wooden box the round metal compass bowl is suspended in gimbals. The card is divided into full points and provided with a beautiful fleur-delys for the north point, as was the custom in those days. An azimuth instrument similar to the present-day cross bar sight is adapted to turn on a pivot in the centre of the glass cover. Hinges are shown at the foot of both sights. Both could thus be placed in the horizontal position when the box had to be closed with the sliding lid. Against the inside of the bowl there was a graduation. The position of the azimuth instrument as well as that of the north point of the compass card had to be read on this graduation if the angle between the needle and the azimuthal direction of the heavenly body observed was to be found. Although the use of gimbals and of a "thread and sights" may be looked upon as two important strides forward in the development of the azimuth compass, the fact that two readings had to be made simultaneously on a moving ship - with the card pivoting relative to the graduation and the azimuth instrument too, because this was moved by hand - formed a great inconvenience still attaching to this instrument.

In France Jean de Séville, dit le Soucy, a medical practitioner and mathematician at Rouen, in his Compost manuel 43), a book written in particular with a view to the determination of longitude, gave an unfortunately obscure description of a compass with which the variation could be measured. There is no indication that this book may have been known to the Dutch at that time, nor that any other French book may have affected their knowledge concerning the observation of the variation of the compass.

Let us now see what information was available in Holland at that time.
Since 1580 Coignet's Nieuwe Onderwijsinghe, appended to the Dutch translation of Medina, was no doubt the best source a seaman could use if he wanted to learn more about deep-sea navigation. It was a useful textbook for him, to be preferred to Medina in view of its simplicity, the clear language in which it was written, and above all things because it was adapted entirely to the practice of navigation. Coignet avoids long digressions about the variation of the compass, "for this would appear useless to mariners", and he is brief and to the point in giving his opinion, which agrees with that of experienced seamen. This opinion is the following. It is necessary to use on board a compass the needle of which was set under the same angle with the north and south line of the card as was the case in the compass used by the maker of the chart which the navigator consulted at sea. "Thus you will not err". Experience had proved the necessity of this. It was of greater value than the enunciations of science, "since the matter at sea cannot so far be easily stated in a general rule".

We thus find that the Dutch textbook does mention the deviation of the com-pass-needle as a fact, but that deliberately little is said about this matter and the determination of the amount of the variation is not discussed. Of course the observations of the variation taken during the first voyage to the Indies, the data collected on the northern voyages of Heemskerck and Barents - to mention a few important sources - bear witness to the fact that there were pioneers who had full command of the subject. With regard to the rank and file of mariners this could not be said, since most of them had gained practical experience at sea

[^84]and had not learned the art of navigation from a book. The views held by many of them are revealed by Jan Huychen van Linschoten ${ }^{44}$ ), when he writes "that some masters think it is not necessary to know how much the northeasterly or northwesterly variation of the compass amounts to, giving as their reason that our ancestors were unacquainted with the compass and nevertheless drew charts of the coasts". Upon which the author gives as his opinion "that this may indeed be excused in some navigations, but in most long voyages it is highly necessary to know the northeasting and northwesting".

Considering the available information and the prevailing views in Holland, Stevin in compiling his Haven-Finding Art must have been convinced of the necessity of including the method of determining the variation in addition to his own theory. Just as in each case, when entering a special field of knowledge, he acquainted himself with the progress of the science concerned, he must here - not finding the source in his own country - have turned his eyes towards other countries. It is beyond doubt that he knew the works of Zamorano and Bourne, either in the original or in the Dutch translation. And although no translation exists of Borough's Discourse of the Variation of the Cumpas, this treatise, which was printed three times before 1599 , must have been so widely known to those who studied the magnetism of the earth that neither its existence nor its contents can have escaped Stevin's notice. Nor does he mention in his text anything in this field beyond what was known from the said sixteenth-century authors.

But when he describes the azimuth compass of Reynier Pietersz to his readers, he gives something else than Borough and Barlow had found and described. This is an invention due to a compatriot of his, and we see how Stevin makes use of an instrument which at that time possessed the best properties with a view to its use in practice ${ }^{45}$ ).

[^85]
## b. REYNIER PIETERSZ AND HIS "GOLDEN COMPASS".

Reynier Pietersz, as Stevin calls him, or Reynier Pieter van Twisch 46), as his name appears in various resolutions, is known to have followed the sea for many years, in the service of shipowners at Hoorn, among others. In 1595 he is referred to as "pilot, living at. Hoorn", in 1598 as "engineer". At this town he died in 1613. The Chronicle of Hoorn 47) speaks, more than a century after his death, in the highest terms of this citizen, "a man greatly skilled in navigation". In the entry for 1598 the reason of his fame is given. In fact, he had "practised an exceptional skill in measuring the longitude, as simply as the southern and the northern latitude are commonly done". According to these words therefore he made the long-sought determination of longitude as simple as the determination of latitude, which had been known for several centuries. The solution was effected with the aid of an instrument which the inventor called the "Golden Compass". The brief description of it states "that it floated 48) and thus always placed itself horizontal, in order to be able to use it in ships which list badly at sea or are tossed in other ways". The chronicler describes the process of taking the observation as follows: 'the reading took place by means of the light of the sun, which fell through a certain sight on to the graduation marked around, and this indicated exactly, by means of the deviation of the needle from the true meridian, how far one was to the east or to the west'.

From the fact that his inventions are mentioned in various resolutions it appears that the determination of the variation of the compass occupied his mind very intensively. We will now give some details.

On 12th July 1595 the States of Holland and West Frisia granted him letters patent on an invention of nautical instruments, which, "being useful to general navigation", he wanted "to benefit others as well" ${ }^{49}$ ). The reference
(Continuation of note 45)
fact that the whole fleet was lost in this year". Only three such statements will be cited here.

On page 5 verso a problem involving the determination of longitude by means of the moon is discussed, which is put at May 1, 1607. Who was likely to do this in 1585 ?

On page 3 verso of the "address, to the reader" reference is made to the 8th chapter of the book which "el padre Clavio" wrote about sundials. Chr. Clavius, a well-known Jesuit father, who died at Rome in 1612, wrote:

Gnomonices libri octo, in quibus non solum horologiorum solarium. . . .", which appeared at Rome in 1602.

There are several references to a book by Joan Garcia de Cespedes, Regimiento de marear. This name is not known among those of nautical writers. A name that is known is that of Andres Garcia de Cespedes, whose book Regimiento de navegacion appeared in 1606. No doubt it is the latter book which is meant. It can safely be said that I 585 is not the year in which Riaño's booklet appeared. It will probably have to be dated in 1607 .

It is quite certain that the booklet has to be dated after the invention of the azimuth compass by Reynier Pietersz. It need not therefore be cited in connection with the development of the azimuth compass before Stevin's day.
${ }^{46}$ ) The name is also spelled Van 't Wisch, Twisck, and Twisk. Twisk is the name of a village in the neighbourhood of Medemblik, in the province of North Holland.
${ }^{47}$ Th. Velius, Chronijk van Hoorn, 4th edition, annotated by S. Centen, 1740, p. 501.
${ }^{68}$. I.e. it was suspended horizontally.
${ }^{49}$ ) G. Doorman, Octrooien 1940, p. 281. Resolutien Staten van Holland en West-Friesland. 12 th July ${ }^{1595}$, fol. 278.
is to the determination of latitude, of longitude, and of the variation of the compass in remote regions, "hitherto never found or revealed so fully by anyone".

The same inventions are spoken of in somewhat clearer language in the letters patent granted to the inventor by the States General on 8th March 1597 for a period of twelve years ${ }^{50}$ ). This document speaks of "two new instruments, invented" and already made by Reynier Pietersz, "being highly useful aids and very essential to navigation, the one to be used in order to learn, by measurement of the sun, the deviation of the needle and also to measure the longitude, east and west, i.e. how far one is removed from every meridian". The other must have been an instrument for measuring the altitudes of the sun or a star, but not with the aid of the visible horizon, as takes place in a fog or in observations on land.

In the document it is stated that a drawing accompanied it. Unfortunately this drawing has not been preserved, so that we lack further data about the appearance and the construction of these instruments, which are explicitly called "new inventions".

A year later he addressed to the States of Holland and West Frisia a request for a subvention in connection with the expense incurred in the construction of the two instruments just mentioned; upon which on 13th March 1598 51) the States requested Jos. Scaliger, Snellius, Ludolf van Ceulen, and Stevin, together with the deputies of Amsterdam, Rotterdam, Hoorn, and Enkhuizen, to examine them and to report on them. The fact that the judgment of these learned and still famous men was sought shows very clearly that the inventions of Reynier Pietersz were considered important and that great expectations were entertained of them. Perhaps it was due to this that Stevin became acquainted with Reynier Pietersz and his invention.

In 1611 the latter applied once more to the States,' asking them for a subvention 52).

It is not known on what lines the learned committee made their report. The Chronicle of Hoorn does contain a judgment based on a practical examination of the "Golden Compass", which reads as follows: it was ." thus put to the test by several experienced pilots in many places, both to the east and to the west, even on the coasts of Guinea and the East and West Indies, and was everywhere found correct and without error, to the surprise of those who undertook the tests".

Although the authentic drawing, which might have provided a conclusive confirmation, is lacking, it is beyond doubt that the "Golden Compass" of Reynier Pietersz as described in the Chronicle of Hoorn and the cited resolutions is the same as that which Stevin illustrates, describes, and recommends in The Haven-Finding Art. On. a great many points this invention of his compatriot brought improvements of the foreign instruments with which he may have been acquainted.

[^86]Indeed, Borough's azimuth compass consisted of a small piece of board which had to be put horizontally on a table. It was thus suitable for use on land, but on a moving and rolling sailing-vessel no instrument can be mounted so as to be permanently horizontal, nor can such an adjustment be ensured by holding it in the hand. For the "Golden Compass" cardanic suspension was used. For a steering compass this feature was not novel. What was novel was its application in an azimuth compass, so that the horizontal position was ensured. Stevin was thus justified in speaking of an invention.

A second feature, which appears neither from the cited letters patent nor from The Haven-Finding Art, was the following. The graduation was marked on the inside of the bowl. It was to the zero point of this graduation that the needle had to be set. In consequence it was necessary during the taking of the observation to move the bowl in the direction contrary to that of the ship's movement. At the same time the quadrant had to be directed towards the sun. But as soon as the right direction had been given to the quadrant, the position of the needle as well as of the quadrant was maintained by the mere movement and readjustment of the box. It can readily be understood that this method of making the cardanically suspended bowl rotatable produced more accurate results than those that could be obtained with Borough's instrument.

The revolving quadrant, furnished with an alidade, may also be called an improvement, but it is especially the method of adjustment to which this remark applies. This method appears from the description found in the Chronicle of Hoorn, from which it may be understood that the sunlight falling through the sights cast a spot of light on the graduation along the circumference of the bowl. One observer could thus manipulate the instrument and bring about the two desired adjustments simultaneously. For this he merely had to look from above at the circumference of the bowl and at the needle.
Briefly, with the "Golden Compass" of Reynier Pietersz Stevin no doubt presented the most efficient instrument which was to be found in those days and which moreover satisfied the demands made by his system of "haven-finding". And yet in practice its success seems to have been scanty, at least if we are to believe the Hoorn chronicler, who continues his favourable report on the trial of the instrument with the words: 'I really do not know what is the cause that it is not used any further, but I think the age and the lack of means of the inventor are not among the least of the impediments and obstructions'.

These suppositions on the part of Velius were probably wrong. The reason will rather have to be sought in the technical sector. Indeed, although the instrument may have been suitable for use as an azimuth compass, it naturally failed and disappointed as a means for the determination of longitude at sea. There is another point as well. The necessity of constantly moving and readjusting the whole bowl was a drawback of which the observer must have been aware. Improvement on this point was quite possible. In fact, such movement is superfluous with an azimuth compass equipped not only with a single magnetic needle but also with an ordinary compass card, while the position given by the bearing: instrument is read on a graduation along the circumference of the card. In that case it is only the azimuth quadrant which is constantly directed towards the sun by being turned against the movement of the ship. The reading on the card does not change in consequence of the movements of the ship. A compass of this type, which also amounted to a considerable improvement on that of Barlow
again, must have supplanted the "Golden Compass" of Reynier Pietersz as well as that of Barlow very readily indeed.

Finally the reader should realize what it must have been like to work with such compasses, in those days when the "compass-maker" was an artisan rather than an instrument-maker, hardly any knowledge existed as to the most suitable materials, and the requirements which a properly working mariner's compass was to satisfy had not yet been defined, viz. steadiness, sensitivity, light weight, and powerful directive force, while finally science had not yet prescribed the means which led to the satisfaction of these requirements. At that time the compass card was heavy. The cap in the card was imperfectly constructed. The pivot on which the card turned was not made of the most suitable material, nor was its point sufficiently sharp. The friction between pivot and cap accordingly was considerable. The needle, which had been touched with loadstone, was weakly magnetized, so that the magnetic moment was small. Owing to these causes the violent movements to which a sailing-vessel is liable dragged along the card and made it unsteady. In spite of the warning to be found in the textbooks, the fact that the bowl was not air-tight and the glass cover was insufficiently sealed resulted in air being blown in and pressure being exerted on the card and the needle, which caused deviations. The card oscillated and did not easily return to the original position. This applied all the more in high latitudes, where the directive force is less than in low latitudes. Steering on such a compass as well as reading a bearing must have been a difficult task, apt to involve considerable inaccuracy. Under difficult conditions it may even have become impossible 53).

Here again it is evident why the task of the navigator in those days was arduous and extremely dangerous. Small wonder therefore that many of them, in spite of eminent seamanship, fell victims to the primitive level of navigation. Its development, both theoretical and technical, was ardently wished for, but it was not realized until the second half of the eighteenth century, when great possibilities were opened up in the matter of the determination of longitude and latitude at sea. The octant, the chronometer, the determination of longitude by lunar distances, the nautical almanac, the method of determining latitude invented by Cornelis Douwes, increased mathematical knowledge, etc., brought the solution. Those who paved the way for all this were good servants of their country.

[^87]
## § 5

## THE DETERMINATION OF LONGITUDE AT SEA BY MEANS OF THE VARIATION OF THE COMPASS

## BRIEF SUMMARY

## a. THE EARLIEST VIEWS.

As an introduction to this chapter, it may be recalled without a detailed discussion that the Chinese literature of the first centuries of the Christian era refers to the attraction of an iron needle by a loadstone and to the directive force of a magnetized needle. From a Chinese work dating from between 1111 and 1117 Bal mer 54) cites the mention of the fact that the magnetic needle does not point exactly in the direction north-south, but always shows a small declination to the west. From this it is evident that the variation had been discovered at that time. It was attributed to errors in workmanship and in the manipulation of the magnet 55).

It has been proved that even before 1269 the variation was recognized as a real phenomenon in Europe. Its amount was measured, as is evident from Italian portolani. On a sun-dial made at Nuremberg in 1451, which is equipped with a compass, the magnetic north and south line is shown ${ }^{56}$ ).

What was the state of affairs at sea? It must be considered impossible that the Portuguese mariners on their voyages of exploration of the fifteenth century should not have watched the behaviour of their compass intently. A mariner pioneering in unfamiliar waters, who has to consider the direction in which he is sailing - if only because at some future time he must be able to return to his home port - cannot be expected to do otherwise. What means of verification was at his disposal? It was nature herself which furnished him with it, as one among the numerous valuable clues for which the seaman of those days used to keep a sharp lookout 57) and which he interpreted with much greater ease than the present-day navigator, who has become alienated from those signs because so many technical aids are at his disposal. The seaman of those days was able to compare the uncertain direction shown by the needle with the certain direction which the Pole Star furnished. Thus he was induced to take his bearings from the Pole Star, a method which was recorded by Medina in his Arte de navegar of
${ }^{54}$ ) H. Balmer, Beiträge zuir Geschichte der Erkenntnis des Erdmagnetismus. Aarau 1956, p. 36.
${ }^{\text {s5 }}$ ) For further details reference may be made to: E. O. von Lippmann, Die Geschichte der Magnetnadel bis zur Erfindung des Kompasses (gegen 1300). Quellen und Studien zur Geschichte der Naturwissenschaften und der Medizin, Band 3, Heft I (Berlin 1932).
${ }^{\text {se }}$ ) Comptes rendus du Congrès Int. de Géographie. Amsterdam 1938, Tome II (Géographie historique), p. 55: H. Winter, Die Erkenntnis der magnetischen Missweisung und ihr Einfluss auf die Kartographie.
${ }^{57}$ ) These valuable clues include: the discoloration of the sea and the change in appearance of the waves as the ship approaches shallows, the change in the temperature of the sea-water, plants or weeds floating about the ship, clouds and lightning above remote land, the scent of vegetation, which can be detected at a great distance, the booming of the surf on the shore, which can be heard from afar, birds of particular species and in certain numbers flying round the ship, etc.
$1545{ }^{58}$ ). During such operations the fact that there was a constant declination to one side - i.e. the variation - must undoubtedly have struck these mariners.

The first to record such an observation in his logbook was Columbus. The fact that he took bearings from the Pole Star on his first outward voyage on 13th, 17th, and 30th September 1492 in the early and the latter part of the night is famous in the history of navigation and has been repeatedly referred to. Let us follow the conclusions reached by Franco after an exhaustive study of these observations and of the later reports of Columbus in this field ${ }^{59}$ ).

The three observations convinced the admiral that the observed difference in azimuth pointed to a movement of the Pole Star about the pole. The observations do not create the impression of being a nautical discovery. Columbus on his voyage saw the variation change in value and he was the first to observe the passage from easterly to westerly variation. He knew that in different places of the world the declination of the magnetic needle had certain values and he was convinced that these values were constant for each place. He had a dim suspicion of a relation between the change of longitude and the change in the variation of the compass.

The fact that seamen exchanged their observations and findings gave rise to a manuscript written by Joao de Lisboa and dating back to 1514. This is now the oldest known document that contains a treatise about the declination of the magnetic needle from the meridian and about the determination of longitude by means of this declination. The manuscript in question formed part of the library of the Marquis De Castello Melhor. Because it was reprinted in 1903 it became accessible and known. It was included in the Livro de Marinharia de Joao de Lisboa ${ }^{60}$ ). The chapter bears the title: "Here begins the treatise about the com-pass-needle made by Joao de Lisboa in the year 1514, through which one can know from the declination of the magnetic needle - wherever one may be how far one is away from the true meridian".

The treatise is subdivided into ten short sections and opens with a paragraph in which the Genoese and French compasses are discussed, the needles of which were attached to the card at an angle equal to the local declination relative to its north and south line.

The first section describes how a compass has to be made if it is to be suitable for the purpose. The needle must be as large as possible and must be attached to the card in such a way that it coincides with the north and south line, not deviating from it. The card must be large and the space between the card and the inside of the bowl must be narrow, in order to make accurate readings possible. The second section describes the bowl, on the inside of which a division into 32 points was marked. The third section reveals that a bearing instrument was fixed on the bowl and warns the navigator that the bowl has to be horizontal when he takes a bearing. The description is not sufficiently clear to give an idea of the bearing instrument.

The fourth section teaches in a clear way how the true north is found by an observation of Polaris. The observation has to be taken when the "guardians" -

[^88]i.e. the stars $\beta$ and $\gamma$ of the Little. Bear - are northeast or southwest of the Pole Star. In the former case the Pole Star is in the meridian, beneath the celestial pole, in the latter it is in the meridian $31 / 2^{\circ}$ above the celestial pole. The position of the compass-needle relative to the bearing instrument is the declination of the needle. This observation could also be taken with other stars besides the "guardians".

South of the equator the observation could be taken in a similar way by reference to the Southern Cross, as is taught in the fifth section. This constellation was shown in a star map made by the author.

The next section contains some directions concerning the accurate taking of the observation. The seventh section is a very important one. It says that the meridian on which the needle points exactly towards the north pole of the world, i.e. the one on which the variation of the compass is nil, passes through the island of Santa Maria and towards the island of San Miguel of the Azores, thus dividing the world into two equal parts. The meridian passes via the Cape Verde Islands to the island of St. Vincent, said meridian lying between the Cape of Good Hope and Cape Frio. The author had invariably found that on this meridian the needle pointed in the direction of the terrestrial pole. He had never met with any other meridian on which the same phenomenon occurred.

Finally the tenth section dicusses the relation between the declination of the compass-needle and terrestrial longitude. This passage is not easy to understand, but its purport is as follows. When one moves between latitudes $30^{\circ}$ and $45^{\circ}$ round the earth, starting from the prime meridian, for every 250 leguas the variation will be found to increase by one point, to a maximum of four points to the east or to the west, in longitude $90^{\circ} \mathrm{E}$. and W . It then decreases again to zero in longitude $180^{\circ}$. In this way it was possible to compute the longitude of any place from the variation observed in that place. "With the greatest ease" are the words used elsewhere.

Again, during the first circumnavigation of the world (1519-1522), a Spanish undertaking under the command of the Portuguese Magellan, certain particulars were noted in the direction indicated by the needle in various places, which the Italian Ant. Pigafetta mentions in the journal he kept during the voyage. Pigafetta was of the opinion that the variation of the compass furnished a convenient means of finding one's distance from the prime meridian. He stated that the method had already been proved by experience ${ }^{61}$ ).

In his textbook Faleiro (see note 33) devotes a chapter to the variation of the

[^89]compass-needle (Chapter VIII, p. 79). He states the problem clearly and writes: '"The north-easting of the needles causes navigators many doubts, from which they may be freed by knowing precisely how much the needles northeast or northwest. In addition to this, other advantages will follow, such as knowing exactly in what direction they are sailing. Knowing this, they will follow exactly their courses without error or wandering and also it will help much to a knowledge of the longitude in which they are navigating". He describes the relation between longitude and variation as follows.

On the meridian through Corvo the variation is nil, apart from small discrepancies to be acccounted for as being due to differences between the compasses. When the ship sails westward, the needle will get westerly variation; when she sails eastward, the variation will be easterly, while the variation increases as the ship moves further away. Maximum values are reached at a difference of longitude of $90^{\circ}$. After this the variation decreases again to the meridian of $180^{\circ}$ from Corvo, where the variation is nil again. The principle accordingly is the same as that described by Joao de Lisboa in 1514. It thus appears that this knowledge, gained at sea, mentioned by a practical man, subsequently elucidated in a scientific manuscript, now benefits navigation thanks to a nautical textbook. This process took more than fifty years.

Let us now proceed - remaining in the field of Portuguese science - to discuss the learned mathematican and astronomer Pedro. Nunez (1492-1577), royal cosmographer and professor in the university of Coimbra. His work includes a treatise entitled

Tratado em defensam da carta de marear, 1537 62),
which he dedicated to the Infante Dom Luys, who was his pupil. The determination of the magnetic declination with the aid of the instrument known to us is clearly explained ( p .141 ). The method of taking observations at two equal altitudes of the sun is followed. Nunez writes (p. 140) that he is convinced of the existence of the variation of the compass, but wonders what is its amount. He had no confidence in the navigators, who gave different values for the same place, sometimes greater, sometimes smaller. In the absence of data he was unable to study the possible relation between the variation of the compass and longitude. He aspired to carry out an inquiry that would benefit the development of the nautical chart and of navigation. This learned theoretician and mathematician, whose investigations and writings were of fundamental importance for the evolution of navigation, calls in the aid of practice. This aid was to be given presently by one of his pupils, Joao de Castro (1500-1548), who in 1538 set sail for Goa in India as master of the ship Gryfo in a fleet under the command of his uncle Garcia de Noronha. His training and scientific bent induced Castro to observe the variation of the compass very carefully on many occasions. In the modern edition of his logbook 63) a list is given of 43 variations obtained during the voyage from Lisbon to Goa, along the coast of India and in the Red Sea. On these data he bases his own conclusion, viz. that it is certain from these observations that there is no relation between the variation of the compass and the longitude of a place. The fact that-

[^90]the variation could be different for places situated on the same meridian puzzles him, "from which we are justified in supposing that such variations are caused by particular and inherent mysteries concealed by mighty Nature in her vast and secret workshops". It was due to Castro's conclusion that in Portugal an important phase in the development of scientific navigation was closed.

In other countries the problem continued to occupy the minds of scholars as well as seamen. Naturally the question also used to be asked as to what caused the directive force of the needle. Towards what point did it point? How did the declination arise?

The point towards which the needle pointed was sought outside the earth by some scholars. We are not going into this question now, for it falls outside the scope of this introduction.

It was.long thought that the needle ought to point towards the geographical pole, and that, if it did not, this was due to poor workmanship. Wishing to remedy this, Bartolomeo Crescentio 64) tried to give the needle a special shape, and Fournier ${ }^{65}$ ) asserts that he had put a needle of this type to the test at Paris and La Rochelle, in order to verify whether it really pointed to the pole.

The suspicion about the existence of a magnetic mountain on the earth dates far back to antiquity and seems to have arisen wherever the mysterious tendency of the magnetic needle to point in a particular direction was discovered. In Europe as. well as among the Arabs (Arabian Nights' Entertainménts) this mountain struck terror in the hearts of seamen, and the loss of innumerable ships was attributed to it. Balmer 66) quotes a thirteenth-century Italian poet who spoke about a magnetic moutain 67). The map of the world of Andreas Walsperger, of 1448, bears a legend in the north to the effect that no navigation takes place in that big sea because of the magnets. A warning against the great danger of magnetic attraction is sounded in a legend on the map of the world of Ruysch (Rome, 1508), north of Iceland: "ships having iron in them cannot return" 68). The existence of such a mountain in the extreme north was also assumed by the great geographer and cartographer from the Southern Netherlands, Gerhard Mercator (15121594). In his chapter devoted to magnetism and marine compasses Coignet ${ }^{69}$ ) clearly says that Mercator at $16^{\circ} 30^{\prime}$ from the north pole "puts a very prodigious rock and mine of loadstone, towards which all other loadstones in the whole world are attracted". There is no longer any reference to its being a danger to navigation. It is now only the loadstones and the compasses which are attracted by this rock.

[^91]
## b. MERCATOR (1512-1594)

Mercator, being convinced that the magnetic needle - irrespective of the place on the earth where it was put up - was drawn in the direction of the magnetic pole, thus regarded the magnetic meridian of a place as a great circle passsing through that pole. This pole was the point of intersection of all magnetic meridians, and its position on the earth might be found if for two points the positions of which were known the variation had been determined by measurements. In a letter of 1546 to Ant. Perrenot, Bishop of Arras, Mercator writes that near Walcheren the variation was $9^{\circ}$ east and at Danzig presumably $14^{\circ}$ east 70 ). For the point of intersection of the magnetic meridians he had found a point in latitude $79^{\circ} \mathrm{N}$. The prime meridian had thus at the same time become known. With the aid of further data he afterwards obtained improved results. The system was to the effect that for any place on the earth the variation could be calculated and that conversely the longitude could be found from the amount of the variation.

Mercator's famous chart of the world, destined for navigation and dating from $1569{ }^{71}$ ), illustrates his views at that moment. The magnetic pole is indicated in the top lefthand corner in the form of a steep rock with a mark to show its exact position. It lies on the meridian of longitude $180^{\circ}$ and in latitude $73^{\circ} 30^{\prime} \mathrm{N}$. This meridian passes through the Strait of Anian, which was assumed to connect the Arctic Ocean and the Pacific between Asia and America. Because the chart covers more than 360 degrees of longitude, the 180th degree of longitude appears a second time on the righthand side. On this meridian and in the above-mentioned latitude the same magnetic pole is shown once more, with the following legend: "from sure calculations it is here that lies the magnetic pole and the very perfect magnet, which draws to itself all others, it being assumed that the prime meridian be where I have placed it". Not far from this rock a kind of island is shown, again with a point marked in the middle, the position of which is latitude $77^{\circ} \mathrm{N}$. and longitude $174^{\circ} \mathrm{E}$. A legend states that the magnetic pole will be found in this place if the meridian through the island of Corvo is taken as the magnetic prime meridian.
In an elaborate legend, printed near these poles, Mercator accounts for his procedure, saying that the very capable seaman François van Dieppe states that the magnetic needle points due north on the Cape Verde Islands Sal, Boa Vista, and Mayo. The legend continues: "This is closely supported by those who state that this occurs at Terceira or S. Maria (which are isles of the Azores). Some believe that this is the case at the most westerly of these islands, which is called Corvo. Now, since it is necessary that longitudes of places should, for good reasons, have as origin the meridian which is common to the magnet and the World, in accordance with a great number of testimonies I have drawn the prime meridian through the said Isles of Cape Verde; and as the magnet deviates elsewhere more or less from the pole, there must be a special pole towards which magnets turn in all parts of the world, therefore I have ascertained that this is in reality at the spot where I have placed it by taking account of the magnetic

[^92]declination observed at Ratisbon. But I have likewise calculated the position of this pole with reference to the Isle of Corvo in order that note be taken of the extreme positions between which, according to the extreme positions of the prime meridian, this pole must lie until the observations made by seamen have provided more certain information" 72 ).

In the bottom lefthand corner of the chart of the world there is an inset, viz. of the arctic regions, which could not be shown in the big chart, since the latter was one on Mercator's projection, in which the pole cannot be present. On the north pole of the earth a steep black rock has been marked. The rock on the magnetic pole lying on the meridian through the Cape Verde Islands and the magnetic pole without a rock in longitude $174^{\circ} \mathrm{E}$. on the meridian through Corvo are both shown.

In the chart of the world in two hemispheres, published in $1587{ }^{73}$ ) by Rumoldus Mercator, the latter followed his father's example. On the 180th meridian, being the prime meridian through the Cape Verde Islands, and in latitude $73^{\circ} 30^{\prime} \mathrm{N}$. the magnetic pole is to be found.

After a new edition of the above-mentioned chart of the arctic regions had appeared in 1595, Rumoldus prepared a new edition of it, brought up to date, which is easily recognized because it includes, among other things, "het bebouden buis", - a name calling to mind the wintering of $1596 / 7$ - and names given by Barents to capes on the coast of Novaya Zemlya ${ }^{74}$ ). Rumoldus maintained the four polar islands which his father had imagined, and the two possible positions of the magnetic pole in latitudes $73^{\circ} 30^{\prime}$ and $77^{\circ} \mathrm{N}$. He only altered the longitude of both. For the meridian through the Cape Verde Islands he now gives longitude $178^{\circ} \mathrm{E}$. and for the meridian through Corvo $172^{\circ} \mathrm{E}$., thus a displacement of $2^{\circ} 75$ ).

In the chart of the arctic regions made by Willem Barents ${ }^{76}$ ) and published in 1598 - the year after his death - the polar islands no longer appear, which amounts to an important correction. However, the author still stuck to the "polus magnetis", shown as a tall rock in latitude $74^{\circ} \mathrm{N}$. and lying on the meridian corresponding to that through the Cape Verde Islands in the arctic chart of Mercator.

## c. PLANCIUS (1552-1622)

Plancius entirely followed Mercator in this matter. In the map of the world in two hemispheres which he appended to the Dutch bible published by Laurens Jacobsz he marked the magnetic pole in latitude $74^{\circ} \mathrm{N}$. And when he compiled his big map of the world, dating from 1592 77), it was again the map of his

[^93]learned predecessor which formed his principal source and starting point, though Plancius did not adopt the rete employed by Mercator and made ample use of Portuguese data wherever he found them to be more up to date. Owing to his critical method Plancius gave the best representation of land and sea that was possible at the time.
Just as in Mercator's map, in the top righthand corner the small sketch is to be found of the big, steep rock in the Strait of Anian, which indicates the magnetic pole and which lies in latitude $73^{\circ} 30^{\prime} \mathrm{N}$. and longitude $180^{\circ}$. A legend is added to the effect that it lies on the meridian through the Cape Verde Islands. The prime meridian appears to fall through the island of San Thiago. The other possible position of the magnetic pole, referred to the meridian through Corvo, is to be found in latitude $77^{\circ} \mathrm{N}$. and longitude $173^{\circ} \mathrm{E}$. The legend occurring on Mercator's map of 1569 as to the position of the two poles is repeated verbally, the source being mentioned at the end in the form of the name Ger. Merc. Analogously to Mercator's map we again find in the top lefthand corner the former of these two poles, and in the bottom lefthand corner the inset of the arctic regions.

Finally attention may be drawn to the map of the world by Plancius, engraved by Josua van den Ende and dating from 160478 ). The two magnetic poles are to be found in the corresponding places, and so is Mercator's legend of 1569. with the initials. On the globe of Jacob Florentius van Langren, dating from 1589, the two magnetic poles are marked, with the legend stating that they refer to the meridians through Corvo and the Cape Verde Islands respectively. On the later specimen of this globe, of 1612, the fact that the same legends are used shows that the view concerning the poles was maintained by the author.

The geographers of the early seventeenth century begin to think differently of it. The tide had turned. The map of the world in two hemispheres of Willem Jansz. Blaeu of 160579 ) no longer contains a magnetic mountain, nor does the map of the world on Mercator's projection by Jodocus Hondius of $1608{ }^{80}$ ). The same applies to the latter's map of the world of $1611{ }^{81}$ ). The prime meridian in this map falls through the Cape Verde Islands.

This changed view is accounted for on the wonderful globe of 1613 by Jodocus Hondius Jr. and Adriaan Veen. In the place where the poles used to be marked, the following legend in Latin is to be found 82):
"Gerardus Mercator, and others who followed him in this, had put in this place two magnetic poles, the one referred to the Cape Verde Islands, the other to the islands of Corvo and Flores. However, because there is no cer-

[^94]tainty at all about this and daily experience teaches us otherwise about the declination of the compass needle, we have omitted both."
The theoretical conception of Mercator had been unable to hold its own against the results obtained in practice.

As long as one magnetic pole, lying in line with the meridian through Corvo, continued to be assumed, this involved the consequence that easterly variation was bound to exist east of this meridian up to longitude $180^{\circ}$, and westerly variation in the western hemisphere. Maximum values for the variation had to be found in longitudes $90^{\circ} \mathrm{E}$. and W. This picture had already been sketched in the Livro de Marinharia and later by Faleiro, but with them there was no question in these places of a magnetic pole with the property of attracting the needle. Later on Coignet, in his Nieuwe Onderwijsinghe, expounds very lucidly that all these phenomena must be due to the presence of one magnetic pole: Moreover he shows by means of a drawing that when two places in the northern hemisphere lie on the same meridian, the variation must be greater for the more northerly one than for the other. In order to demonstrate that the whole conception is correct, he concludes by stating that according to "Mercator's rule" the variation at Antwerp will have to be $9^{\circ}$ to the east, and that he had found this value "by experience" 83).
Plancius, who diligently tried to solve the mystery of terrestrial magnetism, must soon have found that the data about the variation collected by him did not fit in with this simple scheme. What can have been the source of these data?

Plancius himself provides the answer to this question in a manuscript written by him, which is now kept in the Public Record Office at The Hague. 84) This manuscript is of the utmost importance to us for three reasons. In the first place because it mentions the author's sources. Further it helps us to understand Plancius' theory concerning the possibility of determining longitude at sea. Finally it appears to be the source of the list of values of the variation, to be found in The Haven-Finding Art, a fact which accounts for Stevin's gratitude towards Plancius.

The manuscript in question contains three treatises, which are entitled:

1. Van de graden der lancte ende bet affmeten der selver door bet Noordoosteren ende Noordwesteren der naelde
(Of the degrees of longitude and the measurement thereof by means of the northeasting and northwesting of the needle):
2. Van de Oost-Indische zeevaert ende baren eygenschappen ende aenmerkingen (Of the navigation to the East Indies and its character, with notes).
3. Naerder verclaringe van de Oost-Indische zeevaert (Further comment on the navigation to the East Indies).

The treatises sub 1 and 2 were drawn up after the return of De Houtman about

[^95]1598, while that sub 3 is of a later date and must have been written after the return of the fleet of Van Neck, in 1599 or 1600 85.).

Before restricting our attention to the contents of the treatise sub 1 - the most important for the present purpose - we may remind the reader that an obvious reaction to the question concerning the origin of Plancius' data would have been to think of Jan Huychen van Linschoten. In fact, in his Reijsghescbrift van de navigatiën der Portugaloysers 86), the guide published at Amsterdam in 1595, which was of inestimable value to all contemporary explorers and seafarers, this author included hundreds of values of the variation. In addition he published a series of values for a number of specified places lying on the route from Portugal to the East Indies 87). This list is more than a mere enumeration of values for particular places. Indeed, with its aid an observed variation gave an indication of the longitude in which the ship was at that moment. Thus we read: if the compass has a northeasterly variation of half a point, "you may know that you are near Cabo de bona Esperança", and if it has a northwesterly variation of $3 / 4$ point, "beware of the Isle of Sant Lourenço, for you will see it presently". Although in our view the way in which the place is indicated is very vague, yet some value has to be attached to this list in the above sense; as appears from the two instances here given as well as from others. Considering the provenance of these data, it is evident that no mention is made of any rule as to the relation between variation and longitude, for the Portuguese had already rejected such a relation some fifty years before.

That Plancius read and knew the writings of Van Linschoten is evident from the criticism uttered by him in his Naerder verclaringe, but he does not mention his name in the treatise written after the return of De Houtman: Van de OostIndische zeevaert. It is thus not certain whether Plancius did or did not make use of the work of Van Linschoten, with whom he sometimes disagreed considerably.

Although a description of the contents of the last-mentioned treatise falls beyond the scope of the present introduction, however valuable it may be in view of the fact that the experiences of Dutch, French, English, and Portuguese seafarers are here set forth for the benefit and instruction of others, one remark has to be made. This treatise contains a considerable number of statements about the amount of the variation in various places, which - just as in the writings of Van Linschoten - were intended by Plancius as aids to navigation. Thus we find the instruction to cross the equator on the outward voyage "at $8^{\circ} 30^{\prime}, 9^{\circ}$, or $9^{\circ} 30^{\prime}$ of increasing northeasting', followed by the advice to pass Cape St. Augustine on the coast of Brazil in a place where the variation was 6 or 7 degrees of increasing northeasting, "then you will be on the right track to sail successfully with God's aid past the shoals of Abrolho". If one acted on this advice, one would be far enough from the coast to be safe with respect to this notorious point. We find the warning: "who pays no attention to the variation of the needle and to the currents will get further from his course than he thinks, as has befallen many people". From these examples it will be sufficiently evident in what respect Plancius considered it important to know these values, and thus also what importance :he

[^96]attached to the observation of the variation on board 88). No reference is made in this passage to any special relation between these values and the longitude at sea.

We will confine ourselves to the treatise mentioned above sub 1 , viz. "of the degrees of longitude", which forms the source from which we may learn to understand the theory of Plancius concerning the relation between the geographical longitude and latitude of a place on the earth and the amount of the variation in that place. His theory forms a unique and interesting page of the chapter in the book of navigation with which we are here concerned, and it has to be discussed before Stevin's work can be assigned its place. It was published under the title of Memorie van Plancius in Vol. XXXII of Werken der Linschoten-Vereeniging 89), but with the omission of three pages at the end. It is precisely these pages whose contents are of the utmost importance for our purpose. The main title mentioned above is followed by the words:
'Extract from the writings of Frederick Houtman, from which it is understood how the ships of Amsterdam on their first voyage to the East Indies took the deviation of the needle of the compass by means of the rising and the setting sun, which can also be measured at all the points and the degrees of the compass and at all hours and minutes of the day."
We will follow the treatise sub 1 , devoted to "the degrees of longitude".
Whilst formerly, on his chart of the world, Plancius had taken over from Mercator the two magnetic poles lying close together and the prime meridians, he has now made his choice and dropped the prime meridian through the Cape Verde Islands. The prime meridian, from which the degrees of longitude are reckoned, is the one through the islands of Flores and Corvo. On this meridian "the needle of the compass points due south and north without any deviation". Plan-" cius now assumes that there are four such meridians on which the variation is nil and which might thus be called agonics. They are those of $0,60,160$, and 260 degrees of longitude - reckoned in the eastward direction - which divide the surface of the earth into four lunes, of which one therefore covers 60 and the other three 100 degrees of longitude each. In the lune from 0 to $60^{\circ}$ the variation is easterly, in the second it is westerly, and thus alternately. In each lune the value increases from zero to a maximum lying on the median meridian of the lune. The maxima thus lie at $30^{\circ}, 110^{\circ}, 210^{\circ}$, and $310^{\circ}$. We read that a point at 17 German miles - i.e. 68 nautical miles - east of Cape Agulhas lies on the meridian of $60^{\circ}$ E.L. and that the island of Hjelmsöy at the North Cape too lies on this meridian. On the meridian of $160^{\circ} \mathrm{E}$.L. - 'or very close to it" lies Canton in China, on that of $260^{\circ}$ the westernmost part of California, on that of $310^{\circ}$ "Nombre de Dios, a famous port in America". This name is still found on the northern coast of Panama, slightly to the east of Colón. Considering the difference of longitude from Corvo, this place may be meant.

[^97]After this outline of the magnetism of the earth Plancius states his sources. This is what he writes:
"The foregoing foundations and grounds are found certain and true by frequent experiences and observations, made with great diligence and skill by many learned men, intelligent masters, and good navigators of Spain, Portugal, France, England, The Netherlands, and other nations in many countries and places of Europe, Asia, Africa, Peruana and Mexicana 90), both south and north of the equator. But of the deviation of the needle in the countries and seas lying between China and Mexico I have not so far been able to get accurate information, confirmed by experience." 91)
These words are followed by the instructions teaching how the longitude is derived from the known amount of the variation in a place whose latitude is given. Although this derivation is obscure to the uninitiated reader, it appears at once that this is a problem of spherical trigonometry. Just as Mercator had done, Plancius assumes a mathematical relation between these quantities, which admits of being expressed by means of this auxiliary science. It is not through calculation, but through measurements in a plane surface that the problem is solved. For this purpose two instruments are employed : The first is the "general astrolabe" (astrolabium catholicum), an instrument which had long been known and widely used to solve problems of spherical trigonometry, and the second is a "longitudefinder" specially designed for this method ${ }^{92}$ ). Only in this way was it possible for Plancius to make the subject accessible and manageable for the seaman of around 1600. In fact, the latter was unable to perform calculations and it was not until the end of the eighteenth century that his accomplishments included a knowledge of spherical trigonometry and its applications.

Mercator formerly had placed the magnetic pole on the continuation of the prime meridian in a latitude determined by calculation, and Plancius had imitated him. Since the latter now, on the ground of observational data, assumed four meridians on which the variation was nil, he could not mark four magnetic poles in a corresponding way, for in that case no variation zero could have occurred on any of the agonics. The term magnetic pole has disappeared from this treatise, although the concept has not been rejected (in so many words).

The treatise shows that on the ground of the observational data at his disposal - and undoubtedly after endless patient trials - Plancius arrived at a thesis reading as follows:
${ }^{\circ 0}$ ) Names used at that time for North and South America: Mexicanae and Peruvianae Pars.
${ }^{91}$ ) Balmer, p. 129, points out that the learned Spanish Jesuit Acosta, basing himself on the reports of Portuguese seafarers, mentions four lines of no variation. The reference is to his Historia natural y moral de las Indias, Book I, Chapter 17.
José de Acosta (1539-1600) was a missionary in Peru for many years. His aforesaid book, which appeared at Seville in 1590 , was very soon translated into six languages, the Dutch version, Historie naturael ende morael van de Westersche Indiën, being published at Enkhuizen in 1598 . The translator was Jan Huychen van Linschoten, who laid hands on the book as early as 1594 and who thought so highly of its contents that he was no longer satisfied with his own work.

In the passage in question (p. 37) it is said that "an experienced Portuguese navigator" had furnished him with the information. He did not recall the names of the "places" (sic) having no variation, except the "vicinity" of Corvo.
${ }^{92}$ ) For the construction and the use of these two instruments, see the Appendix.
the point of intersection of the magnetic meridian through a given place with the nearest agonic falls on the same parallel for all places.
The longitude of a place is calculated in a spherical triangle, the known elements of which are: the complement of the latitude of the parallel just referred to, the complement of the latitude of the place, and the variation in that place ${ }^{93}$ ). The latitude determined by Plancius for that parallel must have been approximately $65^{\circ} 30^{\prime} 94$ ).

He then starts to apply his rule. On the ground of a Portuguese observation of the variation at Cape St. Augustine in Brazil, amounting to $3^{\circ}$ northeasting, he calculates that the longitude of this cape, lying in latitude $8^{\circ} 30^{\prime}$ south, must be $5^{\circ} 50^{\prime}$. In the same way he calculates dozens of longitudes, and he does this also for the observational data brought by the ships which completed the first voyage to the East Indies. He had found these observations to be in agreement with those of the Portuguese seafarers. We need not consider the results of the calculations, because the determinations of longitude are based on a relation which does not exist. However, we find that out of the large body of material a number of places, with an appended statement of the pertinent latitude, longitude, and variation, have been collected in two almost identical lists accompanying the treatise. They form the contents of the three pages referred to on p. 401, and these lists are again identical - except for a few minor differences - with the lists which Stevin gives in his Haven-Finding Art (pp. 438-440).

## d. STEVIN

Since the reader has become acquainted with the contents of The HavenFinding Art in § 3, while the present section has thrown light on the conceptions of Plancius, Mercator, and others, it is now possible to see Stevin's ideas against the background formed by the work of his predecessors.

The fact that Stevin absolutely rejects a magnetic pole - which impresses the reader all the more because he does so in the opening pages of his treatise -

Fig. 5
${ }^{93}$ ) Figure:
Outer circle: equator; inner circle: parallel at latitude $65^{\circ} 30^{\prime}$
PB: agonic; PA: meridian through A
AP: $90^{\circ}$ - latitude of A .
PAS: known variation at A
S: point of intersection of the magnetic north and south line in A with the parallel SS ${ }^{\prime}$
$\angle \mathrm{BPA}$ : longitude of A in relation to the nearest agonic BPS
${ }^{94}$ ) See Appendix, especially fig. 6 and
 fig. 8 on p. $4^{11}$ and 417 .
implies a definite attitude and a radical change of opinion as compared with his predecessors. On the ground of observations of the variation which had become available - it should be noted that they were taken precisely from the work of Plancius - the impossibility of the existence of a magnetic pole had become established, at least in the sense in which it was taken at that time.

A second and extremely important point of difference from Plancius and Mercator was the fact that no use was made of spherical trigonometry, an auxiliary science of which Stevin, in contrast to Plancius, had perfect command. Stevin rejects the mathematical relation between the amount of the variation and the longitude: a perfectly fundamental difference indeed.

In his Memorie Plancius had pointed out briefly that, passing to the east from the meridian of Corvo, the easterly variation increased in the northern as well as the southern hemisphere to a maximum in longitude $30^{\circ}$, after which it decreased again to $0^{\circ}$ in longitude $60^{\circ}$. Without any further comment, and as a fully established fact, he mentions the existence of the four agonics, and the increase and decrease of the variation in the three lunes of $100^{\circ}$ difference of longitude. He states the latter although he admits he has no data at his disposal about the variation between China and Mexico.

Stevin interprets the material, which he obtained from Plancius and which he presents in The Haven-Finding Art (pp. 438-440) in his own way. His description of the increase and decrease of the variation in the lunes from $0^{\circ}$ to $60^{\circ}$ and from $60^{\circ}$ tot $160^{\circ}$ accords with Plancius, but from that point on he is more cautious than the latter. About. the part from longitude $160^{\circ}$ to $360^{\circ}$, for which no data are available, he says how "it is suspected to some extent" that the variation will appear to be. Instead of four he assumes six agonics, viz. the meridians of longitude $0^{\circ}, 60^{\circ}, 160^{\circ}, 180^{\circ}, 240^{\circ}$, and $340^{\circ}$, and he calls his system a "conjecture", It has been stated above that in 1608 he expressed himself more cautiously than he had done in the first edition of The Haven-Finding Art.

Plancius thought it possible to derive the longitude mathematically from the variation observed. He thus offered a method for the actual determination of longitude.

On the available material Stevin was unable to found anything more than a practical method of "haven-finding", a method which was serviceable and was to prove useful, but which yet was not equivalent to a method for the determination of longitude. In fact, in 1608 he said that the latter had a wider scope and was "worthier". In this way he himself points out the difference.

Summarizing, one may conclude that the allegation that Stevin recorded and put into print the ideas of Plancius with respect to the determination of longitude is by no means true. On the contrary, Stevin held views of his own and he published his own conceptions under an appropriate title. Relying completely on what appeared certain to him, he furnished seamen with two rules, viz.:
a. in seeking your destination and sailing along the parallel, note the increase or decrease of the variation of the compass.
b. take plenty of observations, which will make it possible to improve upon the theory and to add to the knowledge of terrestrial magnetism, which will benefit your successors.
Whereas the system of Plancius after some time was called "imperfect and.
quite frivolous" on the ground of practical experience ${ }^{95}$ ); so that it soon fell into oblivion, the gist of Stevin's rules proved serviceable and was put into practice.

In view of these considerations Stevin ranks high among the men who attempted to determine longitude on the ground of the variation of the compass. Although the appeal to navigators to take observations was heard abroad as well, he may be considered to have been the first to advance navigation by giving a satisfactory rule and at the same time recommending a suitable instrument for taking the necessary observations. An increased knowledge of terrestrial magnetism resulted from his work.
In The Haven-Finding Art Stevin does not account in any way for the curious phenomenon of the deviation of the compass-needle, or for terrestrial magnetism in general. The reader's attention is drawn to the fact that in his Wisconstighe Ghedachtenissen of 1605-1608 he discusses terrestrial magnetism in the 2nd Proposition of Book III, Ch. 1 of The Heavenly Motions (pp. 253-255) under the heading: "To expound the motion of the earth in its place, and its magnetic rest." In that context he refers to the work of William Gilbert, De Magnete ${ }^{96}$ ) - which appeared in 1600 and is to be mentioned once more at the end of the present section (p. 410) - and says the following about the magnetic condition of the earth: "in the earth there is found such a large amount of loadstone and other substances with magnetic force that, like a big loadstone, it has in itself the properties that are found in small spheres made of loadstone." The earth itself is a magnet. It is this view which was introduced by the above-mentioned English scholar.

Stevin also adopts Gilbert's explanation of the fact that the amount of the variation is not the same in all places of the world, a phenomenon about which, as Stevin says, "many people have wondered and puzzled so long". He compares the earth to a spherical magnet, in which a deep and wide groove has been made. The phenomenon is attributed to the influence of the land, not of the sea. This is to be learned from the following curious and simple explanation: "Since the earth is a sphere of loadstone with deep pits, viz. the seas, in whose moving water the above-mentioned magnetic character cannot be present, straight northward pointing indeed is found about the middle of the great seas, such as in the ocean between America and Europe, but when we get to the east, towards Europe, the needle deviates towards the east, and when we get to the west, towards America, it deviates towards the west."

In Gilbert's great work, Book IV, Chapter VII, P. 163, this thesis is set forth in detail. We quote: "It is not easy to determine by any general method how great the arc of variation is in all places and how many degrees and minutes it subtends on the horizon, since it becomes greater or less from diverse causes. For both the strength of true verticity of the place and of the elevated regions, as well as their distances from the given place and from the poles of the world, must be considered and compared; which indeed cannot be done exactly. Nevertheless by our method the variation becomes so known that no grave error will
${ }^{95}$ ) Testimony to be found in the Journael gehouden bij schipper $7 a n$ Cornelisz May, schipper op de Vos, 3rd July 16ıi. See: Werken uitgegeven door de Linschoten-Vereeniging, Vol. I, p. 16.
${ }^{96}$ ) A book devoted to Gilbert and to his main work, its influence, etc., is: Duane H. D. Roller, The De Magnete of William Gilbert. Amsterdam 1959.
perturb the course at sea. If the positions of the lands were uniform and straight along meridians and not defective and rugged, the variations near lands would be simple"... 'but the inequalities of the maritime parts of the habitable earth, the enormous promontories, the very wide gulfs, the mountainous and more elevated regions, render the variations more unequal or sudden or more obscure and moreover less certain and more inconstant in the higher latitude.' Although Stevin only took over the core of this reasoning, he must have been acquainted with the whole text of Gilbert, who deals extensively with the subject of variation in his Fourth Book ${ }^{97}$ ).

In the year after the publication of The Haven-Finding Art a booklet appeared under the title Een corte onderrichtinge ${ }^{98}$ ); it had been written by a practical seafaring man, viz. Albert Haeyen, known as the compiler of a useful book containing charts and sailing directions for the North Sea and its coast from Nieuwpoort to Jutland. As the title says, it is intended to refute the errors daily increasing in the finding of ports "owing to incapable teachers". It is an attack in sailors' jargon. The writer inveighs against haven-finders - by which are to be understood both Plancius and Stevin - who are landlubbers, not versed in nautical terminology, and who in the writer's opinion are not entitled to write about practical nautical matters and to instruct sailors. The system was "built on a straw". The results were poor, a statement which he proves by means of instances taken from the practical experience of the first voyage to the Indies and voyages to the North (p. 21). In one case, when the result was particularly poor, the crew wanted to throw the pilot overboard. The writer's attack is mainly directed against the difficulty of measuring the variation of the compass with sufficient accuracy. The instrument recommended in The Haven-Finding Art was no good. "'That the taking of a bearing with the compass is a ticklish matter becomes quite clear because several seafaring men, when standing behind a compass, will not agree to half a point in taking a bearing, nay - which is more - not even to a full point, as we have found at sea as well as on the land" (p. 10). It is alleged that navigators, when returning from the first voyage to the Indies, refused to surrender their observational data, obtained with such great risks and difficulties, and that others had faked them, because they were unwilling to put their knowledge and experience, which represented their living, "their field and their plough", readily at the disposal of the scholars on shore. It was in this way that the data for the table of the variation were said to have been collected. We are not going to discuss the further contents of the booklet, which was written with some pretence of learning. Haeyen did not prove himself a man of good education. The disinclination to adopt innovations is after all a familiar phenomenon. When towards the end of the seventeenth century Christiaan Huygens wanted to put his pendulum clock to the test on board, the two navigators who took the observations in accordance with the instructions met with opposition and were heaped with ridicule.

[^98]Another writer who was sceptical of the accuracy of the indications of the compass was Adriaan Metius (1571-1635), mathematical professor in Franeker University. In his Nieuwe geographische onderwijsinge ${ }^{99}$ ) he devotes a chapter to the defectiveness of navigation, in which he shows how in an experiment on shore the compass-needle, after being brought out of its position of equilibrium, frequently fails to return to its original position (pp. 58 and 59). "What can be accomplished on the moving ship by those who pretend that by an observation of the deviation of the needle the longitude for sailing to the east and the west can be found accurately enough?"
A valuable book was that devoted by Keteltas to the azimuth compass, its construction, and its use ${ }^{100}$ ). In the dedicatory epistle to Prince Maurice the writer expresses his expectation that the mysterious properties of the magnetic needle will be useful for the determination of longitude. He therefore believes in a relation between them. Many navigators, when sailing to the Indies, had intently observed the variation of the compass after having been instructed by Plancius, and they had found the division of terrestrial magnetism by the four agonics, in accordance with "the thesis of the aforesaid master", to be confirmed in actual practice. Attention is drawn to the number four in connection with the "'thesis". If it were possible to measure the variation accurately - the writer speaks of an accuracy to within the nearest minute of arc - the problem of longitude would be solved, and for this reason he wrote a treatise about the construction of a number of instruments by means of which the variation could be measured, about the method of checking such instruments and the means for correcting them, in order that by a thorough understanding of the subject one might be able to rely upon one's measurements. His work is comprehensive, clear, and valuable. It includes a fine illustration of an azimuth compass, suitable for use on board and fitted with an azimuth-circle with a cross-bar sight, "an instrument which is in daily common use among navigators".

A repudiating and almost scornful statement is to be found in the book of Robert Hues, translated and annotated by Jodocus Hondius 101). "There are some people who pretended to derive some measure or certain rule about the variation, as if it occurred in a measurable and proportional way, but it is all in vain. Experience shows that there is no system in it." And somewhat further on he says: "they had better keep silent who think one might make calculations from these deviations in order to find the longitudes of places, which were to be wished, and it would actually occur in this way if the needle pointed always to one and the same point" (Part IV, Chapter 15). It is obvious that this criticism is levelled at Plancius. In fact, at the time it was uttered, The Haven-Finding Art had not yet appeared. But Stevin's system was condemned by it too.

The famous Willem Jansz. Blaeu ( 1571 -1638), a nautical expert and a competent judge, also joins the ranks of the opponents, as is evident from the epistle to the reader in the first part of his Het Licht der Zeevaert (Light of Navigation) of 1608. He opens this work with Eene korte onderwijsinghe in de Const

[^99]der Zee-vaert (Brief instruction in the art of navigation), in which everything a seaman needed had been included, but from which learned astronomical matters were omitted. He continues: "we have equally omitted to write somewhat about the finding of longitude, which is commonly called east and west, about which some people claim to have found great things. Nay, even to the extent that one can find one's course towards the east and the west just as certainly as towards the south and the north. But all that has so far been published about this is not only useless, but (if one were to rely thereon) also prejudicial and deceptive, about which we intend to write more fully in the fourth part of this book as also what profit a navigator may gain from the deviation of the needle or variation of the compass, on which these new discoveries have been baselessly founded." We do not know what Blaeu intended to write in support of his criticism and about this "profit", for no copy of Part IV of Het Licht der Zeevaert is known. However, his condemnation was clear enough, and Plancius had good reason to be embittered against Blaeu because of his destructive criticism: useless, prejudicial, and deceptive. These terms must have been directed no less against Stevin's work.

We may learn more about Blaeu's adverse judgment from a legend in Latin occurring on a globe made by him, which is preserved in the Antwerp Library and which is dated $1620{ }^{102}$ ). Here the author explains his choice of the place of the prime meridian, and in this connection he refers to the "contemporaries" who wanted to follow an indication given by nature and choose for the prime meridian the meridian on which the magnetic needle shows no declination. But 'they err'. The needle cannot serve to find the origin of longitude, "since it shows different declinations on the same meridian, according as it is nearer to this or that continent". He thus says that the variation may have different values on the same meridian and that its amount depends on the proximity of land. These are ideas which were no doubt borrowed from Gilbert's work.

Thus in Holland the controversy had not yet been decided. Plancius continued to propagate his doctrine and he induced navigators to take his instruments with them on their voyages. Stevin had The Haven-Finding. Art reprinted and included in his Wisconstighe Gbedachtenissen, in a Dutch and in a Latin edition. Steering the same course as regards this doctrine was Keteltas, but it was condemned by Hondius, Alb. Haeyen, Blaeu, and Metius. It was the data collected at sea which led to a better understanding. Stevin was among those who insisted that frequent observations be carried out. This advice was hammered into navigators both in Holland and elsewhere, and to this day "taking an azimuth" is among the actions performed by them several times a day. The object is no longer to determine the variation, but to compute the declination of the compassneedle from the magnetic meridian - the deviation, which is due to the ship's iron - i.e. still in order to be accurately informed about the direction in which the ship is moving.

Though we will not mention further Portuguese, Spanish, French, and English authors who did not believe in a relation between variation and longitude, or who hoped to find it 103) or believed that it did exist - such an enumeration would

[^100]fall outside the scope of this introduction - we wish to draw attention to two important works, which we cannot pass by in the context of this section.

The first was written by Guillaume de Nautonier, `Sieur de Castelfranc en Languedoc, and is entitled Mécometrie de Leymant 104); it is a very extensive work. His system is similar to that of Mercator. He assumes two magnetic poles, one in each hemisphere, in latitude $67^{\circ}$. On the meridian which passes through these two as well as the geographic poles and on which also the island of Ferro is situated, there is no variation of the compass. The tables of the variation given by the author were questioned by some of his contemporaries. Like this author, Kepler long continued to cherish the hope that there would be a simple correlation between the network of meridians and parallels on the earth and the magnetic network.

Fournier, in his voluminous book Hydrographie 105), devotes a long chapter to the determination of longitude, i.e. including the method relying upon the variation of the compass (Livre XII, chap. XXXIV, pp. 606-608). After having uttered his criticism, he concludes: "c'est donc une folie de s'amuser à chercher les longitudes par telles voyes". The matter is thus dismissed with good-natured mockery.

The second of the books referred to above was published in England.
The work in question is that about 'the magnet, magnetick bodies also and on the great magnet the earth', by William Gilbert 106) (born at Colchester in 1544; died 1603), a book that has gained fame in the history of science. It ap-- peared in 1600, i.e. very shortly after Stevin's Haven-Finding Art. The author was a medical practitioner and a physicist. He engaged for many years in empirical scientific investigations, and he took for granted only those things which had been confirmed by reliable tests. Edward Wright wrote an encomiastic preface for the book, in which he styles the author the "father of magnetick philosophy". It is not surprising that this book contains a chapter entitled "whether the terrestrial longitude can be found from the variation" (Book IV, Chapter IX), and that the name of Stevin and his Haven-Finding Art are mentioned in it. Whilst Gilbert calls the values of the variation for the first "segment" from longitude 0 to $60^{\circ}$ "in some part true", he disputes the view that the variation is zero all over the meridians through Corvo and Hjelmsöy, or $13^{\circ} 24^{\prime}$ over the whole length of that through Plymouth. The value zero does hold at the island of Corvo, but not in other latitudes. He concludes his discussion with the following passage:
"Consequently the limits of variation are not conveniently determined by means of great circles and meridians, and much less are the ratios of the increment or decrement toward any part of the heavens properly investigated by them. Wherefore the rules of the abatement or augmentation of northeasting or northwesting or of increasing or decreasing of the magnetick deviation, can by no means be discovered by such an artifice. The rules which

[^101]follow later for variation in southern parts of the earth investigated by the same method are altogether vain and absurd. They were put forth by certain Portuguese mariners, but they do not agree with the observations and the observations themselves are admitted to be bad." (Translation by S. P. Thompson)
Once again it appears that the values of the variation as determined in actual practice overthrew the theory. The passage ends with the following curious conclusion:
'But the method of haven-finding in long and distant voyages by carefully observed variation (such as was invented by Stevinus and mentioned by Grotius) is of great moment, if only proper instruments are in readiness, by which the magnetick deviation can be ascertained with certainty at sea." The honourable place assigned to Stevin in the preceding pages is thus confirmed by his contemporary.

## e. THE EVOLUTION OF THE SUBIECT IN THE 17th AND 18th CENTURIES.

It was to be expected that those who collected and studied the values of the variation as observed by mariners on their voyages should indicate the figures on a chart, in the places where such observations had been taken. This was the method by which a convenient survey could be obtained. The oldest of such "variation charts" is now said to be that of Alonso de Santa Cruz, referred to by him in his Libro de las Longitudines. It must therefore date from about 1535 or 1540. Its value was shaken by the findings of De Castro.

Athanasius Kircher (1601-1680) in his great work on magnetism 107) mentions a "mappa geographico-magnetica", made by Christophorus Burrus or Christoforo Borri, an Italian Jesuit priest, who lived in Lisbon and in the Portuguese colonies.

Sir Robert Dudley (1573-1649) in his marine atlas Arcano del mare 108) shows the variation in many places in his charts. Five such figures are found on the chart of the North Sea, from Dover and Nieuwpoort to the mouth of the river Weser.

Further a magnificent large chart on Mercator's projection is to be found in the third edition of Wright's Certaine Errors in Navigation, published in 1657. It bears the title "A plat of all the world, projected according to the truest rules", and it had been revised and corrected, as had the book; by Jos. Moxon. It is dated 1655. In a cartouche we read the following words:
"The numbers scatteringly dispersed here and there in this sea chart signifie the variation of the compasse. The letters E and W shewe whether it be East or West. The other letters following signifie the observers names, as D Davis, K Kendal, H Hall, L Lynschot, C Candish, CA John de Castro, etc."
On the west coast of Novaya Zemlya is to be found an observation marked WB, which means of course: Willem Barents.

[^102]An unprecedented increase of knowledge was due to the mathematician and astronomer Edmund Halley (1656-1742), who during long ocean voyages carried out observations and published their results - as he had found them in 1700 in a large map of the world on Mercator's projection 109). The map was destined for navigators. In the seas it showed the isogonics, with the exception of those in the Pacific. For the benefit of the user, Halley added an elaborate explanation to the map. To navigators a knowledge of the variation is of the utmost importance if they are to be able to determine their course accurately at moments when weather conditions do not permit them to determine the variation for themselves by observation. With respect to the possibility of determining longitude by means of the chart, the explanation says as follows:
"A further use is in many cases to estimate the Longitude at sea thereby: for where the curves run nearly North and South, and are thick together, as about C. Bonne Esperance, it gives a very good indication of the distance of the land, to ships to come from far: for there the variation alters a degree to each two degrees of longitude nearly, as may be seen in the Chart. But in this Western Ocean, between Europe and the North America the curves lying nearly East and West, cannot be serviceable for this purpose."

In view of the slow change to which the variation is subject, which necessitates revision of the chart, Halley requests the cooperation of navigators. Observations will be gratefully acknowledged by him.

The chart had a wide diffusion. In Holland it was included in the Atlas van Zeevaert en Koopbandel by Louis Renard, Amsterdam 1745. In France it was also known. In England the investigations were continued, and variation charts were compiled by other authors as well. Such charts were also to be found in Holland. Nautical handbooks pointed out the usefulness of these charts.

How Halley's advice about navigation in the vicinity of the southern point of Africa was applied in practice can be learned, as far as Holland is concerned, from the Zeilage-Ordre, om ten allen tijde van Straat Sunda over Kaap de Goede Hoop naar Nederland te zeilen (Sailing direction, for sailing at any time from Sunda Strait via the Cape of Good Hope to the Netherlands), issued by the East India Company to their ships, which instructions were approved in 1783. It is stated there:
"From the longitude and latitude just mentioned, head west by south so as to pass at about 30 miles beyond the shoals lying at the southern end of Madagascar, up to longitude $61^{\circ}$ to $62^{\circ}$, where there is now no greater variation than $23^{\circ}$ to $24^{\circ}$ northwesting.

From there again steer west-south-west, in order to catch sight of the coast of Africa, in the neighbourhood of Punto de Fontes or Algoa Bay. In this channel between Madagascar and Punto de Fontes the greatest variation is found to be between $26^{\circ}$ and $27^{\circ}$, and as one approaches the land of Africa or the aforesaid Punto de Fontes, it will decrease to $23^{\circ} 30^{\prime}$ to $23^{\circ}$ northwesting. Subsequently by repeated sounding try to find the Reef of Agulhas, so as to call at the Cape of Good Hope or Bay False, as you shall have been ordered in the Instructions."

[^103]When in 1754 Cornelis Douwes (1712-1773) published in a treatise 110) his method of determination of latitude, which became internationally known, he spoke with some reservation about this method of determination of longitude. It was only "in some regions" that by means of the variation one "had roughly some certainty whether one was east or west of a known place", when after a long voyage the estimated longitude had become very unreliable. This was contrasted with the view of Pybo Steenstra, lecturer of mathematics, navigation, and astronomy in the "Atheneum Illustre" of Amsterdam. When in 1770 the latter published his lessons on the finding of longitude at sea, he referred to the method based on the variation of the compass, among the other possibilities, as "so far the best and readiest means of finding the true longitude at sea", provided it be applied in a place where the declination varied rapidly with the ship's movement 111). None of the existing methods for the determination of longitude produced a reliable result in those days. The development of this problem was very backward as compared with the accuracy of the determination of latitude, which had been enormously advanced by Hadley's invention of the octant in 1731. The result was now reliable to within a few minutes of arc. We can thus sympathize with Steenstra when on 21st November 1763, upon assuming his office as a lecturer, he exclaimed in his inaugural address:
"Would that it were possible to find the true longitude at all times with the same certainty and ease; then the art of navigation would attain to a degree of perfection which it now with good reason despairs of ever reaching.'
The speaker was taking too gloomy a view. At that very time the marine chronometer was being constructed and the results obtained with it were promising. The method of determining longitude by means of lunar distances was being developed. The "Nautical Almanac" needed for the computation was soon to appear. The new instrument for measuring angles permitted a reasonable measurement of distances. The mathematical knowledge of the sailor was brought to a higher level with a view to all this.
For the determination of longitude on the basis of the variation of the compass the knell had sounded. This subject, at which scholars as well as practicians had worked for nearly 300 years, had become a thing of the past.

## § 6

APPENDIX

## a. THE CONSTRUCTION AND THE USE OF THE ASTROLABIUM CATHOLICUM.

Round about 1600 spherical trigonometry was a subject far above the heads of navigators. And yet they had to do with problems of spherical trigonometry, such as the computation of longitude according to Plancius and the determination of the distance on a great circle between two points on the earth. The ways in which

[^104]they were enabled to solve the latter problem appear very clearly from a legend on the big map of the world of Jodocus Hondius of $1611112_{12}$ ). There were three methods:

1. by projection and construction of plane triangles
2. with the aid of the astrolabium catholicum
3. by measurements on the globe.

Directions for all three methods are given, and a fine and clear illustration of


Illustration of the network of meridians, parallels, etc., on the astrolabium catholicum, taken from the manuscript of the surveyor Jan Nanninghssoon at Broek-in-Waterland, 1647, present at the State Record Office of North Holland, Haarlem.

[^105]the astrolabium catbolicum is included. The instrument generally serves to solve problems of spherical trigonometry, which is done by measurements in a plane. It may be looked upon as a variant of the astronomical astrolabe, which had been known for many centuries past.

The instrument consisted of a flat disk on which was drawn a circular network of lines, being the network of meridians and parallels in equatorio-stereographic projection. Because the centre of projection has been chosen in the equator, the projection of the latter is a straight line, at the same time the diameter in the figure. The meridians meeting in the two poles - at a distance of $90^{\circ}$ from the equator - are parts of arcs of a circle, and so are the parallels. In fact, we here have to do with the peculiar property of this projection, that circles on the globe become circles in the projection. Its other special feature is that an angle between curved lines on the globe is equal to the angle between their stereographic projections (Fig. 6).
Adapted to turn about a spindle in the centre of the figure was a rule, the edge of which could be made to coincide with the equator. It carried a division which was identical with that on the equator produced by its points of intersection with the meridians. Along the rule could be moved a small block, which was equipped with a metal point consisting of a number of relatively movable links. By means of this construction it was possible to place the end of this point over any given point of the rete, which was necessary in the manipulation.
No specimens of the astrolabium catbolicum are known. We merely find illustrations of it in various places, such as the title-page of Willem Janszoon Blaeu's atlas Licht der Zeevaart of 1608 and the title-page of the marine atlas De groote licbtende ofte vijerighe colom (The Lighting Colomne or Sea-Mirrour) of Jacob Aertsz. Colom, Amsterdam 1661. The latter has an illustration of a navigation lesson given in a church, where the teacher from the pulpit - it may be assumed with good reason that it is Plancius who is shown here - hands the instrument to one of his pupils standing at the foot of the pulpit. At the Rijksmuseum, Amsterdam, among the relics of the wintering of Willem Barents in Novaya Zemlya (1596-1597) there is to be found a specimen of the above-mentioned block with the point consisting of links. This proves that an astrolabium catholicum formed part of the nautical equipment of the expedition.

For an explanation of the way the instrument was used, further particulars, and illustrations the reader is referred to the present author's article in the maritime review De Zée, 1916, p. 180:
"Het gebruik van het Astrolabium Catholicum", and further to the following three works edited by the Linschoten Vereeniging:

Vol. XV Reizen van Willem Barents, etc. 1917, pp. XXI ff.
Vol. XXXII De eerste schipvaart, etc. 1929, pp. 433 ff .
Vol. XLIV De tweede schipvaart, etc. 1940, p. XXXIV.
b. THE CONSTRUCTION AND THE USE OF THE LONGITUDE-FINDER OF PLANCIUS

Only one specimen of this instrument has been preserved. It is also present at the Rijksmuseum among the relics of the wintering of Willem Barents in Novaya Zemlya (Fig. 7).

It is further illustrated in the above-mentioned Works of the Linschoten


Fig. 7
Longitude-finder of Peter Plancius (Rijksmuseum Amsterdam).
Vereeniging, Vol. XV, p. XXV and Vol. XXXII, p. 436. It is nothing but a flat copper plate, 21.5 cm long, bounded by two arcs of a circle, and it is provided with a number of lines engraved in it. The radius of the circular edge of the


Fig. 8.
This figure shows bow the longitude-finder of Plancius bas to be used in conjunction with the astrolabium catholicum. A is the place on the earth for which the variation and the latitude are known, while the longitude bas to be found. The centre of the division on the longitude-finder is the North Pole. Moreover $A P=90^{\circ}$ - latitude $A$.
On the division of the longitude-finder the point $P$ ?, where the magnetic meridian through $A$ intersects the edge of the longitude-finder, indicates the difference of longitude between $A$ and the nearest agonic.
plate through construction is found to be 263 mm . The plate was intended to be placed against the edge of the astrolabium catholicum and to fit against it (Fig. 8).
The two instruments accordingly had the same radius. The longitude-finder represents the polar cap of the astrolable and the engraved curved lines are merely parts of meridians on the rete of the astrolabe. The second arc-shaped edge of the plate is a parallel of latitude, viz. the one on which Plancius assumed all points of intersection of agonics and magnetic meridians to fall. The terrestrial latitude of this locus was an important feature in his theory. Through construction it appears that this latitude must have been slightly less than $65^{\circ} 30^{\prime}$. This value can be confirmed as follows.
The objects at the Rijksmuseum referred to above include a sheet of paper on which a circular rete of the same kind as that on the astrolabe is printed. This sheet of papier lay for nearly 300 years in the ramshackle hut in Novaya Zemlya; it was brought to the Netherlands and smoothed as well as possible, and is now preserved between cardboard and a glass plate. It is obvious that the paper has been subject to warping. Nor is the rete complete. In spite of all this, in spite of folds and tears, the edge of the longitude-finder still fits tolerably well against the edge of the rete on the paper. The other edge falls on a parallel of $65^{\circ}$ to $65^{\circ} 30^{\prime}$. How did Plancius arrive at this figure? Did he choose it because the results of his work were thus most satisfactory, or did he take it perhaps from William Borough, who in his A Discourse of the Variation of the Cumpas or Magneticall Needle, London 1596, in the 8th chapter speaks about the magnetic pole being situated at a distance of $25^{\circ} 44^{\prime}$ from the geographic pole?
When L'Honoré Naber, editor of Vol. XV of the Works of the Linschoten Vereeniging, verified the calculations of Plancius, he assumed that the latter had taken the polar circle for this parallel. As a locus, the polar circle in his opinion was "in a sence cosmically hallowed". Although Naber's results agreed satisfactorily with those of Plancius, the dimensions of the plate show that a small correction has to be made. This does not of course affect the existing view of the theory advocated by Plancius.
Plancius was not the only one to teach the use of these two instruments and to equip navigators with them in order that they might use them on board. Yet another teacher of navigation may be mentioned on whose programme the same subject figures. We are referring to " Jan van den Brouck, a professional navigator in the famous commercial town of Rotterdam", writer of Instructie der Zee-Vaert, a small book published in 1610, which was entirely adapted to the needs of the simple would-be navigator. He devotes a good deal of attention to the astrolabium catholicum, the practical instrument "by means of which one can do anything that one could do with a celestial or terrestrial globe". By way of example he works out a great many problems, in all sorts of fields. "In this way one will soon be a master in handling the astrolabe." He also works out examples with the longitude-finder, under the heading: "an example of how by means of the plate one can find the longitude according to the method of D.P. Plancius."

## D E <br> HAVEN- <br> VINDING.



Tot Leyden,
In De DrvCkerye van Plantidn, By Christoffei van Ravelenghien, Gefworen drucker der Vniuerfiteyt tot Leyden.
clo. Io, ic.
(Mat griuticgies.

## Priuilegies.

(.)pdey acfititeridy Maxtij anno x6 neyterentut-
 derfaniey geconfenteext, ende gheoctrogecet, Confenterey, ende 5 .aroyexey mits defey, Cfziftoffer Eaphelengius z3oucrozuckex tot Leydey, afferne finney dey tijot Gay zeffe jaccey naeftcommende, inde goozf. Gexeenichde (Medexfandey te mogey dauckey, doey dauckey, ugtyeucy, ende Gexcoopey, zekex bouck geintitufect Haven-vindingh, Solckey fy bay megningte is, 00 int Qatijy afs int afranchois, ende Suytfof, oft ogck in andex fpakey te fatey uytgaey, futeroiceren>e, enðe Gexbiedende aftey ende cey jgelgck dey 6002 f. bouck, int gefeef oft int deef, ins eenigexibande fpakey na te dauckey, nock ogck buytey de Gekeenicfide Mederfandey magedzuckt, inde fetue uyt te geuey, oft bevcoopey, fonder confent gandey boozf. Eapkefengints; opte bexbente Gande nagfiedauckte Exemplaria, ende de boete in't 5 aitinael bexfact

Sloeth. ${ }^{12}$

> Ter ordonnantie vande zelue Heeren Staten generael.
C. eAcryses.

## PRIVILEGE.

On the eighteenth of March of the year 1500 and ninety-nine the States General of the United Netherlands consented and granted a patent, and they consent and grant a patent by the presents, to Christoffel Raphelengius, printer at Leyden, only within the time of the next six years, to print, have printed, publish, and sell in the aforesaid United Netherlands a certain book entitled Haven-vindingh, which he intends to publish both in Latin and in French and Dutch, or also in other languages, prohibiting and forbidding one and all to reprint the aforesaid book, wholly or in part, in any language, or, if reprinted outside the United Netherlands, to publish or sell it in the said country without the consent of the aforesaid Raphelengius, on pain of confiscation of the reprinted copies and the penalty mentioned in the original, etc.

## Sloeth.

At the decree of the said States General.
C. Aerssen.

## HAVENVINDING.


is kennelick datmen over langhen tijt, voornaemlick federt dat de groote zeevacrden op Indien en America begolten, middel gefocht heeft, waer deur den Stierman op zee mocht weten, de eerrrijcxlangde der plaets daer teghenwoordelick fijn fchip is, om alfoo te commen totre havens dacr hy begeert te wefen, fonder datmen alfnoch tot fulcke ghewiffe kennis der langde heeft conuen ghecommen : want fommighe verhopende die te vinden deur de verfcheenwyfing der zeylnaelde, hebben de felve vericheenwyfing een "afpuint * Polump. toeghefreven, die noemende $\dagger$ feylfteens afpunt. maer $\dagger$ Polum men bevint na wyder etvaringhen, dat die afwijckin- magnetis. ghen fich na gheen afpunt en fchicken. Doch fo heeft nochtans het foucken van dien, middel veroirfact om tot een begeerde hauen te gheraken, niet teghenftaende des havens en fchips ware langden beyde onbekent fijn. Oin twelck eerlt by voorbeelt te verclaren, en daer na te befchrijven de omftandighen defen handel aengaende, waer deur de ghebruyck noch gemeender en fekerder fal worden, foo is voor al te weten, datmen deur ervaring bevint, de zeyliaaelde tor verfcheyden plaetfen (hoewel op gheen feylfteens afpunt reghel houdende ghelijck ghefeyt is) feer verfcheydelick te wijfen, als tot fonmighe oirten recht

Noort,

## THE HAVEN-FINDING ART.

It is known that for a long time past, principally since the great voyages to the Indies and America began, a means has been sought by which the navigator might know at sea the longitude of the place where his ship is at the moment, in order thus to get to the harbours to which he wishes to go, but that hitherto it has not been possible to arrive at such accurate knowledge of the longitude. For some people, hoping to find it through the variation of the compass, ascribed a pole to the said variation, calling it magnetic pole, but it is found upon further experience that these variations do not obey a pole. Nevertheless the search for this has furnished a means for reaching a desired harbour, even though the true longitudes of both the harbour and the ship are unknown. In order that this may first be explained by means of an example and then the circumstances of the method may be described, as a result of which the application will become even more general and certain, first of all it is to be noted that it is found by experience that the magnetic needle (though it does not obey a magnetic pole, as has been said) points very differently in different places, to wit, in some places due North, in

4 D E Noort, tot ander wyckfe nat'Ooften, elders nat ${ }^{\prime}$ Weften, welcke veranderinghen alfmen van t'Ooften na $t$ Weften treckt, op kleyne weghen feer merckelick fijn; als bij voorbeelt t'Amfterdam wyckfe na t'Oo-
*Gradu. Iten 9. "trappen 30.(1). An t'voorlant van Enghelant 11. tr. TeLonnen ir.tr.30.(1). By Timouth in zee 12 . tr. 40 . (1). en foo voorts.

## Hoemen een baruen of landt roindt, daer af de breede en vaeldrurvijfing bekent is.

Cvicke naeldwyfing, metfgaders de breede der plaetfen bekent fijnde, deur ervaring der ghene diet metter daet alfoo bevonden hebben, men can daer me fonder langde te weten de plaets vinden. Als by voorbeelt, an een Stierman bekent fijnde, dat de breede van Amfterdam is $\xi_{2}$. trappen 20.(1).met naeldwycking nat'Ooften van 9.tr. 30 .(1). ende dathy hem vindt op zee inde felve breede van s2. tr. 20. (1), mette voorfcreven Oofterfche naeld wycking van 9.tr. 30. .(1). Hy weet dat hy ourrent Amfterdam moer wefen, trij mette langde van Amfterdam hoet wil. Aengaende ymane mocht feggen; datter wel noch ander plaerfen fijn vande felve breede en naeldwycking, nochtans niet Amfterdam: Tis waer, maer fij vallen feer verre van daer, ende can uyt dander onderkent worden, deur feker omftandighen, van welcke wy hier na fegghen fullen. Merckenoch dat hoewel de Stierlieden Anfterdam anders connen vinden deur omligghende
others it declines towards the East, elsewhere towards the West, which differences are very noticeable for small distances in going from the East to the West; thus, for instance, at Amsterdam it declines $9^{\circ} 30^{\prime}$ towards the East. Off the Foreland of England $11^{\circ}$, at London $11^{\circ} 30^{\prime}$, off Tynemouth in the sea $12^{\circ} 40^{\prime}$, and so on.

How a Harbour or Land is found whose
Latitude and Needle-Pointing are known.
The needle-pointing as well as the latitude of the place being known through the experience of those who have found it so in practice, the place can be found by this means without the longitude being known. Thus, for instance, if a navigator knows that the latitude of Amsterdam is $52^{\circ} 20^{\prime}$, with an easterly variation of $9^{\circ} 30^{\prime}$, and he is at sea in the said latitude of $52^{\circ} 20^{\prime}$, with the aforementioned easterly variation of $9^{\circ} 30^{\prime}$, he knows that he must be off Amsterdam, whatever may be the longitude of Amsterdam. If anyone were to say that there are also other places having the same latitude and variation, which yet are not Amsterdam, this is true, but they are very far away from it and it can be distinguished from the others by certain circumstances, which we shall discuss hereafter. Note also that though navigators are able to find Amsterdam
ghende landen, giffing, diepten, fanden, en ander teyckens, fonder acht op naeldwoffing te nemen, nochtans hebben wy dat voorbeelt van die bekende plaets gheftelr, om daer deur te opentlicker te verclaren de ghemeenheyt vande reghel op verre feylagen, daermen op langhe tijt gheen landt en fiet: Als, neem ick,een Stierman begeerende van hier te feylen tot Cabo Sant Auguftijn in Brafilie, ende wetende dat de naeldwycking daer is, van (ghelyckmen fegt) noort na tooften $3 . \mathrm{tr}$. 10. (1), en de zuyderfche breede 8. tr. 30 . (1). als hy derwaert varende tot fulcken naeldwycking en breede ghecommen is, hy weet hem ontrent Cabo Sant Auguftijn te wefen: Ende hoewel giffing hem anders dede vermoeden, fal die verlaten, als deur oofterfche of wefterfche verborghen ftroomen bedroghen fijnde, of qualick ghegift hebbende : Want dat de naeldwycking die eertijts tot Cabo Sant Auguftin was 3.tr. 10. (1). nu daer niet wefen.en foude, de reden en laet niet toe fich fulcx voor te ftellen om daer op te werck te gaen: Of dat ymant op zee cen ander naeldwijfling, vindt dan de voorfreuen, die hy weet tot Cabo S.Auguftin te fijn van $3 . \operatorname{tr}$. 10 . (1). ende nochtans willende d'ervaring der naelde verlaten, en giffing volghen, fich feyde ontrent Cabo S.Auguftin te wefen, wie en verftaet niet fulcx fonder reden te fijn? als van een die fich felfs teghenfpreect, feggende die naeld wijcking aldaer te fijn van 3 . trio. © © ende foo niet te wefen.

Merckt wijder wel ghebeurt te fijn, dat cenen feylende na het Eylant van Sint Helena, ende gecommen wefende tot des felven Eylants breede, nochtans dat

$$
\text { A } 3 \text { Eylant }
$$

in other ways, from surrounding lands, by conjectural reckoning, depths, sands, and other signs, without paying heed to the needle-pointing, we have nevertheless given this instance of a known place in order thus to set forth more manifestly the general-applicability of the rule during long voyages, when no land is seen for a long time. Thus, if a navigator, desiring to sail from hence to Cape St. Augustine in Brazil and knowing that the variation is there (as is said) $3^{\circ} 10^{\prime}$ to the east of the true north and the southern latitude $8^{\circ} 30^{\prime}$, in sailing in that direction has come to this variation and latitude, he knows he is off Cape St. Augustine. And even if conjectural reckoning made him suppose otherwise, he must disregard this, assuming that he has been deceived by unknown eastern or western currents or that he has guessed wrongly. For reason does not permit him to imagine that the variation which was previously $3^{\circ} 10^{\prime}$ off Cape St. Augustine should not have this value now 1), and to proceed accordingly. Or if a man finds at sea another variation than the above, which he knows to be $3^{\circ} 10^{\prime}$ off Cape St. Augustine, and nevertheless, wishing to disregard the observation of the needle and to rely on conjecture, were to say that he was off Cape St. Augustine, who does not deem this to be an unreasonable procedure, like that of a man who contradicts himself, saying that this variation is $3^{\circ} 10^{\prime}$ there and that it is not.

Note further that it has sometimes happened that a man, sailing to the Island of St. Helena and, having come to the latitude of this island, yet not finding this

[^106]6

## DE

Eylant daer niet vindende, oock niet werende of hyder ooft of weft af was, heeft al ramende ooftwaert ghefocht, dat weftwaert lach, ende hoe hy verder alfoo voer, hoe hy verder vande begeerde plaets gerocht: Denckt nu eens, foo dien Stierman (die wel ettelicke weken lanck dat Eylant focht, ende etrelicke mael daer rontom voer eer hyder in gherocht) had bekent gheweeft hoe de naelde op Sine Helena wees, ende daer beneffens werenfchap ghehadr vande naeldwyfing op zee te vinden, of hy moerwillichlick na een groorer naeldwijcking foude ghevaren hebben, wetende dat de plaets daer hy begeerde te wefen een kleender hadde?

Hierby machmen verftaen hoe noodich de kemnis der naeldwijfing is: Te meer dat de gene die mer wetenfchap der * feylftreken wil varen (twelck den Stierman op groote feylaghen niet en behoort onbekent te fijn) over al het recht noore moet weten, welck noort op zee deur kennis der naeldwijcking ghevonden wort.

Soomen hier beneffens noch infiet de onfekerheyt vande ware plateten der landen, die na teegghen der Stierlieden op de certfclooten gheteyckent worden, fpruytende daer uyt, date het wijfen der leli die elck van huys brengt, altijt voor noort houden, ftreckende daerenboven noch tot meerder onfekerheyt in haer feyling: Men fal verftaen het gaflaen der naeldwijfinghen daer in oock feer oirboir te wefen, wantmen deur zeecompaffen daer toe bereyt, de leli al feylende alrijt recht noort can doen wijfen, midts de naelde of r'beftre-
island there nor knowing whether he was to the east or to the west of it, by conjecture sought to the east what lay to the west, and that the further he thus sailed, the further he got from the desired place. Now just consider whether this navigator (who sought this island for several weeks and sailed several times around it before he got there), if he had known how the needle pointed off St. Helena and in addition had known how to find the variation at sea, would deliberately have sailed to a place where the variation is greater, though he knew that the place to which he desired to go had a smaller one?

From this it may be understood how needful the knowledge of the variation is, especially since those who wish to be certain of the course they are following (which ought not to be unknown to the navigator during long voyages) have to know everywhere the true north, which is found at sea by knowledge of the variation.

If further the uncertainty is also recognized of the true positions of the lands which are drawn on the globes according to the information of navigators, which uncertainty results from the fact that they always think the point indicated by the fleur-de-lys which each of them brings from home to be the true north, which moreover leads to greater uncertainty in sailing, it will be understood that the observation of the needle-pointing is also very useful in this respect because it is possible by means of mariner's compasses ${ }^{1}$ ) prepared for this purpose to make the fleur-de-lys point always due north during the voyage, provided the

[^107]HAVENVINDING。 7 rbeftreken ijfer, foo veel vande leli te verdraeyen, als de faeck vereyfcht.

Dit alles wel anghemerct, ende tooghelaten wefende verfcheyden landen fulcke verlcheyden maeldwwijfinghen te hëbben, gelijck deur̀ ettelicke betuycht wort, het fchijnt dat de ghene die niet toe en Itaen, deurt'behulp der felve naelwijfing de feylage te connen bevoordert worden, of datfe de faeck niet en verftaen, of wat anders daer teghen weten dat yghelick niet bekenten is.

NualfooSijn Exceleentie de voorgaende faken rijpelick overdocht hadde, ende fich inghebeelt meughelick te fijn, de bovefcreven voordering der feylaghe hier deur merckelick te connen gefchien, heeft als Admirael vander zee, ande Admiraliteyt feker oirden gheftelt, ende onderwijs ghegheven, om te weghe te brengen dat de Stierlieden op fulcke reyfen varende, hun daer na ghevougen: Namelick datfe van nu voortaen tot vee plaetfen daerfe commen, metter daet ende wel forchvuldelick, onderfoucken de afwijckinghen der feylnaelde vant noorden, nemende daer toe reetfchap wel bequaem : Ende van haer reyfen weerghekeert fijnde, daer af gherrouwelick verwitting doen ande voorfcreven Admiraliteyt; welcke de felve ervaringen fullen doen in oirden ftellen, ende ten ghemeenen oirboire an yghelicken openbaer maken.

Maer op dat elck die wil noch opentlicker verftaen mach alle omftandighen defe faeck aengaende, foo fullen.wy hier ftellen een begin, van toghene men deus
needle or the magnetized iron is turned away from the fleur-de-lys as much as is required.
All this being considered and it being admitted that different countries have such different needle-pointings, as is testified by many people, it seems that those who do not admit that navigation can be advanced with the aid of the said needle-pointing either do not understand the matter or know something else to the contrary, which is not known to everyone.

When therefore His Excellency had thoroughly considered the above matters and conceived that it was possible for the above-mentioned advancement of navigation to be appreciably effected by this means, as Lord High Admiral he gave order and instruction to the Admiralty to see to it that navigators going on such voyages should act accordingly, namely, that henceforth in many places where they come they should find out actually and very carefully the variations of the needle from the north, using very suitable instruments for this, and upon their return from their voyages should faithfully report the results to the aforesaid Admiralty, which will cause these observations to be listed and published for the use of all.

But in order that anyone who wishes may understand more clearly all the circumstances relating to this matter, we shall here set down the principle of that

D E
deur breeder ervaringhen in wille is voorder te vervolghen, tafelwijs vervatende de naeldwijnghen dieder alree gagheflaghen fijn, welck den hoochgeleerden * Eertrijexfchrijver Heer Perrus Plancius, deur langdeurighen arbeyt, en niet fonder groote coiten by cen vergaert heeft, uijt verfcheyden houcken des certbodems, foo wel verre als na gheleghen: Sulcx dat als de Stierlieden int ghemeen deur defe manier landen en havens fullen vinden, foo wel als eenighe int befonder die alree ghevonden hebben, den felven Plancius ghehouden mach worden voor een der voornaemlickfe oirfaken van dien. De voornoemde tafel waer af breeder verclaring ghedaen fal worden is als volght.

## Verclaring op de narcolghende Tafel.

EER wy commen totte verclaring, willen, voor al fegghen, dat by aldien namals deur nauwer en fekerder ervaringhen, der plaetfen naeldwijfingen, breeden en langden, anders bevonden wierden dan inde tafel itaer, ende datmen alfdan ander manier van verclaring en bepaling van woorden behoufde, dan de volghende, dat ons fulcx van t'voornemen defer onderfoucking niet en behoort af te kecren, maer veel cer daer toe te trecken, als allencx gerakende tot meerder en fekerder kennis eens handels ghefticht op fulcken grontals vooren verclaert is. Defe meyning volghende, wy fullen metter waerfchijnlickite dar ons nu be-
which it is desired to continue further by means of wider experience, listing in a table the variations that have already been observed, which the learned geographer Mr. Petrus Plancius has collected by protracted labour and not without great expense from different corners of the earth, both far and near, so that, if navigators shall find lands and harbours generally in this way, as some in particular have already found them, the said Plancius may be considered one of the principal causes of this. The aforesaid table, a more detailed explanation of which will be given, is as follows.

## Explanation of the Following Table.

Before we come to the explanation, we wish to say first of all that if afterwards, by more accurate and more exact observations, the needle-pointings, latitudes, and longitudes of the places should be found to be different from those in the table, and if in that case another way of explanation and definition of words should be required than the following, this ought not to keep us from undertaking this investigation, but rather to incite us to it, so that we may gradually attain to greater and more exact knowledge of a method based on the foundation explained above. Following this opinion, we shall proceed with the most probable knowledge
nu bekent is voortvaren, al oft warachtich waer; want elck tijnader tijt der ghelijcke doende, men fal twarachtichite dat inde nateur daer af is, allenx naerder en naerder meaghen gheraken.

Dit foo fijnde, ende om nu tor verclaring der tafel te commen, foo fietmen voor al datter fijn dric pilaren, deerfte van der plaetfen naeldwijfingen, de tweede vande breede, waer by noch ghevouche is de derde vande gheraemde langde, op dat de plaetfen inde certflooten te lichtelicker ghevonden worden, oock mede om de ghedaenten der naeldwijfinghen daer deur int volghende opentlicker te verclaren. De letter N bediet inde tw cede pilaer overal noorderfche brecde,maer Z zuyderfche breede.

Voort wantter ghefeyt wort van naeldwijcking, ooftering, weftering, vergrootende ende verkleenende, oock van eerfte en tweede perck, welcke als eygen conftwoorden haer bepalinghen vereyfichen,foo is voor al kennelick, de zeylnaelde feker eyghenfchap te hebben, datfe op een felve plaets een felven oirt wijft,maer niet den felven oirt over al, want tot fommighe plaetfen wijfte recht noort, tot ander wijckfe na toolten, elders na t'weften, daerom fegghen wy by manier van bepaling als volghen fal:
fiet bet 12. blar.

B TA-
we now have as if it were true; for if everyone does the same in due time, it; will be possible to come gradually nearer and nearer to that which is most true in the nature of things.

This being so, and in order to come now to the explanation of the table, it is seen first of all that there are three columns, the first of the variations of the places, the second of the latitude, to which has been added the third, of the estimated longitude, in order that the places may be found more easily on the globes, and also in order to explain the character of the variations more clearly in what follows. The letter $N$ in the second column everywhere designates northern latitude, and $S$ southern latitude.
Further, because mention is made of variation, easterly variation, westerly variation, increasing and decreasing, and also of first and second segments ${ }^{1}$ ), which as special technical terms require a definition, it is to be known first of all that the magnetic needle has the particular property that in the same place it points in the same direction, but not in the same direction everywhere, for in some places it points due north, in others it declines to the east, elsewhere to the west; for this reason by way of definition we say as follows: .

[^108]
## TAFEL DER NAELD WIISINGHEN.

|  | f Ver-: | Een der Vlaemfche Eylanden Corvo | tr: | $\mathrm{N} 37.0$ | $\begin{array}{ll} \text { rir } & \text { (1). } \\ 0 . & 0 \\ 0 & 0 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Opt Vlaemfols Eylant Sancta Matia. | 3. 20. | N37.0. | 8. 20 |
|  | groo- | Neffens het Eylant Maio. | 4: sso | Niso. | 20. |
|  | tende | By t'Canarifche Eylant Palma. | 6. 10. | N 28.30 | 16. 20. |
| Eerfte |  | By Cabo de Roca by Lisbona. | 10. 0. | N38. 35 | 24. 30. |
| percx | ring | Het wefterlickfte van Yrlandt. | 11. 0. | N ${ }^{\text {2 }}$, 3. | 24. 12. |
| opde |  | Engelants eint. | 12. 40. | N so.21 |  |
| noort- | Ver- | Een mijl ooftwaert van Pleymouth. | 13. 24. | N so 18 |  |
| fijde | clee- | By Timouth in zee. | 12. 40. | N s.sio. | 33.0. |
|  | nende | Londen in Engelant. | 1.1. 30. | N 51.24 | 34. 6. |
|  | oofte- | Het voorlant van Engelant. | 1.1 | Nsi.8. | 35.40 |
|  | ring |  | 9. 30. | N 52.20 | 39. 30. |
|  |  |  | Wettering. |  |  |
|  |  | Helmfinuy by weften de Noortcaep in Finmarck. | O. 0. | N | 60. |
|  | (Ver- | Noortcaep in Finmarken. | o. 55. | $\mathrm{N}_{71.2}$ | 61.30. |
|  | groo- | Noorkin. | 2. 0. | $\mathrm{N}_{71} 10$ | 63.30. |
| Tweede | tende wefte- | Sint Michiel in Rulfia genaemt Arch. angel. | 12. 30. | N 64. 5 | 83. 30. |
| percx | ring | De zuyderlicke ftraet zan Vaygats. | 24. 30. | N69.30 | 103. 0 |
| opde |  | Langenes in Nova Zembla. | 25.0. | N73.20 | 100.30. |
| noort- | $\left\{\begin{array}{l} \text { Ver- } \\ \text { clee- } \end{array}\right.$ | Willems Eylant by Nova Zembla. | 33. 0. | N 71.3 | 110.0. |
| fijde | nend | Yhouck in Nova Zembla: | 27.0. | N77. | 120.30. |
|  | wefte | Her winterhuys in Nova Zembla | 26.0. | N 76.0. | 120.30. |
|  | (ring |  |  |  |  |


$\mathrm{B}_{2}$
Bepa-

TABLE OF THE VARIATIONS.


[^109]|  |  |  | Easterly Variation deg．min． | Latitude deg．min． | Longitude deg．min． |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ． | At 105 Spanish miles westward from Cape St．Augustine in Brazil 10） | 00 | $S$ | 0． 0 |
| － | 家 | Off Cape St．Augustine in Brazil | 310 | S 830 | 60 |
|  |  | To the south of Cabo das Almas in Guinea 11） | 1215 | $S \quad 00$ | 290 |
| $\begin{aligned} & \stackrel{y}{\ddagger} \\ & 5 \end{aligned}$ | 品 <br> 药 | Slightly more northerly than northwest from the Islands of Tristan da Cunha | 19 0 | S 3130 | 30 0 |
| E. |  | Slightly more westerly than northwest from the aforesaid Islands | 150 | S 3130 | 360 |
| 苞 |  | To the south of the Cape of Good Hope | 230 | S 3530 | 570 |


(For notes, see p. 441).
${ }^{1}$ ) Cape Verde Islands.
${ }^{2}$ ) Northumberland, east coast of Great Britain.
${ }^{3}$ ) In view of the latitude given, South Foreland near Dover must be meant.
${ }^{4}$ ) The island of Hjelmsöy, to the west of the North Cape.
${ }^{5}$ ) Nordkyn, Finnmark, a cape to the east of the North Cape.
${ }^{6}$ ) Langenes (Capo de Prior), Sukhoy Nos, a cape on the west coast of Novaya Zemlya, in about latitude $73^{\circ} 30^{\prime} \mathrm{N}$.
${ }^{7}$ ) Berg Island, one of the Gorbovi Islands, near the west coast of Novaya Zemlya.
${ }^{8}$ ) Cape Bolshaya Ledyanoi, north point of Novaya Zemlya.
${ }^{9}$ ) "Het behouden huis", where Heemskerck and Barents passed the winter of $1596 / 97$.
${ }^{10}$ ) East còast of Brazil, near Pernambuco.
${ }^{11}$ ) What is meant is: in the meridian of Cape Palmas, coast of Liberia, in latitude $4^{\circ} 25^{\prime} \mathrm{N}$.
${ }^{12}$ ) Cape Agulhas, south point of Africa, in latitude $34^{\circ} 50^{\prime} \mathrm{S}$.
${ }^{13}$ ) Baixos da Judia, Mozambique Channel. This shoal is called Judia, after the ship "de Jodin" (the Jewess), which got into trouble there.
${ }^{14}$ ) West coast of Madagascar, latitude $23^{\circ} 30^{\prime} \mathrm{S}$.
${ }^{15}$ ) Cabo Sant Roman, Cape Andavaka, south coast of Madagascar, situated southwest of Fort Dauphin.
${ }^{16}$ ) East coast of Madagascar, latitude $16^{\circ} \mathrm{S}$.
${ }^{17}$ ) A mythical island, imagined east of Madagascar.
${ }^{18}$ ) Java.
${ }^{19}$ ) Lubock is the island of Bawean, situated north of Surabaya, in about latitude $6^{\circ} \mathrm{S}$. The name is a corruption of the Malay word lubuk, which means harbour basin. The island owes this name to the big inlet Sangkapura, on the southern side of the island.
${ }^{20}$ ) For Bunam or Bima, see page 370, note 17 .

## r. Bepaling.

De afwijcking der naelde vant noorden na t'oolten, heet ooftering, maer nat'weften, weltering, ende inL ghemeen naeldwijcking: Maer naeldwijcking en rechte noortwijfing, in $L$ ghemeen naeldwijfing.

AENGAENDE de woorden van vergrootende en verkleenende ooftering, en weftering,oock van eerfte en tweede perck, die vereyfchen eer wy totte bepaling commen, wat breeder verclaring, tot welcken einde wy aldus fegghen: Men fiet inde tafel, dat de naelde in Corvo reche noort wijft, maer van daer ooftwaert commende, datfe begint te oofteren allencx meer en meer, tot een mijl ooftwaert van Plemouth, alwaer de afwijcking ten grootften is van 13. tr. 24. (1). Ende van daer voorder commende, fij begint te vercleynen tot Helinfhuy by weften de Noortcaep van Finmarcken toe,alwaerfe weerom rechtnoort wijift. Voort is de langde van Corvo tot Helmfchuy van 60. tr. Twelck foo fijnde, het blijct dat de voorf. grootfte naeldwijcking van 13.tr. 24. (1). by Plemouth wiens langde 30 . tr. ghefchiet ine middel der twee plaetfen daer de naelde recht noort wijft, want den 30 . tr. is int.middel tuffchen t'begin en den 60.tr.

Tghene:

## 1st Definition.

The declination of the needle from the north to the east is called easterly variation, but to the west, westerly variation, and in general variation; but variation as well as north-pointing of the needle are called needle-pointing.

As regards the words increasing and decreasing easterly and westerly variation, and also first and second segment, these require some further explanation before we come to the definition, to which end we say as follows: It is seen in the table that in Corvo the needle points due north, but that, when from there one comes to the east, it gradually begins to decline to the east more and more, up to one mile eastward from Plymouth, where the variation is greatest, namely $13^{\circ} 24^{\prime}$. And when from there one gets further, it begins to decrease up to Hjelmsöy to the west of the North Cape of Finnmark, where the needle points due north again. Further the longitude from Corvo to Hjelmsöy is $60^{\circ}$. This being so, it appears that the aforesaid greatest variation of $13^{\circ} 24^{\prime}$ off Plymouth, whose longitude is $30^{\circ}$, is midway between the two places where the needle points due north, for $30^{\circ}$ is in the middle between zero and $60^{\circ}$.

Tghene wy hier ghefeyt hebben, vande verandering der naeldwijfing op de noorffijde des certrijcx, dergelijcke bevint fich deur ervaring oock opde zuytfijde, want op ros. Spaenfche mijlen weftw aerr van Cábo Sant Augultin opt begin der langde, wijft de naelde recht noort, alfoofe oock doet ter plaets inde tafel ghefeyt, op 17. Duytfche mijlen van Cabo das Aguillas, wefende op 60 . tr.der langde, ende int middel tuffchen beyden, dats op den 30. tr. valr aldaer oock ghelijck opde noortfjde de groorfte ooftering, dats ter plaets inde tafel ghenaemt, noortweft wel foo noorderlick vande Eylanden van Triftan da Cuncha, doende die wijcking 19. tr.

Hier uijt wilmen befluyten, dat de naelde recht noort wijft tot alle plaetfen ghelegen inde twee halfmiddachfronden deur Corvo en de Helmfhuy, van deen * afpunt tot dander. Oock mede dat de naeldens * polo. ooftering ten grootiten is, tot alle plaetfen int halfmiddachfront ftreckende deur deplaets ghelegen een mijle ooftwaert van Plemouth.

Inder voughen dat in fulck anfien, het eertrijcxdeel begrepen tuffchen die twee halfiniddachfronden, 60. tr. in langde van malcander, is een perck int welck de naeldeover al vant noorden na toonten wijckt, ende inden helft van dien, dat is het certrijcx deel begrepen tuffchen de twee halfmiddachfronden, teerfte deur. t'begin, het ander deur dein 30. tr. foude over al fijn vergrootende ooftering: Ende in dander helft verkleenende ooftering: welverttaende alfmen vant weften uat'ooften trect, dats na t'vervolg vande tr. der langde.

Dear

A similar thing to that which we have here said about the change of the needle-pointing on the north side of the earth is also found by experience on the south side, for at 105 Spanish .miles westward from Cape St. Augustine in longitude $0^{\circ}$ the needle points due north, as it also does in the place given in the table, at 17 German miles from Cape Agulhas, which is in longitude $60^{\circ}$, and in the middle between the two, i.e. at $30^{\circ}$, as on the north side, falls the greatest easterly variation, i.e. in the place mentioned in the table, slightly more northerly than northwest from the Islands of Tristan da Cunha, said variation being $19^{\circ}$.

From this it is concluded that the needle points due north in all places situated in the two meridian semi-circles through Corvo and Hjelmsöy, from one pole to the other. Also that the easterly variation of the needle is greatest in all places in the meridian semi-circle passing through the place situated one mile eastward from Plymouth.

Thus, considering the above, the part of the earth contained between those two meridian semi-circles, $60^{\circ}$ in longitude distant from each other, is a segment in which the needle declines everywhere from the north to the east, and in one half of it, i.e. the part of the earth contained between the two meridian semi-circles, the first through longitude $0^{\circ}$, the other through $30^{\circ}$, there is everywhere increasing easterly variation, and in the other half decreasing easterly variation, that is to say: when one goes from west to east, i.e. in the order of the degrees of longitude.

Deur tgene tot hier toe ghefeyt is vant eerfte perck met ooftering, ende fijntwee deelen, t'een met vergrootende ooltering, t'ander met vercleenende,machmen lichtelick verftaen derghelijcke ghedaenten vant tweede perck met weftering, ende fijn twee deelen, teen met vergrootende weftering, t'ander met verklennende: Want inde mont der Rivier van Cantan in China, ligghende in langde 160 .tr. van Corvo, daer wijlt de naelde de derdemael recht noort, daerom aldaer gherrocken een derde halfiniddachfront, foo is het eertrijcxdeel begrepen tuffchen dat tweede halfimiddach front ende dit derde roe. tr. van malcander,een perck int welck de naelde overal vant noorden na tweften wijcke, ende int middel van defe. twee, dats int halfmiddachfront $\rho 0$. tr. vant tweede, ende oock foo veel vant derde, oft anderfins iro.tr. vant eerfte door Corvo, dacr heeftmen oock de grootfte afwijcking der naelde, foot inde tafel tot twee plaetfen blijckt, deen op Willems Eylant by Nova Zembla, alwaer de grootfte weftering op die breede bevonden is van 33 .tr. dander 34 . Duytfche mijlen zuytooft van S. Brandaon, alwaer de grootte naeldwijck op die breede bevonden is van 22. tr. wefende de langde van elck dier twee platfen no.tr. Sulcx dat inden helft van dit tweede perc, dats het eerrijijcxdeel begrepen tuffchen de twee halfmiddachfronden, teertte deur den 60 . tr. t'ander deur den no.tr. foude overal fijn vergrootende weftering, in dander helft verkleenende weftering.

Van defe 160 . tr. der langde, twelck op 20.tr. na, dcn

From what has so far been said about the first segment with easterly variation and its two parts, the one with increasing, the other with decreasing easterly variation, it can easily be understood that the second segment with westerly. variation and its two parts, the one with increasing; the other with decreasing westerly variation, is of the same nature. For in the mouth of the River of Canton in China, situated in longitude $160^{\circ}$ distant from Corvo, the needie points due nerth the third time; consequently, if a third meridian semi-circle is drawn there, the part of the earth contained between the second and the third meridian semi-circle, $100^{\circ}$ distant from each other, is a segment in which the needle declines everywhere from the north to the west, and in the middle of these two, i.e. in the meridian semi-circle $50^{\circ}$ distant from the second and as much from the third, or in other words $110^{\circ}$ distant from the first through Corvo, the greatest variation of the needle is to be found, as appears in the table in two places, the one in "Willems Eylant", near Novaya Zemlya, where the greatest westerly variation in that latitude is found to be $33^{\circ}$; the other at 34 German miles southeast from St. Brendan, where the greatest variation in that latitude is found to be $22^{\circ}$, the longitude of each of those two places being $110^{\circ}$. Thus in the one half of this second segment, i.e: the part of the earth contained between the two meridian semi-circles, the first through $60^{\circ}$, the other through $110^{\circ}$, there would be everywhere increasing westerly variation, in the other half decreasing westerly. variation.

HAVENVINDING.
15 den belft des cerrijcx is, heeft de voorf. Plancius de naeldwijfinghen becommen ghelijckfe hier vooren befchreven fijn : Maer vande reft des eertijex; to weten van Cantan ooft waert, of van Corvo weftivaert, en overcommen de ervaringhen nier die hem van Spaengjaerden, Engelfchen en onfe zeevaerders ter hande ghecommen fijn, als ghedaen wefende fonder bequamen tuych, eñ ghenouchifaem wetenfchap: Doch verwacht hy van daer alle daghe nieuwe zeker ervaringhen, deut fchepen die meer dan veerthien maenden uijtgheweeft fijn. Maer daerentuffchenfullen wy fegghen tgene inen van dat decl eenichfins vermoet als volght: By aldien de eygheinfhap der rechtnoortwijfing, niet alleen en is inde voorf. drie boghen, diemen meent halfmiddachfronden te wefen, ghelijck wy vooren ghefeyt hebben van deen afpunt tor dander, maer inde heele ronden, foo foudender opt eertrijck in als fulcke fes halfronden fijn, vervanghende fes percken.

Teerfte met ooftering lanck 60. tr. Het tweede met weftering lanck $100 . \mathrm{tr}_{0}$ Het derde met ooftering lanck 20. tr. Het vierde met weftering lanck 60.tr. Het vijfde met ooftering lanck soo. tr. Het fefte met weftering lanck 20.tr.
Om tgene voorfeyt is deur een form noch opentficker te verclaren,foo laet a b C DEFGHIKLM, het middelront des eertcloots beteyckenen, diens afpunt w. Voort fj N A den helft van teerfte halfmiddachfront deur Corvo, N C het tweede, N E het derde, N G het

Of these $160^{\circ}$ of longitude, which is $20^{\circ}$ short of one half of the earth, the aforesaid Plancius obtained the variations as they have been described above. But for the rest of the earth, to wit, from Canton eastward or from Corvo westward, the observations he obtained from the Spaniards, the English, and our own navigators do not agree, because they have been made without suitable instruments and sufficient knowledge. But he expects any day to receive new and more exact observations about that part through ships that have been away for more than fourteen months. Now in the meantime we shall say what is assumed about that part, as follows. If the property of the north-pointing applied not only in the aforesaid three semi-circles, which are thought to be meridian semicircles, as we have said above, from one pole to the other, but in the whole circles, there would on the earth be six such semi-circles in all, containing six segments.

The first with easterly variation $60^{\circ}$ long
The second with westerly variation $100^{\circ}$ long
The third with easterly variation $20^{\circ}$ long
The fourth with westerly variation $60^{\circ}$ long
The fifth with easterly variation $100^{\circ}$ long
The sixth with westerly variation $20^{\circ}$ long.
In order to explain the above even more clearly by means of a figure, let $A B C D E F G H I K L M$ designate the equinoctial circle of the earth, its pole $N$. Further let $N A$ be the half of the first meridian semi-circle through Corvo, $N C$
het vierde, N I het vijfde, $\mathrm{N} L$ het fefte, ende alfoo dat de booch A C doe 6 c. tr. C E 100 .trdats A E 160 . tr. eg 20.tr. dats a g $180 . \operatorname{tr}$. Gi 60.tr. dat A 1240 . tr. I L 100. tr. dats A l 340 .tr. L A $20 . t r$. dats tgeheel rondr 360 . tr. Voort fijin de fes punten $B, D, F$, $\mathrm{H}, \mathrm{K}, \mathrm{M}$, middelen tuffichen $\mathrm{A} C, \mathrm{CE}, \mathrm{EG}, \mathrm{G}, \mathrm{IL}, \mathrm{LA}$ 。 Ditaldus wefende foo bediet,


ANC het $r^{e}$ perck inet ooftering.
ANB des I percx vergroorende ooftering.
BNC des i percx verkleenende ooftering.
CNE het $2^{\circ}$ perck met weftering.
CND des $2^{\circ}$ percx vergrootende weftering.
DNE des $2^{\circ}$ percx verkleenende weftering.
EMG
of the second; $N E$ of the third, $N G$ of the fourth, $N I$ of the fifth, $N L$ of the sixth, and such that the arc $A C$ makes $60^{\circ}, C E 100^{\circ}$, and so $A E 160^{\circ} ; E G 20^{\circ}$, and so $A G 180^{\circ}$; $G I \cdot 60^{\circ}$, and so $A I 240^{\circ}$; $I L 100^{\circ}$, and so $A L 340^{\circ}$; $L A 20^{\circ}$, and so the whole circle $360^{\circ}$. Further let the six points $B, D, F, H, K$, $M$ be the mid-points between $A$ and $C, C$ and $E, E$ and $G, G$ and $I, I$ and $L$, $L$ and $A$. This being so,

ANC designates the 1 st segment with easterly variation
$A N B$ the increasing easterly variation of the 1st segment
$B N C$ the decreasing easterly variation of the 1 st segment
CNE the 2nd segment with westerly variation
CND the increasing westerly variation of the 2nd segment
DNE the decreasing westerly variation of the 2nd segment

E N G het $3^{e}$ perck met ooftering.
ENF des $3^{\circ}$ percx vergrootende ooftering.
FNG des $3^{\circ}$ percx verkleenende ooltering.
G N I het $4{ }^{e}$ perck met wêftering.
G NH des $4^{\circ}$ percx vergrootende weftering. HNI des $4^{c}$ percx verkleenende weftering.
I NI het $s^{\text {e }}$ perck met ooftering.
INK des $5^{\text {e }}$ percx vergrootende ooftering.
K N L des $5^{\text {c }}$ percx verkleenende ooftering.
LNA het $6^{e}$ perck met weftering.
$L N M$ des $6^{\circ}$ percx vergrootende weftering. MNA des $G^{e}$ perx verkleenende weftering.

Merct. Hoewel het te vermoeden is, datmens de drie laette balfronden niet vinden en fal van ghedaente als de voorgaende giffing inhoudt, maer miffchien in menichte neer of min, en van ander gheftalt; doch foo is hier me voorbeeldfche wijfe verclaert de manier hoemen de weerelt int gheheel fal meughen deylen, met fulcke halfronden alffer alifdan ghevonden fullen worden: Boven dien is deur tvoorgaende ghenouch te verftaen, wat bedien vergrootende en verkleenende ooftering, en weftering, oock eerfte en tweede halfmiddachfront, met eerfte en tweede percken: Om welcke by manier van bepaling te vervaten, men foudemeughen aldus fegghen:

C 2. Веря
$E N G$ the 3rd segment with easterly variation
ENF the increasing easterly variation of the 3 rd segment
FNG the decreasing easterly variation of the 3 rd segment
GNI the 4th segment with westerly variation
GNH the increasing westerly variation of the 4th segment
HNI the decreasing westerly variation of the 4th segment
$I N L$ the 5th segment with easterly variation
INK the increasing easterly variation of the 5 th segment
KNL the decreasing easterly variation of the 5th segment
LNA the 6th segment with westerly variation
LNM the increasing westerly variation of the 6th segment
$M N A$ the decreasing westerly variation of the 6th segment
NOTE. Though it is to be expected that the three last semi-circles will not be found to be such as the preceding conjecture implies, but perhaps in a quantity either more or less and of a different form, yet it has thus been explained by way of example in what manner the whole world may be divided by such semicircles as shall be found. Moreover it can be sufficiently understood from the foregoing what is the meaning of increasing and decreasing easterly and westerly variation, also of the first and the second meridian semi-circle, with the first and second segments. In order to summarize this in the form of definitions, it might be said as follows:
2. Bepaling.

Vergrootende ooftering of weftering, is die welcke de naelde van weften na ooften voortghebroch , zijnde, vergroot: Ende verkleenende, die alfdan verkleent.

## 3. Bepaling.

$\mathrm{De}_{\mathrm{E}}$ halfmiddachfronden daer de. naelde recht noort in wijt, heeten wy eerfte,tweede halfmiddachfront, en foo oirdentlick voort na tvervolgh vande trappen der langde foo vecl alffer fulcke ronden zijn, beginnêde vant halfmiddachfront deur Corvo.
4. Bepaling.

Tviack begrepen tuffchen teerfte en tweede halfmiddachfront, noemen wy eerfte perck, en dander oirdentlick vervolghende tweede, derde perck, tottet hatite.

De

## 2nd Definition.

Increasing easterly or westerly variation is that which increases when the needle is carried from west to east; and decreasing variation, which then decreases.

## 3rd Definition.

The meridian semi-circles in which the needie points due north we call the first and the second meridian semi-circle, and so on in the order of the degrees of longitude, as many such semi-circles as there are, starting from the meridian semi-circle through Corvo.

## 4th Definition.

The surface contained between the first and the second meridian semi-circle we call the first segment, and the others in due order the second segment, the third, up to the last.
$D_{E}$ ghedaenten der uaeldwijfinghen aldus befchreven fijnde, wy fullen nu deur voorbeelt verclaren, ghelijck t'voornemen was, dat hoewelder op een felve breede evegroote naeldwijckinghen fijn tot verfcheyden plaetfen des eertrijcx, dat nochtans den Stierman can weten in welcke der felve hy is. Laet tot defen einde een fchip andermael moeten varen van Amfterdam na Cabo Sant Augultin, in Brafilie, wiens breede inde tafel befchreven faer van 8. tr. 30. (1), ende de naeldwijing vergrootende ooftering des eerften percx van 3. tr. Io. (1). Tfelve fchip afvarende, ende commende voorby Engelandt, bevindt fijn naeldwijfing daghelicx meer en meer te oofteren,tot by Pleymouth toe, alwaerfe ten grootten wefende van $13 . \mathrm{tr} .24$. (1), het verfekert hem dat hy tot daer toe ghevaren heeft in verkleenende ooftering des eerften percx, endedat hy van daer voort feylt inde vergrootende ooftering, welcke hy bevindende van 10. tr. opde breede van 38. tr. ss. ©. Weet hem te wefen ontrent Cabo de Roca by Lifbona: Van daer af, ontrent zuytwelt anvarende, fal daghelicx bevinden de breede te minderen, ende de naelde noordelicker te keeren: Oft anderfins foo die daghelick fche noordering niet en bleecke, maer dat de naelde een felve ftreeck wefe, oft oofllicker keerde, falt daer voor houden dat onbemerckelicke ftroomen fija fchip al varende ooftwaert drijven : Om twelck te voorcommen, falt foo veel weftelicker an fetten, dat hy daghelicx de naeldens behoirlicke noordering crijghe. Maer foohy quaem totte ooftering van 3 . tr.10.(0. eer hy $\mathrm{Cl}^{2}$ gherocht

The character of the needle-pointings thus having been described, we shall now explain by means of examples, as was our intention, that although at the same latitude there are equal variations in different places of the earth, the navigator may nevertheless know in which of these places he is. For this purpose let a ship, have to sail once more from Amsterdam to Cape St. Augustine in Brazil, the latitude of which is given in the table as $8^{\circ} 30^{\prime}$ and the variation is increasing easterly variation of the first segment of $3^{\circ} 10^{\prime}$. When this ship puts off and sails past England, the variation will be found to become more and more easterly every day up to Plymouth, and since it is there at its greatest, namely $13^{\circ} 24^{\prime}$, this assures the navigator that he has so far sailed in the decreasing easterly variation of the first segment and that from there he will further sail in the increasing easterly variation, and when he finds this to be $10^{\circ}$ in latitude $38^{\circ} 55^{\prime}$, he knows that he is off Cabo da Roca near Lisbon. When from there he sails about southwest, he will daily find the latitude decreasing and the needle returning to the north 1). Or else, if this daily return further to the north did not become apparent, but the needle pointed in the same direction or declined further to the east, he will assume that imperceptible currents are driving his ship eastward; and in order to prevent this, he will direct it so much further westward that he may daily obtain the proper return of the needle to the north. But if he comes to

[^110]D E
gherocht totte zuyderlicke breede van 8.tr. 30. (1. hy fal maken foo veel hem meughelick is, die naeldwijcking int zuytwaert varen te behouden, foo veel ooftelicker of weftelicker feyléde als de faeck vereyfcht. Ende hoewel hem na gifling docht anders te behooren,en fal die nochtans niet volghen, om redenen hier vooren breeder verclaert, want commende alfoo totte zuyderfche breede van 3. tr. 30. (1). met vergrootende ooftering van 3. tr. 10.(1). hy moet (tmach mette langde dier plaets fijn foot wil) ontrent Cabo Sant Auguftin wefen, ende dat met fekerheyt; daermen anders op giffing betrouwende, ettelicke hondert mijlen vande begeerde plaets gheraect, fonder te weten ofmender ooft of weft af light, ghelijck op fulcke reyfen metter daet ghenouch ghebleken heeft. Daerom tot allen houcken des weerelts de naeldwijfing en breede wel ghenomen fijnde, ende an alle man bekent ghemaect, men fal de weerelt anders connen befeylen danmen ghedaen heeft.
Tot hier toe fijn befchreven de ghedaenten der naeldwijfinghen, volghende uijt het gheftelde des tafels: Soo ander fekerder ervaringhen in toecommenden tijr anders wefen, men fal daer uyt anders meughen belluyten, ende inde zeyling fich na t'befte altijs ghevoughen.
the easterly variation of $3^{\circ} 10^{\prime}$ before he has reached latitude $8^{\circ} 30^{\prime}$ South, he must do all he can to keep this variation in going to the south, sailing so much more towards the east or the west as required. And though by conjecture he thinks it ought to be otherwise, he must not proceed on this, for the reasons set forth more fully above, for if he thus comes to latitude $8^{\circ} 30^{\prime}$ South with increasing easterly variation of $3^{\circ} 10^{\prime}$, he must be (whatever may be the longitude of the place) off Cape St. Augustine, with certainty, whilst otherwise, relying on conjecture, one gets many hundreds of miles from the desired place, without knowing whether one is to the east or the west of it, as has appeared often enough in practice during such voyages. If therefore the needle-pointing and the latitude are duly observed in all corners of the world and made known to everybody, it will be possible to sail the world in another way than hitherto.

Thus far the character of the variations following from the data of the table has been described. If other, more exact observations should prove different in the future, other conclusions can be drawn from them, and in navigation the best must always be used.

## Hoemen het noortpunt ers naeldruvijfing roindt.

Ho e wel het vinden der naeldwijfing (daer af wy hier vooren dickwils ghefeyt hebben) an velen bekent is, nochtans fullen wy daer af fchrijven voor de ghene diet niet en weren.

Anghefien men hier begeert te vinden de afwijcking der naelde vant noorden, foo fouctmen eerf het noortpunt, om de naeldwijfing daer by te verlijcken. De manier der vinding vant felve noortpunt in een beweghende fchip op zee, heeft groore ghemeenfchap mette manier der vinding vant noortpunt, of vande middachslijnope vaft lant, ende mach onder anderen aldus uijtgherecht worden: Men doet int zeecompas de leli recht overcommen mettet noortende vant ftael, of vande zeylnaelde daer onder ligghende: Of noch beter machmen in plaets vande lefi, een naelde felf boven opt papier valt legghen, deelende tronde van tfelve papier in fijn 360. tr. beginnende ande naeldens noortpunt als hier onder het rondt A B C $D$, waer in de naelde beteyckent is met $A C$, valtghemaect wefende opt felve papier, E is tmiddelpunt: Tgebruyck hier me is dufdanich: Ghelijck den Stierman int foucken der breede, wacht tot dat de middach ghecommen is, te weren tor dat de fchaen van een hangfnoer of rechtfinoer, overcomt mette lini die hy in fijn compas voor de middachslijn houdt, alloo fal hy hier doen, uijtghenomen dat hy begint 3.4 . of 5. uijren of $\mathrm{C}_{3}$ meer

How the True North and the Variation are found.
Although the finding of the variation (about which we have often spoken above) is known to many people, we shall write about it for those who do not know it.

Since it is desired to find the variation of the needle from the north, first the true north is sought, in order that the needle-pointing may be compared with it. The method of finding the said true north in a moving ship at sea greatly resembles the method of finding the true north or the meridian line on the land, and can be carried out, among other things, as follows. The fleur-de-lys in the mariner's compass is made to correspond exactly with the north end of the steel or of the magnetic needle lying underneath. Or, better still, instead of the fleur-de-lys a needle itself can be fixed on top of the paper and the circumference of the said paper can be divided into its $360^{\circ}$, starting at the north-point of the needle, e.g. the circle $A B C D$ below, in which the needle is denoted by $A C$, being fixed on the said paper, $E$ being the centre. The use of this is as follows. Just as the navigator, when seeking the latitude, waits until noon has come, to wit, until the shadow of a plumb-line coincides with the line which he regards as the meridian line in his compass, so he must do here, except

24 $\quad$ DE
meer voor middach aldan, acht nemende op wat trap en ghedeelte van dien de fchaeu des hangfinoers wijft, bevint die, neem ick; apden 40.tr. gheteyckent F, fulcx dat G E F, de fchaeu bediet, ende nemende alf. dan de Sonnens hooghde, bevint die, by voorbeele, van 25 . tr. welcke hy, metfaders de 40 . tr. tor ghe. dachtnis opreyckent: Wachtende voorss foo lang na

that he begins 3,4 or 5 hours or more before noon, noting at what degree and part of it the shadow of the plumb-line points. Let us assume that he finds this at $40^{\circ}$, designated by $F$, so that $G E F$ denotes the shadow. Then, taking the Sun's altitude, he will find this to be e.g. $25^{\circ}$, which he notes down, together with the $40^{\circ}$, as an aid to memory. Then, waiting so long after noon until the
middach, tot dat de Son weerom ghedaelt is tot op de felve hooghde alfvooren van 2 s . tr. fal.fien waer de fchaeu vant hangfinoer alfdan opt papier wijft, twelck fij, neem ick, 40 . tr. over dander fijde, als an h, fulcx dat I e H , de fchacu bedier. Dir foo fijnde, t'middel des boochs F H, als A, is tbegeerde noortpunt, ende want de naelde daer recht op wijlt,foo en heeftfe in dat voorbeelt gheen wijcking, dan wijft recht noort. Maer foo inde voorf. ervaring na middach de fchaeu vant hangfnoer niet ghewefen en hadde 40. tr. over dander fijde van $A$, maer by voorbeelt alleenelick 20.tr. tot $k_{\text {; }}$ In fulcken ghevalle deeltmen den booch $F$ K, doende Go. tr. door tghedacht in tween an L , fulcx dat $\mathrm{L} F, \mathrm{~L}$ K, elck doen 30 . tr. Twelck foo fijnde, l ift noortpunt, ende de begeerde naeldwijcking daer af is ooftering van $L$ tot $A$ ro. tr.

Maer byaldien inde voorf. ervaring na middach, de fchaeu vant hangfnoer ghewefen hadde op L , dats 30.tr. van F , foo deeltmen den booch FL , doende 30 . tr. doortghedacht in tween an $M$, fulcx dat $M F, M L$, elck doen is.tr. twelck foo fijude, $M$ is thoortpunt, ende de begeerde naeldwijcking daer af, wefende ooftering van M tot A 2 . tr. ende alfoo met alle voorbeelden. Maer foode naelde alleen draeyde, fonder an een papier ghehecht te fijn als hier vooren, ende dat de trappenop den cant vande caffe gheteyckent waren, ghelijek wel ghedaen worr: Tghebruyck is daer me alfyooren, midrs datmen ten tijde der ervaring, de caffe keert tot dat de naelde opt begin der trappen wijft.

Ander

Sun has descended again to the same altitude as before, namely $25^{\circ}$, he must find where the shadow of the plumb-line then points on the paper. Let us assume this to be $40^{\circ}$ on the other side, namely at $H$, so that IEH denotes the shadow. This being so, the middle of the arc $F H$, namely $A$, is the desired true north, and because the needle points straight to it, it has no variation in this example, but points due north. But if in the aforesaid observation after noon the shadow of the plumb-line is not $40^{\circ}$ on the other side of $A$, but e.g. only $20^{\circ}$, at $K$, in such a case the arc $F K$, which makes $60^{\circ}$, is divided in two in imagination at $L$, so that $L F$ and $L K$ each make $30^{\circ}$. This being so, $L$ is the true north, and the desired variation is an easterly variation from $L$ to $A$ of $10^{\circ}$.

But if in the aforesaid afternoon observation the shadow of the plumb-line is at $L$, i.e. $30^{\circ}$ from $F$, the arc $F L$, which makes $30^{\circ}$, is divided in two in imagination at $M$, so that $M F$ and $M L$ each make $15^{\circ}$. This being so, $M$ is the true north, and the desired variation, which is an easterly variation from $M$ to $A$, is $25^{\circ}$, and the same applies to all examples. But if the needle alone is turned, without being fastened to a paper, as above, and the degrees are marked on the rim of the box, as is sometimes done, it is used in the same way as above, provided the box is turned at the moment of the observation until the needle points at the zero point of the graduation.

* 2uadrancem Azimusbalium fen varris. culiù cuizes plaviu bo. nennale.

24
Ander fijnder die nemen een * roppich vierendeel ronts, wiens fichtemderfplat, niet teghenftaende de beweeghlicheyt des fchips, altijt in waterpas blijft, deur fulckenranier als int volghende ghefeyt fal worden. Hier me vintmen de Sonnens hooghde met haer fopbooch beyde teffens: De form daer af mach dufdanich ivelen: A в C bediet een vierendeel ronts, ftaende rechthouckich opt rond $B D C E$, ghedeelt in fijn 360 . trappen, twelck het fichtenderfiplat beteyckent, fijn middelpunt is $F$, waer op tvierendeelronts. draeyen can,ende op dattet alfins rechthouckich blijft opt voorf, rondt $B D C E$, foo comt van deen en dander fijde een fteunfel, als van $G$ tor by den $E$, valt ghemaect an tvoorf. vierendeelróts, on daer me te drayen. Voort iffer int rondt BDCE een glas,en daer onder fijn feylnaelde, foo lanck alffe ten langtten inde caffe bequamelick vallen mach, ende heeft de felve caffe van binnen heur 360 . tr. daer de punt der naelde fcherpelick op wijfen mach,overcommende die 360 . tr. met dander $360 . \mathrm{tr}$. boven opt fichtemderfront. Defen tuych is deur de vondt van Reyner Pieterfz. hanghendeghemaect op twee verfheyden affen, na de manier der zeecompaffen, op dat alloo het rondt BDCE, inde beweginghen vant fchip altijt evewijdich vanden fichtemder blijve: Ende op dattet felve noch meerder fekerheyt hebbe, foo worter onder een ghewicht an vervought ghereyckent H, van 25. of 30 . pont, of foo veel als de grootheyt vanden tuych vereyfcht.

Tis oock te ghedencken oirboir te wefen, dattet vierendeelronts tfijnder plaets recht overende ftaende, over

There are others who take an azimuthal quadrant, the horizontal plane of which, notwithstanding the movement of the ship, always remains level, by the method to be described in the following. By this means the Sun's altitude is found along with its azimuth. The figure relating thereto may be as follows. $A B C$ designates a quadrant of a circle, at right angles to the circle BDCE, divided into its 360 degrees, which denotes the horizontal plane. Its centre is $F$, about which the quadrant can turn, and in order that it may always remain at right angles to the aforesaid circle $B D C E$, a support is provided on either side, namely from $G$ to $D$ and $E$, fastened to the aforesaid quadrant, in order to turn along with it. Furthermore there is in the circle BDCE a glass, and underneath it the magnetic needle, which has the maximum length possible in the box, and on the inside of this box are marked the 360 degrees, at which the point of the needle can point accurately, these 360 degrees corresponding to the other 360 degrees on top of the horizontal circle. By the discovery of Reynier Pietersz ${ }^{1}$ ) this instrument has been suspended on two different shafts, in the manner of the mariner's compass, in order that the circle $B D C E$ may thus, in spite of the movements of the ship, always remain parallel to the horizon. And in order that this may be even more certain, a weight is fixed underneath it, marked $H$, namely 25 or 30 pounds or as much as the size of the instrument makes necessary.

[^111]HAVENYINDING.


* Alidador Angaende ymant mocht dencken; dat de * wijfreghel in verfcheyden plaetfen hoogher of leegher ghedraeyt, te groote verandering int ghewicht mocht geven, daer af en is gheen merckelick feyl te verwachten, om tgroot ghewicht van H , ende de lichticheyt der wijfreghel.

De ghebruyck daer af, om inoortpunt en naeldwijfing te vinden, is dufdanich: Men begint, gelijck in deertte wijfe, etrelicke uijren voor middach, draeyende den tuych tot dat de naelde opt begin des ronts wijft,daer na keertmen het vierendeel ronts foo lang herwaerts en derwaerts, tor dat de Son deur de fichtgaetkens fchijnt : Twelck foo fijnde, men bevint, neem ick, dat den onderften cant of wijfer vant vierendeelronts, wijf int fichteinderfplat opden 40:trap, ende de hooghde der Son, die int vierendeelronts anghewefen wort van, neem ick, 25. tr. welcke men, mitfgaders de $40 . t r$ tor gedachrnis opteyckent. Wachrende voort foo lang na middach, tor datmen de Son deur den feluen tuych ghedaelt vindt tot opde felve hooghde alfvooren van 25 . tr. men keert alfdan den ftoel ter eender en ander fjjde, tor dat de Son deur de fichtgaerkens fchijnende, de naelde weerom wijh

It is also to be remembered that it is suitable for the quadrant which is vertical in its place to have the same weight on either side, i.e. the side from $F$ to $C$ to have the same weight as that from $F$ to $B$, which can be known if the quadrant is taken off and suspended with $G$ downward by a thread fastened in the middle of $B C$ at $F$, and then so much must be filed away from the heavier side, until the line $B C$ hangs level.

If anyone should think that the pointer might bring about too great a variation in the weight in different places according as it is turned higher or lower, no appreciable error is to be expected from this, because of the great weight of $H$ and the lightness of the pointer.

The way in which this instrument is used to find the true north and the variation is as follows. The observation should be started, as in the first case, a few hours before noon, the instrument being turned until the needle points at the zero point of the graduation. Thereupon the quadrant is turned this way and the other until the Sun shines through the sights. This being so, it is found e.g. that the lower edge or pointer of the quadrant points in the horizontal plane at $40^{\circ}$, while the altitude of the Sun, which is indicated in the quadrant, is e.g. $25^{\circ}$, which is noted down, together with the $40^{\circ}$, as an aid to memory. Then one should wait after noon until by means of the instrument the Sun is found to have descended to the same altitude as before, namely $25^{\circ}$. Then the quadrant is turned this way and the other until, the Sun shining through the sights, the
opt begin des ronts: Twelck foo fijnde, t'middelltc punt des boochs int fichteinderfilat tuffchen decrite en tweede ervaring, is tgefochte noortpunt: Ende foo veel de naelde alfdan daer af wijekt, dars de begeerde naeldwijcking, gelijck int cerfte voorbeelt war breeder van fulcx ghefeyt is.

Deur tghene hier boven ghefeyt is vande ervaring mette Son des daechs, mach derghelijcke verftaen worden ende ghefchien met yder vafte fterre des nachts, die ghebruyckende aloft de Son waer: mact niet de Maen,eenideels om heur raffche cyghon loop, ten anderen om tgroot * verfcheenficht date heeft ximaratavan weghen fij teertrijck foo na is.

Merckt noch datmen voor den middach tivec drie vier of meer ervaringhen mach doen : Als by gelijcknis, deerfte wefende de Son boven den fichteinder ro.tr. inde tweede is. tr. indederde 20.tr. ende doende dergelijcke drie ervaringen op fulcke hooghden na middach, foo bevintmen hoe deen met dander overcomt, endéalfinen alfins een felve noortpunt crijcht, tgheeft den Stierman meerder betrauwen op fijn werck.

Seylende een Stierman van ooft na weft of van weft na oolf, t'can ghebeuren dat hy opden tijt van 10. of 12 . uijren tufichen deetfte ervaring en de lactlte, een trap of ineer verandering der naeldwijfing crijge, waer uyt wijder volghen can, dattet noortpunt ghevonden deur deerfte voormiddachfche crvaring, en de laetfe namiddachfohe, niet ovcrommen en falmetset noorpunt gevonden deur de laetite yoormiddachfche
needle again points at the zero point of the graduation. This being so, the midpoint of the arc in the horizontal plane between the first and the second observation is the desired true north. And as much as the needle there declines, that is the desired variation, as has been described somewhat more fully in the first example.

From what has been said above about the observation of the Sun in the daytime the same may be understood and done with any of the fixed stars at night, which may be used as if it were the Sun; but the Moon should not be used for this, on the one hand because of the rapidity of its proper motion, on the other hand because of the large parallax it has, because it is so near to the earth.

It is further to be noted that two, three, four or more observations may be made before noon. Thus, for instance, the first when the Sun is $10^{\circ}$ above the horizon, in the second $15^{\circ}$, in the third $20^{\circ}$. And if three similar observations are made at the same altitudes after noon, they are found to correspond one with the other, and if the same true north is always obtained, this gives the navigator greater confidence in his work.

When a navigator sails from east to west or from west to east, it may happen that in the interval of 10 or 12 hours between the first observation and the last there is a difference of one or more degrees in the variation, from which it may follow further that the true north found from the first forenoon observation and the last afternoon observation will not agree with the true north


#### Abstract

23 D E


fche ervaring, en deerfte namiddachfche, fonder nochtans datden Stierman int werck ghefeylt heeft. Dit hem foo ontmoetende, hy can daer uije ramen hoe veel op feker uijren varens de naeldwijling verandert, ende daer op giffing maken, om trechte noortpunt en naeldwijfing met noch meerder fekerheyt te hebben. Tfelve canmen oock weten deur de naeldwijfing ghevonden op voorgaende daghen, ende die verleken mette wijling des teghenwoordighen dachs.

## BYVOVGH.

$\pi$HEMERCKT de ghegheven naeldwijfing en breede tfamen een feker punt anwijfen, foo wel op zee als te lande: Soo volght daer uijt meughelick te fijn, dat fchepen op een beftemde plaets in zee, verre van landt malcander vindea conuen. Twelck oirboir is onder auderen, om na ftorm de fchepen van een vlote weerom by een te gheraken. Men can daer deur oock fetten een ${ }^{*}$ faemplaets, om aldaer fchepen vow. van verfcheyden oirten, op een beftemde tijt te doen vergaren.

## FINIS.

## De feylen verbetert aldus.

iude as. Filde inde cant, voor Camton, leest Cantan. Inde 24. fiide inde canit, vosor Azimuthalium $\therefore$ isu verticulum, leeff Azimuthalem feu verticalem. Inde 24. fide, voor fichtemderfplat, leeff veral fichreinderfplat, ende voor ficheemderfront, leest ficheeinderfronc. Inde 26 . fiide inde jefte reghel, voor fyraerfte fijde veel afvilen, losff fyvaerfte figde foo veel afvilen,
found from the last forenoon observation and the first afternoon observation, without the navigator having made an error in the work. When he finds this, he may estimate from it how much the variation differs in a given number of hours' sailing, and from this may make a conjecture to have the true north and the variation with even greater accuracy. One can also know this when the variations found on preceding days are noted down and compared with the variation of the day in question.

## APPENDIX.

Since the given variation and latitude in combination indicate a definite point, both at sea and on the land, it follows from this that it is possible for ships to find each other at a given point at sea, far from the land. This is useful, among other things, to help the ships of a fleet to reassemble after a storm. By this means it is also possible to fix a rendez-vous where ships coming from different directions may meet at a predetermined time.

FINIS.

入。


# VAN DE ZEYLSTREKEN 

## THE SAILINGS

From the Wisconstighe Gbedachtenissen (Work XI, i, 24)

## INTRODUCTION

## § 1

## THE CONTENTS OF THE TREATISE DEVOTED TO THE 'ZEYLSTREKEN"

The treatise about the Zeylstreken. (The Sailings) is devoted to two special tracks, entirely different in character, along which a ship can move over the earth's surface, viz. great circle and loxodrome. It is succinctly and lucidly written. As in The Haven-Finding Art, the words express Stevin's meaning in a perfectly clear way. That is why this introduction is no more than a short explanatory commentary on the original text here presented. The reader is assumed to be familiar with nautical terminology. Nevertheless it is necessary to make a few preliminary remarks, in order to point out certain differences in character between The Haven-Finding Art and The Sailings.

The Haven-Finding Art was intended for sailors, and the author hoped that the practice of navigation might at once reap benefit from the method discovered by him, for which reason it was published in a separate booklet; it included an urgent entreaty - backed by Prince Maurice - to test its value at sea. The publication of translations of the work testify to Stevin's desire that seamen of other nationalities might also profit by it. The treatise on The Sailings, on the other hand, is a theoretical discussion of a subject belonging to the practice of navigation indeed, but not one which formed a daily concern of seamen sailing in European waters. In this work Stevin deals with problems which had so far been studied by just a few pioneers of nautical science abroad, a study which had been induced by the fact that seamen who had made oceanvoyages had been confronted with these problems in practice and had been unable to solve them. This treatise drew the attention of the Dutch to a subject which was of fairly recent date. In 1534 Nunes had taken it up, and Mercator and Edward Wright had continued the work. With the aid of their publications - not forgetting those of Apian - Stevin had studied the subject, upon which he continued the work of his predecessors, making use of their writings and calculations.

Here another point of difference between the two treatises becomes apparent. It was possible to speak of a personal conception and an original work of Stevin in the case of the description of terrestrial magnetism given in The Haven-Finding Art and the profitable use that could be made of the declination of the magnetic needle. The Sailings on the contrary is no original work, as the labour of the pioneers forms the starting-point and the backbone of this treatise. The author, however, managed to produce a systematic, well-arranged and complete summary, of the subject, cast in a clever and instructive form. It is the presentation of the matter that we are entitled to call Stevin's own conception.

Another difference between the two works consists in the language in which Stevin addresses the reader. That of The Haven-Finding Art was simple, and the seaman of 1600 could easily follow the argument if he wished to. For The Sailings this holds only in so far as the application of spherical geometry and the
solution of problems by means of measurements on the globe are concerned. But the subject-matter was beyond the mental range of the contemporary seaman as soon as Stevin began to deal with spherical trigonometry or to solve problems mathematically. In those cases it was only the mathematically trained reader who could follow him. This is the reason why The Sailings was not of direct use to navigation at the time of its appearance. It was not until much later and very gradually that this knowledge reached the seaman through the textbooks of navigation and that Stevin's work became of use to practice at sea.

As the "Summary of the Sailings" states, this treatise forms part of Stevin's Hydrography. It comprises four definitions, followed by eleven propositions, of which two relate to the great-circle track and nine to the loxodrome. At the end there is an "Appendix" on loxodromes.

The first definition says that a "zeylstreeck" is the line which ships describe when they are sailing, i.e. the line a ship follows. The name is identical with the term "sailing track", which is now used to indicate the extended fore-and-aft line. In the special case of steering due east or west Stevin speaks of "oost en: west streeck" (east and west track). Courses pertaining to other directions bear different names.

The second definition concerns the great-circle track, called "rechte streeck" (straight track) by Stevin and defined as the shortest distance between two points on the globe. To those who wonder that arcs are called "straight tracks", he says that one may speak of straightness because these lines do not deviate either to the right or to the left. In present-day terminology he would have said that the great circle on the sphere corresponds to a straight line in a plane, in contrast to the "cromme streken" (curved tracks), which are defined in the third definition.

Stevin explicitly excludes the equator and the meridians from the "cromstreken". Why he does so, will be explained presently. He defines the "cromstreeck" as the line described by a ship steering a constant course. This line is now called a loxodrome, and this term will be used henceforth. Stevin compares the loxodrome and the great circle. A ship when moving along the former follows a constant course, when sailing along the latter a variable course. Nowadays we say that the loxodrome is a line on the earth's surface which cuts all the meridians at a constant angle. This line does not lie in a plane and accordingly is a curve of double curvature. Loxodromes pass round the earth, through higher and higher latitudes; they never reach the pole, for then they would have to run towards the north, which is contrary to the definition. Stevin speaks of "slangstreken" and in the margin of "spirales". Although the equator and the meridians are curves on which the course is constant, so that by the definition they are loxodromes, yet they are great circles and do lie in a plane, which is the reason why Stevin does not include them among the "cromstreken". He is addressing the navigator directly when he gives the advice to become thoroughly familiar with the character of these curves and in cases of uncertainty in the position not to attribute errors too readily to the influence of unknown ocean-currents.

In the fourth definition the loxodromes N. by E., N.N.E., etc., are denominated 1 to 8 . The last-mentioned one is the course east, falling along the parallel. In the four quadrants the loxodromes have the same form four and four, such as N . by E., N. by W., S. by E., and S. by W., etc. Whatever holds for one out of a group, applies equally to the corresponding loxodrome in another group.

The definitions are followed by the propositions. In the first of these, two points in a given latitude and longitude are assumed on the earth's surface. With the pole these points form a spherical triangle. Of this triangle the six elements are mentioned, while it is stated that if three of them are known, the other three can be found. As examples Stevin takes the determination of: 1) the distance along the great circle between those two points, and 2) the angles between the great-circle and the meridians through the two places, in other words: the course of the ship in the place of departure and that when she has reached her destination. The problem is solved with the aid of spherical trigonometry, for which Stevin refers to the 40 th proposition on spherical triangles occurring in his Trigonometry.

The second proposition relates to great-circle sailing. It is taught in two different ways how the courses are determined which have to be steered to follow the great circle. The one method is "tuychwerckelick" (mechanical), i.e. by means of an instrument, in this case the globe. The other is mathematical. According to the first-mentioned method the place of departure is sought on the globe, after which this place is brought in the zenith by rotation of the globe in its stand. The desired course of departure is read on the horizon between the meridian through the place of departure and a pivoting vertical circle set over the place of destination. Use is thus made of a property of the poles of great-circles, viz. that the angle between two great-circles is measured by an arc of a great-circle, a pole of which is the point of intersection of these great-circles. As is evident from this, the reader is required to have some knowledge of spherical geometry. The course found is then followed a certain distance - Stevin speaks of 3 or 4 "trappen" (degrees), i.e. 180 to 240 nautical miles - upon which in the position thus reached the course is again determined in the same way. Stevin points to the change in the course which comes to light if one proceeds in this way, and to the fact that the displacements of the ship each time take place along a loxodrome. By taking the displacements small, one avoids inaccuracy. It can be checked whether the ship is still on the great-circles, as she should be, by a determination of the latitude from observation of the sun or the stars.

For the mathematical solution of the problem the reader is again referred to the treatise on spherical triangles. If the spherical triangle in question is oblique-angled, the 40 th proposition mentioned above can again be applied, but the object can also be attained by making use of right-angled spherical triangles, which is less difficult. Each time, after a given displacement of the ship, the course is determined again. If the change in the course is found to be small, the displacements can be taken larger.

In the third proposition Stevin proceeds to deal with the loxodrome. First he discusses the drawing of it on the globe. As one of the aids with which this can be done, a simple instrument is mentioned, a copper model of the loxodrome fitting on the globe, the idea of which - as Stevin states - had been borrowed from the globe-makers. It is clearly described how such models are made for each track, i.e. seven in all, and also how the loxodromes are drawn on the globe, from degree to degree of difference of longitude, with the aid of the models. It is mentioned that in theory the loxodrome cannot reach the pole, though in drawing it seems to do so. But then, drawing does not furnish an accurate result.

With the aid of mathematically calculated tables the determination of the shapes of the loxodromes can take place more accurately than by the method- described
above. To make it possible to construct a complete table of loxodromes, the latitude has to be determined of the points of intersection of seven loxodromes with the meridians, at differences of longitude of one degree.

Stevin describes two methods by which the object can be attained.
The first of these methods is the result of calculation. In small right-angled spherical triangles, the base of which is one degree of the equator or one degree of a parallel, the hypotenuse is a loxodrome, and the perpendicular side is a part of the meridian, the length of this part of the meridian is calculated each time. For this calculation Stevin again refers to his Trigonometry, viz. to the 36 th proposition concerning spherical triangles. (The reader will be well aware of the fact that the above mentioned triangles are not spherical, as two of the sides are not great-circles.) The result of the calculations are added together. The bases of these triangles are required to be known. This is the case, for Stevin has at his disposal a table in which the length of one degree of the parallel in a given latitude is expressed in minutes of the equator. It is the table of the "achtste cromstreeck" (eighth loxodrome), occuring on PP. 138/9, after the "Tafels der cromstreken" (Tables of Loxodromes). It corresponds to the present-day table for the reduction of the difference of longitude to the departure (dep: $=\triangle L . \cos b$ ), with the only difference that in Stevin's table the interval is $30^{\prime}$, whilst in the modern table the interval is $1^{\circ}$ and decreases to $10^{\prime}$ as the latitude increases.

When at the end of the fourth proposition Stevin explains the table of the eighth loxodrome, he says he has taken it without any modifications from the Cosmographia 1) of Peter Apian (Petrus Apianus, 1495-1552) 2). The table in question is already to be found in the first edition - of 1524 - of this author's widely distributed and well-known book (Book I, pp. 42-43). Apart from a few differences, to be ascribed to printer's errors on both sides, it appears to have been copied faithfully in its entirety from Apian, including the numbers indicating the decrease of the length of the degree of the parallel, from $30^{\prime}$ to $30^{\prime}$ difference of latitude, expressed in seconds. It is most likely that Stevin used a late six-teenth-century edition of the book for his purpose. The edition of 1524 is merely mentioned here to show that the table had existed long before this.

After thus having clearly explained how one is to proceed, Stevin says that it would have taken him too much time to construct in this way a complete table of loxodromes by calculation. He therefore merely pointed the way, without following it himself. Continuing his train of thought in the same direction, he might have pointed out that the numbers mentioned opened up the possibility of interpolation for the latitude, and that interpolation was necessary for the performance of the calculation of the table outlined by him, if accuracy was to be attained. But he omitted to do so.

On the other hand he did take over the Table of Rumbes of the English mathematician and nautical expert Edward Wright (1558-1615). His candid

[^112]admission of this opens his explanation of the second method by which the table could be made. His source is Wright's Certaine Errors in Navigation 3), a book which had gained fame in England and had first appeared in London in 1599, the very year in which Wright had translated Stevin's The Haven-Finding Art, thus making it known in his country.

Stevin took over the table without any modifications, notwithstanding the fact that he had found "some imperfection" in it. He says he will recur to his objections in the "Appendix". The explanation of its arrangement is preceded, by way of introduction, by the explanation of another table, viz. that of the "versaemde snijlijnen" (assembled secants), also copied by him from Wright. In the latter's work this table was called "Table for the true dividing of the meridians in the sea-chart". Stevin shows that it is produced by the constant addition of the secants of angles increasing by $10^{\prime}$, as follows:
$\sec 10^{\prime}=\quad 10,000,042$
$\sec 20^{\prime}=10,000,168$; the sum is $20,000,210$
$\sec 30^{\prime}=10,000,381$; the sum is $30,000,591$
After the performance of the additions he drops - without stating his reason for it - the last five digits, so that the numbers in the table correspond to a radius $R=100$. This explanation is followed by the table, which thus gives the sum of the secants of angles from $0^{\circ} 10^{\prime}$ to $89^{\circ} 50^{\prime}$, the interval being $10^{\prime}$.

Stevin says nothing about the meaning of these numbers. For the benefit of the reader it is here observed that in the Mercator chart the length of one minute of the meridian in a given latitude is equal to one minute of the equator multiplied by the secant of that latitude. That is why in that chart the distance from a given parallel to the equator is equal to one minute of the equator, multiplied by the sum of the secants of angles from $0^{\circ}$ to that latitude, taken minute by minute. It is this sum of the secants - though at an interval of $10^{\prime}$ - which the table furnishes. It is thus essentially identical with our present-day table of meridional parts ${ }^{4}$ ). The latter is no longer calculated by addition of the secants, but from the relation $\int \sec \varphi \cdot d \varphi=\ln t g\left(45^{\circ}+\frac{\varphi}{2}\right)$. If we compare the table published by Stevin with the modern one; the values to be found in the latter have to be multiplied by 10 . If we round off the numbers to integers and disregard differences due to rounding off, etc., the tables are seen to agree up to latitude $38^{\circ}$. Beyond that, Stevin's - or rather: Wright's - values become greater. At $60^{\circ}$ the difference is 0.3 minute of the equator and it increases to 2.8 minutes of the equator at $82^{\circ}$, where the modern table ends because the practice of navigation requires no data for higher latitudes. The table in Wright/Stevin goes as far as $89^{\circ} 50^{\prime}$, against which the number 226,223 is mentioned.

Next comes the promised explanation of the second method by which the table of the loxodromes can be constructed. The original text (p. 104, which refers to the figure on p. 95) can easily be followed. As an instance, Stevin takes the

[^113]determination of the latitudes of the points of intersection of the first loxodrome with the meridians at differences of longitude of $1^{\circ}$, commencing at the equator. In the right-angled triangle, of which the base is an arc of one degree of the equator and the hypotenuse is the first loxodrome (N. by E.) - a triangle which on account of its smallness is regarded as a plane triangle - the latitude of the point of intersection of the loxodrome with the meridian at $1^{\circ}$ of longitude is calculated with the aid of the 4th proposition of plane trigonometry. It "is found" that this latitude is $5^{\circ} 1^{\prime}$, and this value is included in the table. In order to find the latitudes of the subsequent points of intersection, Stevin now proceeds as follows. He takes the table of "assembled secants", seeks the meridional parts of $5^{\circ} 1^{\prime}$, and finds 3,014. This number is multiplied by two. Against 6,028 he finds $10^{\circ} 0^{\prime}$, which is the required latitude for a difference of longitude of $2^{\circ}$. Against $3 \times 3,014$ he finds the latitude for the third point of intersection. We shall recur presently to the calculation of the first point of intersection.
The instructions given by Stevin are indeed perfectly clear, but he does not go into the essence of the matter, nor does he explain why the multiples in question have to be determined. However, this operation becomes clear if we transfer it to the Mercator chart.


In the above figure, which represents a section of a Mercator chart, $A G$ is a part of the equator. The points $A, B, D$, and $G$ are points of intersection with meridians, at intervals of one degree of longitude. The line $A J$ is the first loxodrome. The latitude of the point of intersection $C$ was calculated mathematically by Stevin. The table of "assembled secants" showed him how many minutes of the equator the distance $B C$ amounts to. Now $\triangle C E F$ is congruent with $\triangle A B C$. Consequently $E F$ is as many minutes of the equator as $B C$. The distance $D F$ in minutes of the equator is thus twice the meridional parts of $B C$. In the table it is looked up what is the latitude corresponding to this number. Thus the latitude of $F$ has been determined. The number is included in the table. The congruence applies to all subsequent triangles. In each case, therefore, to find the latitude of a point of intersection, the meridional parts of $B C$ have to be added to those of the preceding point of intersection; in other words, the meridional parts of each of the points of intersection form a multiple of the meridional parts of $B C$.

The use of the table of "assembled secants" was a strikingly ingenious idea. Thanks to this, it was possible to reduce the extremely laborious calculation of the shapes of the seven loxodromes to the simple performance of additions and the search of numbers in that table. Although Stevin concludes his argument rather
laconically with the words "and so on with the rest of the seven loxodromes", he cannot have failed to realize that the man who originally calculated the table of loxodromes performed an enormous amount of work and made an important contribution to the development of the art of navigation. In Stevin's book the table runs into thirty pages, on each of which the latitudes of 120 points of intersection are given. Stevin was convinced that it would advance both science and cartography. In fact, he emphatically states that it has now become possible to draw the loxodromes with great accuracy on globes and to check their shapes in sea-charts (p. 140); from these words we may infer Stevin's opinion about Wright's work, viz. that he had achieved his object. Indeed, the latter had written (page F-2): "the speciall use of this table is for the true drawing of the rumbes in the globe and the chart". Wright had gone no further than the calculation of the points of intersection in question. It was Stevin who made the next move, thus bringing the matter into the nautical sphere, where science is applied in practice.
In his discussion Stevin includes the distance run by the ship. He explains how with the aid of trigonometry the distance along the loxodrome from one point of intersection to the next can be calculated. He performs this calculation only for a very few cases; viz. those which he requires in instances to be dealt with later on. The fact that in his opinion Wright's table was still insufficiently accurate - this is the second reference to such inaccuracy - deterred him from completing this calculation. Moreover, he states that he was hindered from doing. so by other matters, just as he did before: Thus unfortunately this part of the work remained incomplete from the, nautical point of view. Stevin merely pointed the way. Those having a mind and an opportunity for it might complete the table in this respect with the aid of the example.

Next the construction of the table of the eighth loxodrome is explained. In our modern, simple notation it is based on the formula: one degree of the parallel in latitude $b$ is equal to one degree of the equator multiplied by the cosine of $b$ ( $1^{\circ}$ par. in latitude $b=1^{\circ}$ eq. $\times \cos b$ ).

At the end of the fourth proposition Stevin refers again to the "mechanical" method: It may be convenient to have at one's disposal a number of models of loxodromes, made of copper. They could be shaped to correspond to the loxodromes drawn on a globe. Twice seven such models in all were required.

The reader may have wondered why Stevin reckoned with seven loxodromes, i.e. with a division of the quadrant into eight parts - corresponding to the division of the compass rose - instead of with a difference in the course of less than one point or $11^{\circ} 15^{\prime}$. The answer lies in the field of the practice of sailing. The ships of the time, being small in size, were difficult to steer. They. used to yaw violently and were very unsteady and restless at sea. To be able to steer them with an accuracy to within one point was a reasonable result. A srialler subdivision. was senseless. Even small modern sailing craft and yachts, which sail much better and are more manageable than the unwieldy ships of Stevin's day, will do hardly better than this. In consequence the navigator will usually steer on full points and seldom on half points. It is obvious that if the ship is steered on full. points, the true course deduced from the compass course need not fall on a full point.

We are now coming back to the passage in which Stevin states that for the point of intersection of the first loxodrome with the meridian at $1{ }^{\circ}$ of longitude. he "has found" a latitude of $5^{\circ} 1^{\prime}$ ', in which latitude he found 3,014 for the
meridional parts; he continued his explanation with this value. Stated in this way, his words produce the impression that he calculated this value for himself. This, however, is to be doubted, as may be demonstrated by the following.

What were the directions. given by Wright in this respect? The following passage is to be found in his book (page $F$ verso), where he is referring to his "Table of rumbes", the "Table for the true dividing of the meridians in the sea chart", and to the construction of the former of these tables:
"This table of rumbes is most easily made by addition only with helpe of the table before mentioned shewing how the meridians or degrees of latitude in the nauticall planisphere are to be divided, after this manner. Multiplie the tangens of the angle that the rumb maketh with the equinoctial by 60 , the product shall be the first number at the beginning of each table of each rumbe, to bee set over against one degree of longitude 5 ), and all the rest are found by perpetuall addition of this number, first to it selfe - for the summe is the number answerable to two degrees of longitude - then to this summe, and so forth in all the rest. These numbers being found out in the table before mentioned did shew at what minute of latitude each rumbe should crosse the meridian for every degree of longitude . . . which being once found, these numbers serve to no further use."

As was the custom in those days, these directions omit to account for the rules given. For the present-day reader this forms no difficulty. He will understand the words and consider their import correct. In fact, the latitude of the first point of intersection is calculated in the Mercator chart - i.e. in a flat surface - and is expressed in minutes of the equator. It is of this product that the multiples are taken, upon which the latitudes corresponding to "these numbers" are sought in the Table of meridional parts; and these are the values which have to be included in the table. Still, the rule cannot be said to be formulated very clearly, and it certainly has to be called obscure for the reader of 1600 , who was being confronted with a new subject. This reader was bound to expect that the operation would take place in a spherical triangle, and he therefore ought to have been told that it was carried out in a plane triangle. The words "the product shall be the first number . . " were likely to mislead him. It is true that the last sentence of Wright's argument, which is correct, could cure him of his error; but it is justifiable to speak of a lack of clearness in the text, since for the reader it was hard to realize that "these numbers" also refers to "the first number".

When we now read the corresponding passage in Stevin on p. 535, which refers to the figure on p. 522, we find that Stevin takes as starting-point the spherical triangle $X R Q$, which he treats as a plane triangle; "on account of the smallness of the sides". The side $Q X$, or the latitude of the first point of intersection, can be found with the aid of the fourth proposition of plane triangles, to the effect that the side subtending the known acute angle - in this case a part of the meridian - is equal to the base multiplied by the tangent of this known acute angle.

It appears that Stevin has not fully grasped Wright's argument. Possibly he was: misled by the insufficient clearness of the text. It was a mistake for him to speak of a spherical triangle. He failed to notice that he was operating with a plane

[^114]triangle. Wright's calculation yields the meridional parts of the latitude of the first point of intersection, at the same time the basis for the further operations. If Stevin had understood the directions, he would have had to cipher as follows:
meridional parts $b=60 \times \operatorname{tg} 78^{\circ} 45^{\prime}=60 \times 5.02734=$
301.64 min . of the equator $=$

3,016.4 units of the table.
His own directions in the form of a formula are:
a) measured in degrees: latitude $b=1^{\circ}$ eq. $\times \operatorname{tg} 78^{\circ} 45^{\prime}=$

$$
1_{5012 \mathrm{eq} .1 / 1} \times 5.02734=5^{\circ} .02734=
$$

$5^{\circ} 1^{\prime} 38^{\prime \prime}$.
b) measured in units of the table: latitude $b=60 \times \operatorname{tg} 78^{\circ} 45^{\prime}=3,016.4$.

We have seen that he made no use of the answer 3,016 , nor of $5^{\circ} 1^{\prime} 38^{\prime \prime}$, although it is certain that he knew the latter value, because we meet with it in his criticism of Wright, on p. 581 of the Appendix. The latitude of $5^{\circ} 1^{\prime}$, "found" by him, virtually springs from nowhere, and it has to be assumed that he took it from Wright's table (p. 537 of our edition), and looked up the corresponding number: 3,014.

Stevin's text in some places is incoherent. He understood the operation imperfectly and made the mistake of regarding as latitude the value which really stood for the meridional parts of it. In consequence his directions were incorrect. When we consider this mistake in connection with the imperfections in Wright's text, it becomes evident how difficult it was to attain to the right understanding, although in our eyes it is quite simple. And if Stevin can be said not to have clearly realized the possibilities of the Mercator chart fifty years after its appearance, it is all the less surprising that more than a century had to elapse before this chart with its queer distortion was generally accepted by sailors.

The next seven propositions concern problems which are now called sailing problems. They form the application of the previously discussed theory and an exercise for the student. In each case, a number of elements being known, certain unknowns have to be determined. For all of them Stevin gives three methods of solution, viz. one with the aid of the copper models of the loxodromes, one by means of the loxodromes drawn on the globe, and finally the arithmetical method making use of the tables. The text does not call for any further comment. The last-mentioned method was not yet suitable for practical application, since the table was incomplete owing to the absence of one element: the distance. Because Stevin's comprehensive and scientific book in two bulky volumes, of which the treatise on the sailings formed only a modest part, decidedly did not come under the eyes of the practical seaman, the latter derived no benefit from it. No textbook of navigation that was destined for this purpose and contained this information was yet available at that time.

It is only with regard to the problem discussed in the fifth proposition that two remarks have to be made. Here it is required to determine the distance between two places situated in latitude $24^{\circ}$, their difference of longitude being $30^{\circ}$. It is correctly calculated that the distance measured along the parallel - we should now say: the departure - must be $27^{\circ} 24^{\prime}$. But since the circumference of the earth was still unknown, $27^{\circ} 24^{\prime}$ could not be expressed in a linear measure. In this connection Stevin speaks of a variety of miles which are in use in different countries. Miles of different length give different results. In this respect Stevin could not do otherwise than follow the opinion of many people, viz. that a degree
was equivalent to 18 hours' walk, at 8,000 paces an hour. An hour's walk also used to be equated to 1,500 Rhineland roods, which makes a pace equivalent to $21 / 4$ Rhinelandfeet. The author advises navigators - in the apparent belief that he will be read by them after all - to keep to the result expressed in degrees and minutes, so as to understand one another properly.

In the second place it has to be pointed out that at the end of this proposition (p. 553) Stevin mentions the possibility of the application of interpolation in using the table of the eighth loxodrome.

As announced by Stevin at the beginning, the treatise ends with an "Appendix". This consists of five chapters, in each of which a particular point is dealt with. In the main this amounts to a criticism of the works of Nunes and Wright, the very authors who had formed his sources and the contents of whose works constitute the gist of his treatise. In the Appendix he collects his remarks and objections.

In the first chapter Stevin points out that the method of numbering the loxodromes is not always the same. Thus Hues ${ }^{6}$ ) reckons from the meridian, calling N. by E. the first loxodrome, whereas Wright commences at the equator, referring to $\mathbf{E}$. by N. as the first loxodrome. Stevin advocates uniformity in this respect and explains why it is preferable to reckon the loxodromes from the meridian rather than from the equator. To him the first way is the natural order, with the "east and west track" or "eighth loxodrome" also classed with the loxodromes, as it ought to be. During the further development of the subject this system was found to be sound and efficient. Wright abandoned his own system.

In the second chapter of the Appendix a remark is made about Nunes (1492-1577) and his treatise on the shapes and the properties of the loxodromes. Stevin disproves a proposition given by Nunes. We shall revert to this criticism in § 2.

As appears from the title, the third chapter treats of inaccuracies in Wright's table of loxodromes. The English, who began to engage in deep-sea navigation after the Portuguese and the Spaniards, also proceeded to study the loxodromes and discovered the mistake made by Nunes. Then Wright's tables were published, which in Stevin's opinion marked a big stride forward. To check them, he made a random test. He figured out the shape of the fourth loxodrome - the fourth involved the smallest amount of figure-work for him - by the method based on spherical trigonometry, described by him in the fourth proposition. He found the point of intersection of this loxodrome with the meridian of $78^{\circ}$ to be in latitude $61^{\circ} 26^{\prime}$, whilst in Wright's table he found $61^{\circ} 14^{\prime}$, a difference of "only $12^{\prime \prime}$. He had reason to think that his result was slightly too high, so that he could "assume" - as he says - that the tables in question were "rather accurate".

As to this difference of $12^{\prime}$, or slightly less, it may be observed that the correct value is $61^{\circ} 14^{\prime} 52^{\prime \prime}$, so that the value in Wright's table appears to be

[^115]sufficiently accurate. The difference had arisen because the intervals taken by him in the calculation - i.e. $30^{\prime}$, in the table of the eighth loxodrome - were too great. Stevin's procedure consequently was unsound, and so in our opinion was his criticism.

Again Stevin says he had no time to pursue his verification any further. He cannot yet call the table quite perfect, and to justify this statement he derives a proposition with which he had found the numbers not to be in agreement. The operation, which is given on Pp. 577-583, can be described more simply as follows (See the figure on p. 576 of our edition).

A loxodrome $E I$ - the first is meant - commencing at the equator, cuts some meridians at differences of longitude of one degree in the points $K, L$, and $M$. Through these points are drawn parallels, which cut the meridians in $N, P$, and $Q . N P Q$ is again a first loxodrome. $K$ lies in latitude $b_{1}, L$ in latitude $b_{2}$. The difference of latitude between $K$ and $P$ is called ' $\triangle b_{1}$, that between $L$ and $Q$, $\triangle b_{2}$. Because they have very "small sides", Stevin takes the triangles NKP and $P L Q$ approximately as plane similar triangles and writes:

$$
\begin{aligned}
& K P: L Q=N K: P L, \text { or } \\
& \triangle b_{1}: \triangle b_{2}=1^{\circ} \text { eq. } \cos b_{1}: 1^{\circ} \text { eq. } \cos b_{2} \\
& \frac{\triangle b_{1}}{\triangle b_{2}}=\frac{\cos b_{1}}{\cos b_{2}}=\frac{\sec b_{2}}{\sec b_{1}}
\end{aligned}
$$

Now that this proportion is known and its correctness has been proved, he is going to perform the verification announced by him. He chooses the first loxodrome and will calculate the latitudes of the points of intersection with the 1st and 2nd meridian, i.e. FK and GL. He does so by two different methods, which are here described as methods A and B.
(A) Stevin takes the spherical triangle KFE, which to begin with he regards as a plane triangle. Next, by means of his method explained in the fourth proposition (p. 535), he calculates the latitude of the first point of intersection, finding $5^{\circ} 1^{\prime} 38^{\prime \prime}$, a value already referred to. In accordance with the above proposition $N O$. becomes $5^{\circ} 0^{\prime} 28^{\prime \prime}$, and thus $G L$ becomes the sum of these values, or $10^{\circ} 2^{\prime} 6^{\prime \prime}$, which latitude he says he also finds when ciphering according to the first procedure of the 4th proposition, viz. the stepwise calculation. Incidentally it may be remarked that it involved inaccuracy because Stevin was not yet able to make sufficient allowance for the gradual decrease of the cosine of the latitude.
(B) Subsequently determining GL by making use of the "table of assembled secants", he finds a different value, in the following way. The meridional parts of $5^{\circ} 1^{\prime} 38^{\prime \prime}$ amount to 3,020 ; this number, multiplied by 2 , gives 6,040 , which stands for the meridional parts of $10^{\circ} 1^{\prime}$, a value which is thus found to be $1^{\prime} 16^{\prime \prime}$ less than the value obtained by method A. He thus thinks he has detected an inaccuracy, and states that the difference in question will become greater as the operation proceeds.

If he regarded the triangle $K F E$ as a spherical instead of a plane triangle, and then calculated $K F$, he found $5^{\circ} 0^{\prime} 51^{\prime \prime} 7$ ), or $47^{\prime \prime}$ less than the first result, which was at least slightly better. This difference again, though small at first, increases

[^116]as the calculation proceeds. Stevin maintains his criticism.
This criticism, however, was not justifiable. Again we find him making the mistake pointed out above: he took for latitude what were meridional parts. In fact, he should have used 3,016 as meridional parts; in that case he would have found the corresponding latitude to be $5^{\circ} 1^{\prime} .2$. This value of 3.016 , multiplied by 2 , makes 6,032 , the corresponding latitude being $10^{\circ} 0^{\prime} .1$. Wright gives $5^{\circ} 1^{\prime}$ and $10^{\circ} 0^{\prime}$ respectively in his table, so that he was right.

In the fourth chapter Stevin states that the proportion referred to above may serve to construct a reliable table. The interval of longitude is discussed. If the interval of $1^{\circ}$ is found too great, the calculation may be performed with $15^{\prime}$ or even $10^{\prime}$. But it is doubtful whether the gain in accuracy justifies the additional work. The table of the eighth loxodrome too would have to be calculated for an interval of $1^{\prime}$. Stevin actually seems to have considered this desirability. If he had taken this work in hand himself, some passages of his treatise would have been different and he would not have reached his present conclusions.

The fifth and last chapter deals with a proposal for an improvement of the mariner's compass. This is a purely technical matter, while all the other subjects formed part of the theory of navigation. Some people wanted to replace the usual division of the rose into 32 points by one into 64 parts, although others thought that such small angular differences in the division of the rose could not be read at sea. But Prince Maurice, after having reflected about the matter of accurate steering, had proposed a division into degrees, even into fractions of degrees, provided the compass were large enough in size and were made with great care. The Prince was not aware - nor could he have been - what consequences the use of a large, and consequently heavy, needle entailed: increased friction between the pivot and the cap on which the rose is supported, resulting in unsteadiness of the rose. In the first example a compass is described the needle of which can be moved in relation to the rose, for the adjustment of the variation. A description is also given of the way in which the compass can be mounted accurately on board.
In the second place it is proposed not to make use of a compass-rose to which, as usual, a double magnet in the form of a rhomb had been attached, but to omit the rose and to equip the compass with one magnetic needle. The round bowl was then provided with a division into degrees on the inside. In such a compass the words East and West have to change places. The special difficulties which this apparatus involved in practice with regard to the indication and the reading of courses is clearly described in the text. On such a compass it was also possible to steer true courses. The compass bowl then had to be mounted pivotally on a small pin, so that the lubber line might be made to diverge as many degrees. from the longitudinal axis of the ship as the variation amounted to.

[^117]
## § 2

## STEVIN'S PREDECESSORS: APIAN, NUNES, MERCATOR, AND WRIGHT

In response to questions which had come up from the practice of navigation, Pedro Nunes (1492-1577) 8), the learned Portuguese astronomer, mathematician, and nautical expert, in 1534 proceeded to study the line on the earth's surface which is described by ships steering a constant course, i.e, the line cutting the meridians at a constant angle. By drawing such lines on a globe he succeeded in appreciating their shape. He found them to be complicated in character. A few years later, in his Tratado em defensam da carta de marear of 1537, he gave a definition and description of these lines, which he: called "linhas dos rumos" 9 ). On p. 143 he states: '"The rhumb lines are not circles, but irregular curves, which will make equal angles with all the meridians which they cut" 10 ). The author in this treatise brings out the difference between sailing on this line and on a great-circle. At first Nunes thought that these lines met at the pole, but later he retracted this statement. In 1566 he published a Latin version of his treatise about the sea-chart, in a more detailed and elaborated form, as part of a longer work, which appeared under the title Opera 11). In this it is described - with figures to illustrate the matter - how the loxodromes are drawn on the globe by mechanical means. The aid which Nunes made use of was a flexible model (quadrante esférico flexivel) for each of the eight "rumos", with which to determine the points of intersection with meridians, at equal differences of longitude. Although on a globe of a relatively small size this procedure was defective, so that the line drawn was liable to errors, yet it formed the startingpoint for later knowledge about the loxodrome. A second Latin edition of the treatise on the sea-chart is included in the great work of Nunes: De arte atque ratione navigandi (Coimbra 1573). In Cap. 26, under the title Propositum globum rumbis deliniare ( p .116 ), the model is illustrated once more and its use is clearly described:

Nunes ascribed a particular property to the loxodrome, viz. that the sines of the polar distances of the points of intersection with meridians at equal differences of longitude form a continued proportion. It is this statement which Stevin refutes in the second chapter of the Appendix, making use of the proposition he had

[^118]derived in the third chapter. By calculation he shows the unsoundness of Nunes' belief. It is striking that he does so in a cautious and gentle way, and by no means in the form of a reproof.

Stevin's respect for the pioneer in this field is reflected in these words. At the same time it becomes evident that Stevin, when undertaking to study a new subject, goes back to the source. The existence of this source was previously known also to Robert Hues, who in his Tractatus de globis coelesti et terrestri eorumque usu (London 1594) in the chapter devoted to the drawing of loxodromes on the globe and to the use of these lines says: Inventio baec $\mathcal{E}$ consideratio delineandi rumbos in globo aliquanto est antiquior. Petrus Nonius Lusitanus multa de bis in duobus lib. quos de navigandi ratione conscripsit. Mercator etiam in suis Globis eas expressit 12 ).

To Nunes is due the credit of having raised the art of finding one's way across the ocean - an art which had existed for many centuries before his day - to the rank of a science. Thanks to his work and studies, in Portugal a great height was attained, greater than anywhere else in the sixteenth century. At the same time his work concluded an era in the history of the art of navigation in Portugal. The work of the Portuguese was continued in Flanders, in the first place by Gerhard Mercator (1512-1594) 13).

Mercator is known to have made a terrestrial globe which carries the date of 1541 as the year in which it appeared ${ }^{14}$ ). Many compass-roses divided into points appear on it. These directions have been extended so as to form a network of loxodromes. Those who studied and described the globe called this network accurate and admired Mercator's skill in drawing it.

An achievement of unprecedented importance for the art of navigation, owing to which Mercator's name will always be honourably mentioned in the history of navigation, was the compilation of his world-map destined for use at sea. It appeared in 1569. The network of meridians and parallels had been designed in such a way that the loxodromes appeared in it as straight lines. Meridians and parallels are straight lines as well. It is this chart which is known as the Mercator chart, sometimes less properly called the chart on Mercator's projection. It contains a great many legends in Latin. In one of them the requirements which the chart has to satisfy are enumerated. Mercator says: "It is for these reasons that we have progressively increased the degrees of latitude towards each pole in proportion to the lengthening of the parallels with reference to the equator. Thanks to this device we have obtained that . . . no trace will anywhere be found of any of those errors which necessarily be encountered on the ordinary charts of shipmasters, errors of all sorts, particularly in high latitudes" ${ }^{15}$ ).

It is not known by what method Mercator constructed the network of his chart. He himself has not disclosed this in any posthumous work. The idea that he

[^119]achieved it by mathematical means has to be rejected; probably it has to be assumed that he did it by a graphical method, viz. by transferring the points of intersection of loxodromes and meridians, constructed on the globe, to the system of meridians in the chart 16).

It is to be noted incidentally that although this chart was destined for use at sea, in spite of its useful indications it was not yet very suitable for this purpose. Indeed, the seaman has greater need of detailed charts of limited regions than of a chart comprising all the oceans of the world. Much time had to elapse and a good deal of opposition had to be overcome before the seaman realized the importance of the system on which the chart is based and used it regularly at sea. Claes Heyndericks Gietermaker (1621-1669), writer of the widely used Dutch textbook 't Vergulden licht der zeevaert (The Golden Light of Navigation) of 1660 , put his finger on the sore spot by ascribing the seaman's failure to promptly adopt improved methods to "inveterate habit, and it is said there is nothing more powerful than habit". In the eighteenth century the octant, which yet made for much greater accuracy in the measurement of the altitude of celestial bodies, met with no better reception. Seamen are conservative, or at any rate they tend to cling to the old familiar ways and methods.

The important problem of determining the distances of the parallels from the equator, as measured in the Mercator chart, was transferred to the mathematical sphere by two English nautical experts of great fame, viz. Thomas Hariot ( $1560-1621$; the name is sometimes spelled Harriot) and Edward Wright (1558-1615). In the legend from the Mercator chart quoted above, Mercator states that he had increased the degrees of latitude in the same proportion in which the parallels in his chart have been lengthened, i.e. in proportion to the secant of their latitude: These words form the basis of the calculations undertaken by Hariot and Wright.

Of the former a manuscript has been preserved which bears the title: The Doctrine of Nauticall Triangles Compendious 17). It dates from before 1596, in all probability from 1594. The bulk of this work is formed by a Canon nauticus, being a "table of meridional parts", from minute to minute, calculated by constant addition of the secants from one minute to the next. Hariot had based these calculations on the table of Clavius (1537-1612) 18), dating from 1586, which contained the values of the sine, the tangent, and the secant for every minute and to seven places of decimals, as we should now say. Hariot's work was original, for he constructed his table before Wright, but no writings of Hariot have been published, nor was the manuscript in question printed. Thus the credit of having been the first to construct such a table is indeed due to

[^120]Hariot, but since his Canon was not published, neither science nor navigation benefited by his work.

It is quite a different matter with Wright. He, too, calculated a table, which is known from the textbook by Thomas Blundevile (1560-1602), entitled: His Exercises, containing sixe treatises... to be read and learned of all young gentlemen (London 1594). This book was used and esteemed for fifty years, by the educated reader rather than by the simple seaman learning his trade. The treatise devoted to navigation comprises a chapter on the sea-chart, in which Cortes and Coignet are quoted and the loxodrome is illustrated and described. At the end there is a reference to Mercator and his worldmap with its increasing distances between the parallels. How this increase was brought about, "by what rule I knowe not", says Blundevile, "unlesse it be by such a Table as my friende M. Wright of Caius Colledge in Cambridge at my request sent me (I thanke him) not long since for that purpose, which Table, with his consent, I have here plainlie set downe together with the use thereof as followeth". It gives the meridional parts from latitude $1^{\circ}$ to $80^{\circ}$ in sixtieths of a degree of the equator, at intervals of $1^{\circ}$. For $1^{\circ}, 30^{\circ}, 52^{\circ}$, and $80^{\circ}$ it gives respectively $60,1883,3668$, and 8399 , as against $60,1888,3665$, and 8375 in the present-day nautical tables. The difference increases gradually with the latitude. Blundevile explains how the network of the chart is to be made. The parts of the equator are measured.along the meridian, after which by means of the table the parallels are drawn at the correct distances from the equator. It is true that Blundevile owes this table to Wright, but it differs from the one which Wright himself published in 1599. This table, in its original form, has also been in the hands of others. It has been used indiscreetly, but it is beyond the scope of this introduction to go into this.

The appearance of the previously mentioned textbook, Certaine Errors in Navigation. . . detected and corrected by Edw. Wright (London 1599), forms an important landmark in the development of scientific navigation 19). The author, who had gained knowledge and experience at sea and who was an eminent mathematician, prepared a second and amended edition, which appeared in 1610. Many years after Wright's death, Joseph Moxon edited the third edition (1657), to which he added the translation of The Haven-Finding Art. The fact that the book continued to be sold and used until the end of the seventeenth century bears witness to the great influence of Wright's work on the deepening of nautical knowledge in the seventeenth century.

In his ''Praeface to the Reader", Wright enumerates the many imperfections inherent in the art of navigation (which was already "some thousands of yeeres" old), in particular those relating to the chart. His treatise contains the means to improve the subjects in question. In the present context attention will be paid only to his tables of meridional parts and those of loxodromes. Of the latter he says with justifiable pride: "with help of which table, the Rumbes may in any chart, mappe or globe much more truely be described then by those maechanicall wayes long since published by Petrus Nonius, or latily practised by some globemakers in England" (p. ggg 3).

[^121]Wright gives a clear exposition of the construction of the network of the Mercator chart and concludes with the following words, which seem to echo those of Mercator: "the parts of the meridian at every poynt of latitude must needs increase with the same proportion wherewith the secantes or hypotenusae of the arke, intercepted betweene those pointes of latitude and the aequinoctiall do increase. Now then wee have an easie way layde open for the making of a table (by help of the Canon of Triangles) whereby the meridians of the Mariners Chart may most easily and truely be divided into parts, in due proportion from the aequinoctiall towards either pole". (p. D) The basis for the table had thus been described. He made it 'by perpetuall addition of the secantes answerable to the latitude of each point or parallel unto the summe compounded of all the former secantes, beginning with the secans of the first parallels latitude and thereto adding the secans of the second parallels latitude" (p. D).

It was originally Wright's intention to publish the table of meridional parts with an interval of $1^{\prime}$ of latitude, up to a maximum latitude of $89^{\circ} 59^{\prime}$ and expressed in units of 0.0001 minute of the equator. But on second thoughts, for the sake of simplification, he chose an interval of $10^{\prime}$ and for the unit he took 0.1 minute of the equator, which did not result in any "sensible error". In this form the "Table for the true dividing of the meridians in the sea chart" is to be found in his book. It covers a range from $0^{\circ} 10^{\prime}$ to $89^{\circ} 50^{\prime}$.

He considered it necessary to drop three digits (p. D verso) 'not onely for the easier, but also for the truer making of the table". "Truer", because he may have doubted the accuracy of the last decimal places. Wright was aware that the values in his table were a little too great, but he considered it sufficiently accurate. If anyone wished to attain greater accuracy and to work with a smaller interval, he might construct a table with he aid of the Canon magnus triangulorum of Rheticus (1514-1576) ${ }^{20}$ ).

Next Wright describes (p. F verso) how this table has to be used for the construction of the "table of rumbs". In a few words it is said that this is done by "perpetuall addition", but no further explanation is given of why this is so. These words, however, have already been explained by the proof given above (p. 484), that the meridional parts of each of the points of intersection form a multiple of the meridional parts of the first point of intersection.
The table, which takes up twenty pages, now follows. It gives the points of intersection for seven loxodromes with meridians at a difference of longitude. of $1^{\circ}$, and goes as far as latitude $89^{\circ} 59^{\prime}$. This great range shows that theory went further than practice. In fact, for practical purposes it was not necessary to carry the calculation thus far. Wright reckons the loxodromes from the equator, so that E by N is the first. The construction of the table must have taken a great deal of time. The number of points of intersection which had to be calculated was 3,600. The calculation of the table of the seventh loxodrome ( N by E ) alone - the longest of all - necessitated as many as 1,440 determinations of latitude. This loxodrome passes exactly six times round the earth before reaching latitude $89^{\circ} 59^{\prime}$.

It is this table which has been faithfully copied in its entirety by Stevin, with

[^122]the exception of the order in which the loxodromes were taken.
In § 1 it has already been shown that Apian must also be reckoned among Stevin's predecessors in this field.

## § 3

## CONCLUSION

It has already been stated that Stevin, when copying Wright's tables, wrote that he had found "some imperfection" in them, words which cannot but be regarded as a kind of accusation. Recurring to his objections in the Appendix, Stevin says that he has made random tests with the fourth loxodrome - not with the others - and that he has found differences. They were not great and not of a nature to prevent him assuming that Wright's tables were reasonably accurate. He therefore drew attention to differences which in his opinion were to be found in them, but he did not go to the bottom of the matter. He was moderate in his criticism and took over the tables, in spite of his objections to them.

It is only natural that Wright, who had seen the Wisconstighe Gbedachtenissen, did not leave the matter there, although he esteemed Stevin's work. In the second edition of Certaine Errors he included a detailed reply, under the title: "Simon Stevin his errors, in blaming me of error in my tables of Rumbes" ${ }^{21}$ ), from which it is quite evident how strongly he resented Stevin's criticism. He expresses this in his words: "but we shall (I make no doubt) find a greater fault in his fault-finding. Though I never durst presume to imagine I could set forth anything without some fault. It sufficeth me if the fault be so little that it cannot sensibly be discerned, which I hope I shall hereafter shew." These words at the same time characterize the object his argument was intended to achieve.

Wright evidently considers it exaggerated to criticize a difference in the latitude of no more than $12^{\prime}$ and writes: "surely therefore Master Stevin might have eased me of some trouble and have saved himself some labour and reputation both, if he had spared his pains in seeking to find fault with me for so small a matter, whereby navigators could incur neither dammage nor danger, although mine error were so much as he supposeth. For in the practice of navigation what inconvenience can arise to a seaman by such an error as shall cause him to goe wide of his course no more then 12 minutes, in sailing so far that he must alter his longitude 78 degrees and his latitude 61 degrees and more?" On the enormous distance this difference was very small indeed, from the practical point of view.

Wright went more thoroughly into the matter and recalculated his table of meridional parts twice, aided by two calculators, this time from minute to minute. He found no differences that might result in any "sensible error". He also recalculated the table of the eighth loxodrome, which Stevin had taken from Apian, this time with an interval of $10^{\prime}$ in the latitude. He checked the values for the fourth loxodrome, found by Stevin - who had worked with the table of Apian - and he applied

[^123]the newly calculated table, the result being that the difference of $12^{\prime}$ was reduced to a very small one. ''The truth is . . . thinking it would be sufficient if my Table of Rumbs erred not any where so much as a minute in the latitude of any rumb, which by this triall already made, I assure my self they do not.". Wright is of the opinion that Stevin's error is in 'his own grosse manner of triall, much more then in my table". If he had worked with smaller intervals, he would have found smaller deviations. And thus the duel was ended. Wright openly spoke his mind. He showed the lack of justification of Stevin's criticism and called his checking method too gross. But that Stevin's "reputation" was injured is a statement which is not in keeping with the general tone of his reply. It was just a little too sharp, and certainly not in accordance with his esteem of Stevin when he translated The Haven-Finding Art and wrote an introduction to it.

Paragraphs 1 and 2 have clearly confirmed that the substance of The Sailings forms no original work, as we already stated at the outset. Stevin, wishing to become informed about a subject which had never before been discussed in Holland and which was of great import to navigation, sought this information in the works of the few foreign scholars who had already studied the matter. He went back to the sources, as scientists are accustomed to do, and he properly mentioned his sources. He thoroughly studied the writings cited above and took over the main points. He acted in the same way with regard to the system of drawing the loxodromes on the globe by means of models - a system which had already become known among the globemakers of his day -, the old reduction table of Apian, and the two new tables of Wright. He incorporated these matters in his treatise and in his own words elaborated the whole into a logical and conveniently arranged discourse. The form into which he cast the treatise commands our admiration. The clarity of his words proves how familiar he had made himself with the subject. The criticism - directed in particular against Nunes and Wright - which Stevin considered himself justified in making, was included in the Appendix. Wright reprimanded him by showing that the argument was unsound and unfounded. He might also have pointed out the error in thought made by Stevin, which the latter might have avoided by following the example. But this was left by Wright to posterity.

Stevin's predecessors had developed the theory in their writings in the form of more or less elaborate expositions, incorporating the definitions in the text, so that they were virtually hidden in it and the reader had to discover them for himself. Moreover, the reader was faced with difficulties because the authors, though they did give indications as to the way in which some of the calculations had to be performed, omitted to give an explanation of the reason why. Stevin, on the other hand, renders his reader the great service of putting definitions foremost, formulating them clearly, and giving them in large print in his book. This made it much easier for the reader to understand the gist of the matter. The systematic composition of the treatise was of great value to students and must have aroused their gratitude to the author. Stevin's work was exceptional, since long after his day the textbooks on navigation were still deficient in point of proper arrangement of the subject-matter, systematic composition, rigour, and briefness of the argument. We refer, for instance, to the two popular textbooks of Gietermaker and Klaas de Vries, which were used in Holland almost to the exclusion of all other books, the former from 1660 to about 1800 and the latter from 1702 to about 1820. It is not
surprising that from such books the navigator was unable to learn spherical trigonometry, for instance.

Stevin's book of 1605 was of quite a different nature. The reader who was acquainted with the language of mathematics and the derivation of formulas was able to learn a good deal from it, thanks to Stevin's search in foreign sources, his able and careful elaboration of the subject-matter, and his lucid presentation of it. Here again - as with The Haven-Finding Art - it may be said that his work was of great use to his contemporaries. There is more: the practice of Dutch shipping, too, owes him a debt of gratitude. This will become evident from the following pages, in which we shall briefly describe how his work was continued in the .Netherlands.

To Willebrord Snellius (1591-1626) 22), who translated the Wisconstighe Ghedachtenissen into Latin 23 ), and who was therefore intimately acquainted with their contents, the credit is due of having widened the knowledge of the loxodrome by his book entitled Tiphys Batavus $\mathbf{2 4 , 2 5}$ ). It contained a long introduction, $\mathrm{m}_{\text {a }}$ treatise on the loxodrome, another devoted to the determination of the speed and the dead reckoning, and finally two tables. The first of these is entitled Tabulae canonicae parallelorum. It is a table of meridional parts from $0^{\circ}$ to $70^{\circ}$, to four places of decimals, with an interval of $1^{\prime}$, made by adding up the secants from minute to minute. Verification has shown it to be very accurate. It is not identical with that of Wright/Stevin. The second is a table of loxodromes, entitled Canones loxodromici. It has quite a different character from that of Stevin's Table of Loxodromes. The object of Stevin's table was primarily to become acquainted with the true shapes of the loxodromes on the earth's surface. It is true that Stevin had described how sailing problems could be solved by means of his table. However, not only was this method inconvenient, but it could not be followed because, but for an occasional exception, Stevin had not included the calculation of the distance in his table. It was thus incomplete. The table of Snellius was destined for practical use at sea. It is divided into quarter points and with the difference in latitude from minute to minute as argument gives the distance and the departure, the latter two magnitudes in miles of 15 to the degree. In this book Snellius showed how sailing problems are solved by means of the table. His system undoubtedly marked an advance on that of Stevin. Nevertheless this again was not altogether suitable for practice as yet, because the search in the column of the difference in latitude was not satisfactory. This book moreover, being of a scientific character and being written in Latin, was above the head of the seaman.

We shall pass by the achievements in this field of Ezechiel de Decker (ca 1595-1667), surveyor and mathematician 26), and of Adriaan Metius (1571-1635),

[^124]Professor of mathematics and astronomy at Franeker, but direct our attention at Cornelis Jansz. Lastman (died before 1653). The latter had been born in Vlieland, had followed the sea, and around the middle of the seventeenth century at Amsterdam, in the Haarlemmerstraat, ran a nautical college, which was called In de vergulde Graed-Boogb (In the Golden Cross-staff) and which was continued after his death by his son Simon.

Lastman compiled a table of meridional parts as well as Tafelen der Compasstreecken (Traverse Table), which are to be found in the textbooks of navigation published by him ${ }^{27}$ ). As with Stevin, this table applies to seven loxodromes, while there is also a table for the eighth loxodrome, which gives the reduction of departure into difference in longitude. It covers a range up to latitude $80^{\circ}$ and the interval is $1^{\prime}$.

Whilst Stevin had furnished the latitude of the points of intersection with the meridians for the seven loxodromes and his table was intended to advance science, Lastman's table was so arranged that it was destined and suitable for practical application. Its character, therefore, is different. For the seven loxodromes, commencing at the equator and extending as far as latitude $75^{\circ}$, it gives the longitude and the latitude of the points through which the ship passes as she sails upon the loxodrome, at intervals of one geographic mile ( 1 geographic mile $=4$ nautical miles). The argument is the distance run. The table takes up 50 pages, each of which contains 325 calculated places. The seventh loxodrome alone takes up 18 pages and necessitated the calculation of 5,760 places. The figure-work must have been enormous indeed.

Although an interval of one point in the course was large and consequently inconvenient - because a true course obtained by reduction of the course steered seldom falls on a full point - still it could be used in practical navigation at sea in order to determine the position when the course and the distance run were known, or vice versa - though this was slightly more difficult - to determine the course and the distance between two known places. Lastman's table was taken over by others. It is found again in many books, and was used for a long time; even to the early part of the nineteenth century. It was ousted by the traverse table which Cornelis Douwes (1712-1773) ${ }^{28}$ ) included in his Zeemans-Tafelen ${ }^{29}$ ). On the

[^125]English model he constructed a table in which, the course and the distance run being known, the difference in latitude and the departure were found. The interval in the course was small. A point was divided into eight parts, thus: $1 / 8,1 / 4,1 / 3$, $1 / 2,2 / 3,3 / 4,7 / 8$, a division which did not hold its ground and which was not used in England.

We will conclude with two opinions about Lastmán's table, pronounced by colleagues of his.

Pieter Rembrantsz van Nierop (died 1708) prepared an amended edition of the textbook written by his uncle, the shoemaker-astronomer Dirk Rembrantsz van Nierop ${ }^{30}$ ), author of a large number of books on navigation and astronomy. In the preface he says: the art of navigation, as described formerly by the Portuguese, the Spaniards, Medina, Coignet, Zamorano, and William Bourne, "was no more than an $A-B$ in comparison with that of the present day, for when our C. J. Lastman in 1621 31) first brought forward his Tables of Sines, Tangents, and Secants as well as his Table of Meridional Parts and eight Tables of Loxodromes, for use in navigation on a spherical earth, people made fun of him, saying: What does the man mean by these things? And now see how he has augmented and amended it up to 1640 , and indeed, how he' is now being followed by other writers, so that it is evident from this how various errors in navigation can be corrected more and more, some of them by the correct application of the art and others by diligent observation."

The second opinion was given by Simon Pietersz (born in 1601), a nautical teacher at Medemblik. In the textbook written by him ${ }^{32}$ ) he concludes each discussion of a given subject with an interrogation of the pupil. After the discussion of the calculation of the position by dead reckoning we read (p. 111):
"Question: What do you make use of when you want to indicate the position in the chart?
Answer : Now one thing, now another. But in general I have recourse to the miles and degrees which I find in the 8 Compasstreken van Lastman 33 ).
Question : Why, are they so excellent?
Answer : They are so wonderful, so commendable and infallible that they surpass all other means and their use."
In the paragrahps 2 and 3 we have shown that slightly more than one hundred years elapsed between the moment at which the scholar Nunes began to study the loxodrome and that at which the Dutch seaman could avail himself of the knowledge that had been gathered about it and in day-to-day practice at sea was able to perform calculations concerning the distance run or the course to be followed. The way was long. Stevin was one of those who helped to pave it.

This statement applies to the Netherlands. In England this part of the art of navigation developed along different lines. Richard Norwood (1590-1675), who had followed the sea and later became a nautical teacher in London, famous for his method of measuring a degree of latitude (1635), calculated a table of courses

[^126]and distances, which, the interval in the course being $1^{\circ}$ and the distances being expressed in nautical miles, gave the difference in latitude and the departure, the latter two magnitudes not in miles but in tenths of miles ${ }^{34}$ ). In later editions they were given in miles as well as tenths of miles, so that the construction of this table was identical with the one that is now known and used at sea.

[^127]
## V I ER D E BOVCK DES <br> EERTCLOOTSCHRIFTS, <br> VANDE <br> ZEYLSTREKEN.

DER ZEYLSTREKEN.



Ans de mersichrouldighe roruyde zeylagen defer landen verfcheyden fouckers rveroirfaeckt bebben, vaan roonden Areckende tot woordering der groote zeervaerden, die elck verthoondean fj̈n Vorstelicke Ghenadeals Admiral, om daer me tot bun rovordeel te gheraken: Soo is
Eydarogra- de flof des * Zeefobrifts een der befonder oirfaken gheroneeff, die bem track
Mambemari- totte begheerte en oeffening der *VVifonften: Sulcx dat by deurfen beeft
corium ar- albet oirboirffe en diepfinnichffe dat rvan die fof müns roveterss ghehandelt robort. Vant'febue Zeefchrift nemen uny rvoor ons bier te befchryiven dit rwierde bouck vande Zeylftreken, waer acbter noch volghen fal den handel rvande Harvenvinding, en oock roan Ebbenroloet, orvermits rovy daer in voat befonders bebben, dat in defe ovvif confighe ghedachtniffen finn plaets wereyfcht. eAngaende de reft des Zeefcbrifts, daer toe verffrecken hem tot ghedachtnis rerfcheyden boucken roan die fof bandelende, en door hem overfien.
Dfamidines. Defebefcbrüfoing der Zeylftreken, fal narvier noodighe $\star$ bepalinghern der egghen -vooorden, begrüpen in rooorstellen, voelker trovee cerste Sjirn rvan rechet Zeylstreken, d'ander rvan cromme. VV aer achter nochrvolgen fal cen Anbargg der Cromftreken.

BEPA-

## SUMMARY OF THE SAILINGS

Since the numerous voyages from these parts to remote countries have induced many investigators to find aids for ocean navigation, which each by himself, striving after his own profit, showed to His Princely Grace as Admiral, the subject of hydrography was one of the causes which urged him especially to study and practise mathematics, so that he investigated all the most useful and subtle things that have to my knowledge been said about that subject. Of this hydrography we here intend to describe this fourth book, of the Sailings, which will be followed by the treatise on the Haven-Finding Art, and also that of Ebb and Flow, since we have made some remarkable discoveries about this, which require their place in these mathematical memoirs. As regards the remainder of hydrography, various books dealing with that subject, which he has examined, serve to aid his memory.

This description of the Sailings is to contain, after four necessary definitions of the special terms, 11 propositions, the first two of which refer to great-circle tracks 1), the others to rhumb lines 2). This is to be followed by an Appendix about loxodromes.

[^128]
## BEPALINGHEN.

## 1 BEPALING.

## Zeylftrekë fijn de linien die feylende fchepen befchrijvē.

Als een fchip feylende van ooft na weft, de verdochte lini of freeck diet int varen befchreven heeft, heet int ghemeen zeylftreeck: Int befonder ooftenweft ftrecck, en van ander winden of oirten crijchté ander namien.

## 2 BEPALING.

Rechte ftreec noemen vvy des Eertcloots cortfte booch tuffchen tovee punten.

Laet op den Eertcloot A B C, tuffchen de twee punten A en B, ghetrocken fijn de booch AB, wefende de cortte neem ick die daer tuffchen ghetrocken


## DEFINITIONS

## 1st DEFINITION.

Sailing tracks are the lines which ships describe when they are sailing.
Thus, when a ship sails from east to west, the imagined line or track which it has described in sailing is in general called sailing track, in particular east and west track, and according to the other points of the compass or places it receives other names.

## 2nd DEFINITION.

Great-circle track we call the shortest arc on the earth between two points.
On the earth $A B C$ let there be drawn, between the two points $A$ and $B$, the $\operatorname{arc} A B$, being the shortest, I assume, which can be drawn between them, which must be the arc of a great circle. Such directions are nowadays marked in mariner's

## 884 BOVCR DESEERTCLOOTSCHRIFTS,

can worden, ${ }^{\text {t w w }}$ wh fijn moet de booch eens grootfe rondts: Soodanighe freken worden uu ter tijt beteyckent inde zeceompaffen metre 32 linien daer in befchreven, welcke deur t'ghedacht vanden * doender a flangst 'vlack des certclooss voortghetrocken rot inden fichteinder, of anders opde ghebootfe certe ctooten alfoo gheteyckent, bedien de 32 ghemeene freken, of winden.

Angaende y mant dencken mocht hoe dat cromme boghen exghenilick ghenouch rechre freken ghenoemt worden, die fal welen dat defe rechtheytgefeyt wortint anfien datfe noch ter rechter noch terflincker fijde en wijdeen,gelijck wel doen de cromme freken, diens bepaling volght. Fen fchip buyten t'middelronten middachront fofeye
lende, datdebooch ghetrocken vande kiellini totten af
punt,altijtop de kiellini een felven houck maeckt:De lini
die t'fchipdan ghefeylt heeft noemen vvy Cromftrecck.
Laet inde form der 2 bepaling D des eerreloots a punt fijn, Ecen fchip,t'welck ghefeylt hebbe van A tot E,foo dat de booch E D; getrocken vande kiellini F G als van $E$ totten afpunt $D$,altijt op de kiellini $F G$ maecke een felven houck als FE D, t'welck foo ghebeuren foude als t'fchip altijt op een felve ftreeck feylde die 'zeecompas anwijft, en dat de leli alijit recht noort wefe. Dit foo.fijnde,de lini of booch AFE die t'fchip ghefeglt heeft heet cromftreeck. Nu ghenomen dat den houck F E Drecht fy,foo fal hetfhip altijt recht ooft of recht weft anghevaren hebben, en de booch A E fal deel eens kleenronts fijn: En dattet gheductlick foo voortfeylde, het foude weerom commen ter plaets van. $A$ daert begoft, volfchrijvende het rondt. Hier uyt canmen vertaen dat de rechte ooft Areeck A B, en decromme A E, veel verfchillen: Om van t'welck breeder verclaring tedoen, foolaet $C$ beteyckenen het recht ooftpunt, wefende de gemeene fine des fichteinders en middelronts, en t'punt A fy onder het fop, en t'punt $B$ inde booch AC,en de booch AFE fy even met AB. Dit foo fijnde, ghenomen dat een fchip feylde van A na Caltijt op de booch A C, het fal int anfien desgheensdie an A is,altijt recht ooftwaert anfeylen, maer niet int anfien des gheens die int fchip is,welcke geduerlick grooter engrooter verfchil fal vinden, ja ten eynde foo groot, dat genoment'punt A te liggen op de breede van sotr. foo fal den feylder onttent C commende, hem bevinden te feylen oock ontrent de so tr. van ooften na zuyden. Wederom, hoe wel B rechtoggt light van $A$; nochtans een fchip feylende van $A$ a altijt recht ooft an int anfien des feylders, en fal niet geraken tot $B$, maer verre van daer tot $E$,welverftaende dat de booch A Eeven ghenomen wort met A B alfvooren.

Merckt noch dar hoe wel $B$ recht ooit light van $A$, nochtans fo en ligt $A$ niet recht weft van B, twelck opgroote boghen veel verfhillen can. Laet by voorbeelt van cen plaets diens breede 45 troghenomen worden cen booch van 90 tr. recht ooftwaert : De rechte ftreeck van die oofterfche plaets na d'ander, en fal niet fijn recht weft, maer fo veel noorderlicker als de breede bediaecht, te weten 45 tr. dats recht noortweft. Sulcx datmen om vande weflicker placts te feylen na de ooftelicke, beginnen moer recht ooft an, maer vande ooftelicke na d'ander (om opeen rechte freeck te feylen, want op cromftreken heeft het weerkeeren altijr de naem des teghenoverwint vant wechvaren) noordweft an: En waerde
plact-
compasses by the 32 lines described therein, which, being produced mentally by the observer over the surface of the earth to the horizon, or otherwise drawn in this way on the model globes, designate the 32 common points of the compass or "winds" 1 ).

Since one might wonder how arcs can properly be called straight tracks, one is to know that this straightness means that they deviate neither to the right nor to the left, as do the curved tracks, the definition of which follows.

## 3rd DEFINITION.

When a ship sails outside the equator and the meridian in such a way that the arc drawn from the ship to the pole always makes the same angle with the keelline ${ }^{2}$ ), the line on which the ship has then sailed we call loxodrome.

In the figure of the 2nd definition let $D$ be the pole of the earth, $E$ a ship which shall have sailed from $A$ to $E$, so that the arc $E D$, drawn from the keel $F G$, viz. from $E$ to the pole $D$, shall always make the same angle with the keel $F G$, viz. FED, which would happen thus if the ship always sailed on the same point indicated by the mariner's compass and if the fleur-de-lys invariably pointed due north. When this is the case, the line or arc $A F E$ on which the ship has sailed is called loxodrome. If it is now assumed that the angle $F E D$ is right, the ship will always have sailed due east or due west, and the arc $A E$ will be part of a small circle. And if it sailed continually on in this way, it would come again to the place $A$ where it began, completing the circle. From this it can be understood that the orthodromic course east $A B$ and the loxodromic course east $A E$ are widely different things. To give a fuller explanation of this, let $C$ designate the true east, being the common intersection of the horizon and the equator, and let the point $A$ be in the zenith and the point $B$ in the arc $A C$, and let the arc $A F E$ coincide with $A B$ in $A$. This being so, if it is assumed that a ship sailed from $A$ to $C$ always along the $\operatorname{arc} A C$, to one who is in $A$ it will always appear to be sailing due east, but not so to one who is in the ship; he will find a constantly greater and greater difference, even finally so great that if the point $A$ is assumed to lie in latitude $50^{\circ}$, the man in the ship, coming near $C$, will find he is sailing about $50^{\circ}$ south from the east. Again, though $B$ lies due east of $A$, nevertheless a ship appearing to the man in the ship always to be sailing from $A$ due east will not arrive at $B$, but, far from there, at $E$, it being understood that the arc $A E$ coincides with $A B$ in $A$ as above.

Note further that although $B$ lies due east of $A$, nevertheless $A$ does not lie due west of $B$, which may differ a good deal on large arcs. For example, from a place whose latitude is $45^{\circ}$ let an arc of $90^{\circ}$ due east be taken: the great-circle course from that more easterly place to the other will not be due west, but so much more to the north as the latitude amounts to, viz. $45^{\circ}$, that is due northwest, so that, in order to sail from the more westerly to the easterly place, one first has to sail due east, but from the more easterly to the other place (to sail on a great-circle course, for on loxodromes the home voyage is always called after the point of the compass opposite to that of the departure) due northwest. And

[^129]praetifens breede van 57 tr. fulck verfchil fou dan oock vant $\operatorname{s7tr}$. fijn, dats over de vijf ghemeene ftreken.

En hoemen naerder den appunt feylt, hoemen fulck verfchil op groote feylagen merckelicker bevint,en dat om bekende redenen, die op een Eertcloot met haer behoirlicke reetfchappen openbaer fijn. Inder voughen dat Stierlayden die daer ontrent varen en landen foucken, noodich is van defe faeck goe kennis te hebben,want t ghebeurt den onverdochten wel, datfe haer fchip op een ander plaets vindende dan hun gifing me brengr,fulex ten eerften wijten onbemerckelicke afleydende flroomen, dact af nochtans d'oirfaeck mach fijn het boverchreven niet gagheflaghen te hebben na t'behooren.
Tot hier toe is ghefeyt vande cromftreckk recht ooft en weft anghefeylt, die alinit een ront is, maerd'ander (uytghenomen inde * middachronden en int Meridiars middelront)fijn altemael ${ }^{*}$ flangrrecken, wiens form en ghedaente deur de vol- cirtudu $\theta$ ghende voorftellen openbaer fal worden.

## 4. BEPALING.

Eerfte cromitreeck noemtmen die in yder vierendeel des fichteinders naeft het middachront is, d'ander volgende heet de tvveede, en foo oirdentlick voort totte achtfte, die altijt een ${ }^{\star}$ evevvijdich ront is.

Als by voorbeelt int vierendeel des fichteinders van noort tot ooft, de cromftreeck naeft het middachront, of andersgefeyt naeft het noorden, diemen oock heet noort ten ooften, wort d'eerfte cromftreeck ghenoemt, noornoortooft de tweede, noortooft ten noorden de derde, en fo voort met d'ander totte achttte, dat is d'ooftcromftreeck die altijt een ront is evewijdich mettet middelront: En foodanich is oock d'oirden in d'ander drie vierendeelen des fichteinders.

De reden waerom de cromftreken benevens de naem die fy hebben na de winden, noch gefeyt worden eerfte, tweede, derde, \&cc. is dufdanich: Anghefien vier * lijckftandige frekẽ, als by voorbeelt de ftreec van noort ten ooften, noort Homologa ten weften, zuyt ten ooften, en zuyt ten weften, in form malcander heel gelijck, en van grootheyt heel even fijn, fulex dat deur de leering van een, de ghedaente over alle vier verfaen wort, foo vallet oirboir om oirdentlick van defe fof te handelen, datmen die als* afcomft eenghemeene naem gheeft,te weten eerfte, Speciss。 als haer * gheflacht, om niet elcke macl vier winden t'famen te moeten noe- Genus. men, of maer eenghenoemt fijnde, dat d'ander niet vergheten en fchijnen.

## N V D E <br> VOORSTELLEN.

AIfoo fijn Vorstelicie Ghenade int lefen van Cofmographia Petri $\triangle$ Appiani \&- Gemma Frifï,ghecommen was tot Cap. 13 prima partio: Daer na tot 7 Cap, in libelio de locorum fribendorum ratione, Alwaer ftont de manier om deurgheralen te vinden op wat ftreeck d'een plaets van d'ander light, heeft het felve alfdoen overghellaghen,om twee redenen, d'eene dat den gront uyt welcke de wercking gherrocken was daer niet byen ftont, ten anderen dat
where the latitude of the place is $57^{\circ}$, such difference would then also be $57^{\circ}$, i.e. more than five points.

And the nearer one gets to the pole, the more appreciable will this difference be found on long voyages, for familiar reasons, which are clear on a globe by means of its accessories. In such a way that it is necessary for navigators, sailing in those regions and trying to discover unknown lands, to be well acquainted with this matter, for it sometimes happens to those who are not prepared for it that, finding their ship to be in another place than according to their conjecture, they attribute this at once to imperceptible diverting currents, though the cause of it may be that they have not observed the above properly.

Up to this point, mention has been made of the loxodrome on which the ship sails due east and west, which is always a circle, but the others (except in the meridians and in the equator) are all spirals, the appearance and character of which will become clear from the following propositions.

## 4th DEFINITION.

First loxodrome we call the one which in each quarter of the horizon is nearest to the meridian, the next is called the second, and so on in due order up to the eighth, which is always a parallel.

Thus, for instance, in the quarter of the horizon from north to east the loxodrome nearest to the meridian, or in other words nearest to the north, which is also called north by east, is called the first loxodrome, north northeast the second, northeast by north the third, and so on with the others up to the eighth, i.e. the east loxodrome, which is always a circle parallel to the equator. And such is also the order in the other three quarters of the horizon.

The reason why, besides the name they have in accordance with the points of the compass, the loxodromes are also called first, second, third, etc., is as follows. Since four homologous tracks, such as e.g. the tracks of north by east, north by west, south by east, and south by west, are quite similar in form and equal in size, so that when one has learned one of them, one understands the character of all four, it is expedient, in order to deal with this subject in the proper way, to give them a common name indicating their genus, viz. first loxodrome, so that we need not each time mention four points of the compass together or, if only one is mentioned, it may not appear that the others have been forgotten.

## NOW THE <br> PROPOSITIONS.

When His Princely Grace, in reading Cosmographia Petri Appiani 1) $\mathcal{E}$ Gemmae Frisij, had come to Cap. 13 primae partis, and afterwards to 7. Cap. in libello de locorum scribendorum ratione, which described the manner in which to find by numbers in what direction one place lies in respect to the other, he skipped this part, for two reasons, the one because the ground on which the operations were based was not mentioned, secondly because at that time he was not yet skilled in
${ }^{1}$ ) Cf. Introduction, p. 482.

## 904 BOVCX DESEERTCIOOTSCHRIFTS,

hy doen noch niet ervaren en was inden handel der platte en clootfche driehoucken: Maer hem'daer na inde felve gheoeffent hebbende, en ghedachich fijnde t'gene inde bovefchreven hooffticken overghenaghen was, hecfi in die plaets ten felven eynde ander manier van wercking ghedaen deur kennis der oirfaken, en dat niet alleen op de vinding der ftreeck van d'een plaets tot d'ander, maer oock op al d'onbekende palen dieder vallen in fulek voortel, twelck hier vervoughtis als volght.

## 1 VOORSTEL

Wefende van tvvee plaetfen ghegheven drie palen defer fes: Rechte freeck van deerfte plaets totte tvveede: Rechte ftreeck vande tvveede plaets tot d'eerfe : langdefchil : Schilbooch der breede van d'eerfte plaets: Schilbooch der breede vande tvieede plaets: En verheyt der plaetfen: Te vinden d'ander dric onbekende palen.
TGEGHEVEN. Laet ABCD den eertcloot fijn diens middelront B D, des felfden begin $D$, afpunt $A$,eerfte plaetsi'punt $E$; tweede plaets t'punt $F$, tuffchen welcke getrock $\overline{\text { i }}$ een grootfte ronts booch $E F$, als verheyt: Deur de felve iwee plaeten $E, F$, fijn getrocke de twee vierdeelenronts $A E G, A F H$,en des punts $E$ breede E G fy van 10 tr.en fal fijn fchilbooch A E doen 80 tr, Voort des punis $F$ breede.fy $\mathrm{F} H$ van 30 tr.en fal finn fchilbooch $A F$ doen co tr. De langde van $E$ fy D G 20 tr.en de langde van $F$ fy $D$ H 60 itr.fulcx dáttet verfchil der langde vande twee plaetien EF is $G$ H doende 40 tr, Inder voughen dat hier vande fes palen, ghegheven of bekent fijn de drie, te weten A E, en AF, fchilbogen der breede, en G H langdefchil. TB E GHE ER DE. Wy moeren de drie onbekende palen vinden, te weten de rechte freeck E F, dat is op wat rechte ftreeck datmen van Ena Fmoet feylen; of anders de grootheyt deshoucx A EF: Tenanderen de ftreeck FE, dat is de grootheyt des houcx AFE: Ten derden de verheydi, te weten de langde des boochs EF. Merckt noch tot breeder verclaring der faeck dat de fes palen int voorflel verhaelt, fijn defes ghemeene palen eens cloot Chen drichoucx, te weten drie houcken en drie fijden, welcke in defe flof fulcke namen hebben.

TWERCK.
Anghefien de booch GH40 tr. is, voor de

groot-
plane and spherical trigonometry. But having afterwards trained himself therein and remembering what he had skipped in the above-mentioned chapters, he proposed instead, for the same purpose, operations of another kind by knowledge of the causes, not only about the finding of the direction of one place in respect to the other, but also about all the unknown elements occurring in this proposition, which is here given as follows.

## 1st PROPOSITION.

If of two places three out of the following six elements are given: course of the great-circle track from the first place to the second; course of the great-circle track from the second place to the first; difference of longitude; complement of latitude of the first place; complement of latitude of the second place; and distance ${ }^{1}$ ) between the places: to find the other three unknown elements.

SUPPOSITION. Let $A B C D$ be the earth, whose equator is $B D$, its beginning $D$, the pole $A$, the first place the point $E$, the second place the point $F$, between which has been drawn an arc of a great circle $E F$, for their distance. Through the said two places $E$ and $F$ have been drawn the two quarter circles $A E G, A F H$, and let the latitude $E G$ of the point $E$ be $10^{\circ}$, then its complement will be $80^{\circ}$. Further let the latitude of the point $F$ be $F H=30^{\circ}$, then its complement $A F$ will be $60^{\circ}$. Let the longitude of $E$ be $D G=20^{\circ}$, and let the longitude of $F$ be $D H=60^{\circ}$, so that the difference of longitude between the two places $E$ and $F$ is $G H$, making $40^{\circ}$. In such a way that here out of the six elements three are given or known, viz. $A E$ and $A F$, the complements of latitude, and $G H$, the difference of longitude. REQUIRED. We have to find the three unknown elements. $v i z$. the course of the great-circle track $E F$, i.e. what course one has to sail from $E$ to $F$, or otherwise the magnitude of the angle $A E F$. Second, the course $F E$, i.e. the magnitude of the angle $A F E$. Third, the distance, viz. the length of the arc $E F$.

Note also, as a fuller explanation of the matter, that the six elements mentioned in the proposition are the six common elements of a spherical triangle, viz. three angles and three sides, which in this subject are so called.

[^130]grootheyt des houcx E AF,foo heeft de drichouck A E F drie bekende palen, te weten den felven houck E A F 40 tr. Voort de fijdeA E 80 tr. en A F 60 tr.deur t'ghegheven: Hier me ghefoche d'ander driconbekende palen, worden bevonden deur het 40 voorftel der clootiche driehoucken voor t'begheerde, te weten den houck A EF voor de ftreeck EF $\operatorname{ss}$ tr: 91 (1), wijckende fo verre vant noorden na tooften: Ende den houck A F E voor de ftreeck F E 109 tr. 44 (1), wijckende foo verre vant noorden over t'weften na het zuyden: Of anders ghefeyt van weften na zuyden 19 tr. 44 (1). Ende de verheyt EF. 42 tr.is (1).

## VERVOLGH.

Tis openbaer hoemen deur elcke drie ghegheven bekende palen, d'ander drie onbekende vinden fal, fulcx dattetniet noodich en is befonder voorbeelden te befchrijven van die verfcheydenheden in menichtefeer veel vallende, te weten fes op elcke begheerde pael derfes palen. T b e sivyt. Wefende dan van twee plaeifen ghegheven drie palen defer fes: Rechte ftreeck van d'eerfte plaets tonte tweede: Rechte ftreeck vande tweede plaets tot deerfte: langdefchil: Schilbooch der breede van d'cerfte plaets:Schilbooch der breede vande rweede plaets: verhe yt der plaetfen: Wy hebben ghevonden d'anderdrie onbekende palen; na deneyich.

## 2 VOORSTEL.

## Op rechte freken te feylen.

Nadien fijn Vorstelicke Ghenade grondelick verfaen hadde den handel der feyling op eromiftreken die hier na befchreven falworden, en daer by verlijekende de rechte ftreken datfe de corfte wech gheven, foo heeft hem behoirlick ghedocht, en d'oirdente vereyffchen, reghelen befchreven te worden hoemen die cortfe ftreken foomen wilde feylen foude: T'welck oirfaeck was dat wiwy daer op letten, en t'gene ons van díes ontmoete by ghedachtenis ttelden, daer af befchrijvende twee voorbcelden;t'eerfte* tuychwerckelick, Mechaxicts rander wifconltich:

## 1 Voorbeelt tuychvecrckelick.

Tghegheven. Laet inde form der i bepaling Aen $B$ twee plaetfen op den eercloot bereyckenen, A daer t'fchip af vaert, $B$ daert fijn moet.

TbEGHEERDE. Men wil een rechte ftreeck feylen vande plaets beteyckent met $A$, totte placts beteyckent met $B$.

## TWERCK.

Men fal van $A$ tot $B$ trecken een verborgen oft uytvaghelickegrootfteronts booch, beteyckenende de rechte ftreeck die t'fchip feylen moct, daer na t'punt A gheftelt fijnde onder het * foppunt,en dan de fopbooch gheleyt over B, fy wift Pwnfo wetinden fichteinder, neem ick, dat B recht weft van A light. Dit foo fijnde, men tiali fal van A na B feylen recht weftwaert an, by giffing dric of vier* trappen verre, Grados die commen, neem ick, van A tot H: Alwaer t'punt Hgheteyckent fijnde, men falt brenghen int middachront onder het toppunt, den afpunt foo veel verleeghende als de faeck vereyfcht, daer na de fopbooch andermael geleyt over t'punt

## PROCEDURE.

Since the arc $G H$ is $40^{\circ}$, for the magnitude of the angle $E A F$, the triangle $A E F$ has three known elements, viz. the said angle $E A F=40^{\circ}$; further the side $A E=80^{\circ}$, and $A F=60^{\circ}$, by the supposition. If by means of these we seek the other three unknown elements, the required values are found by the 40th proposition of spherical trigonometry ${ }^{1}$ ), viz. the angle $A E F$ for the course $E F=$ $55^{\circ} 51^{\prime}$, deviating thus far from the north to the east. And the angle $A F E$ for the course $F E=109^{\circ} 44^{\prime}$, deviating thus far from the north via the west to the south. Or in other words: from the west to the south, $19^{\circ} 44^{\prime}$. And the distance $E F=42^{\circ} 15^{\prime}$.

## SEQU̇EL.

It is evident how from any three given known elements we must find the other three unknown elements, so that it is not necessary to describe special examples of those various cases, of which there are a great many, viz. six for each required element of the six.

CONCLUSION. If of two places three out of the following six elements are given: course of the great-circle track from the first place to the second; course of the great-circle track from the second place to the first; difference of longitude; complement of latitude of the first place; complement of latitude of the second place; distance between the places; we have found the other three unknown elements; as required.

> 2nd PROPOSITION.

To sail on great-circle tracks.
After His Princely Grace had thoroughly understood the method of sailing on loxodromes to be described hereafter and, having compared therewith the greatcircle tracks, had found that they give the shortest route, he considered it expedient and required by the order of things that rules should be described of how those shortest tracks would have to be sailed, if this were desired. Which induced us to attend to this matter and to make a note of what we had found about it, describing two examples of it, the first mechanical and the second mathematical.

1st Example, Mechanical.
SUPPOSITION. In the figure of the 1 st definition let $A$ and $B$ denote two places on the earth, $A$ the place from which the ship sails, $B$ the place for which it is bound.

REQUIRED. It is desired to sail on a great-circle track from the place denoted by $A$ to the place denoted by $B$.

## PROCEDURE.

Draw from $A$ to $B$ an erasable arc of a great circle, denoting the great-circle track to be sailed by the ship; if then the point $A$ is placed under the zenith and the vertical circle is made to pass through $B$, it indicates in the horizon, I assume, that $B$ lies due west of $A$. This being so, one has to sail from $A$ to $B$ due west, by conjecture three or four degrees further, which I assume to be from $A$ to $H$. And when the point $H$ has been marked there, one has to bring it into the meridian under the zenith, lowering the pole as much as is required. If then

[^131]
## 92 4 BOVCKDES EERTCLOOTSCHRIFTS,

fy wijftinden fichteinder dat $B$ van $H$ light neemick 3 tr. van weften nae zuyyden, en daerom falmen op fulcken ftreec van H na B feylen weerom by giffing. eenighe 4 of, tt. verre, iwelck fy neem ick tor 1 , alwaer r'fchip ghecommen Gijnde, men fal daer wiecrom doen fulex alfmen an $H$ dede; alwaermen oock bevinden fat datmen dan noch zuydelicker an nae B fal moeten feylen danmen van $H$ dode: En fghelijex doende foo dickwils tot datmen ter plaets Bcomt, men fal de begheerde rechte Areeck A B ghefeylt hebben: Mits welverfiaende dat de ftuckenals A. H,H I, en dierghelijckécleen'genouch genomen Cjn , Want hoe wel in plaets van A H wefende een grootfte ronts ftuck, ghefeylt wiert een cromme frece wefende cleenronts deel wat noordelicker uytcommende, voort dat in plaess van d'ander fucken des boochs A B,ghefeylt wierden ander crommeftreken wefende Aangtrecxdeelen, doch met fuicke fucken cleen genouch re nemen, canmen maken dat foodanich verfchil van gheender acht en is.

Merckt noch datter vant werck dufdanighe proef can genomen worden: Hee fchipghecommen wefende tot neem ick H , en datmen dan deur dadelicke er. varing mette Son of ferren d'eertcloots breede bevint tovercommen metic breededie $H$ op den ghebotiten ecricloot anwijft, dat geeft met reden vermocden het fohip de rechte ftreeck wel ghefegit te hebben, t'welck volghen moet alimen wel ghegift heeft.

## VERVOLGH.

Soo de vaert moet ghedaen fijn opt middelront, t'is kennelick datmen aliijt foude moeten varen recht ooft of weft; Maer moerende op cen middachront ghefchien, datmen dan alijit recht zuytof recht noottfoude moeren varen.

## 2. Voorbeet vivif constich.

Tohegheyen Lace A en B twee platen op den eetrcloot beteyckenen, A daer i'fchip af vaert, B dert fijn moet, C den afpunt, DE her middeliont, de breede van $A$ is $E$ A sotren $\operatorname{van} B$ is $F B$ s tr.en iverfchil haerder langden is $\mathrm{FE}_{83}$ tr.

Tbegheerde. Men wileen rechte fteeck feylen vande plaers beteyckent met A. totte plaets beteyckent met $B$, en dat wifconftelick vinden, te weren deur rekenleng der clootrche driehouc:
 ken.

## Bereytfel ruan t'enste deel des iverricx.

Idk reck van A tot B een grootfte rondts booch beteyckenende de rectteftreck die t'chip feylen moet: Daer nae de felve $\mathrm{A} \cdot \mathrm{B}$ voorwaert to datre het middelront ontmoet, t'welek fy in D: Daer nae den booch EA woorwaett
the vertical circle is again made to pass through the point $B$, it indicates in the horizon that $B$ lies from $H, \mathrm{I}$ assume, 3 degrees from west to south, and accordingly one has to sail this course from $H$ to $B$ again by conjecture some 4 or 5 degrees further, I assume as far as $I$. And when the ship has arrived there, one has to do there again as at $H$, where it will be found that one will have to sail to $B$ even more to the south than one did at $H$. And if the same is done until one arrives at the place $B$, one has sailed on the required great-circle track $A B$, provided the distances $A H$ and $H I$ and the like have been taken small enough. For even if instead of on $A H$, which is a part of a great circle; one sailed on a loxodrome, which is a part of a small circle, arriving slightly more to the north, and if further, instead of on the other parts of the arc $A B$, one sailed on other loxodromes, which are parts of spirals, yet by taking these parts small enough one can cause this difference to be of no account.

Note that the procedure may be checked as follows: When the ship has arrived, I assume, at $H$, and when it is then found by observation of the sun or the stars that the latitude on the earth corresponds to the latitude of $H$ on the globe, this gives one reason to assume that the ship has rightly sailed on the great-circle track, which has to follow if the conjecture has been right.

## SEQUEL.

If the sailing had to take place on the equator, it is obvious that one ought always to sail due east or west. But if it had to take place on a meridian, it is obvious that one ought always to sail due south or due north.

## 2nd Example, Mathematical.

SUPPOSITION. Let $A$ and $B$ denote two places on the earth, $A$ the place from which the ship sails, $B$ the place for which it is bound, $C$ the pole, $D E$ the equator; the latitude of $A$ is $E A=50^{\circ}$, and that of $B$ is $F B=5^{\circ}$, and their difference of longitude is $F E=83^{\circ}$.

REQUIRED. It is desired to sail on a great-circle track from the place denoted by $A$ to the place denoted by $B$, and to find this mathematically, viz. by means of a calculation of spherical trigonometry.

## Preliminary of the First Part of the Procedure.

I draw from $A$ to $B$ an arc of a great circle, denoting the great-circle course on which the ship has to sail. After this I produce the said $A B$ until it meets the equator; let this be in $D$. After this I produce the arc $E A$ until it meets the pole $C$; then $A C$ will be $40^{\circ}$, for when we subtract $E A=50^{\circ}$ from $E C=90^{\circ}$,
tot datfe den alpunt $C$ ontmoet, en fal A C doen 40 tr. want van $E C$ cotr.ghetrocken E A sotr. blijft voor A C 40 tr. S'ghelijcx treck ick F B voorwaert tot datfe den afpunt $C$ ontmoetsenfal $B C$ doen 85 tr. want van $F$ C 90 tr.ghetrocken FBy tr, blijft voor BC $8 \rho$ tr, en den houck BC A, diens grootheyt megebrocht wort $\operatorname{van}$ FE 83 tr. doet als de felve oock 83 tr.

## 1 Deel des unercx.

Om eerft te vinden op wat Atreeck men fal beginnen te feyten van A na B,fo moet ick weten de grootheyt des houcx C A B , want foo veel falmen mocten feylen van noorden na weften. Om daer toc te commen, foo heeft den felven driehouck C A B drie bekende palen, deur t'bereytrel, te weten den houck BCA 83 tr. de fijde A C 40 tr. en B C 85 tr. Hier me ghefocht de drie onbekende palen, worden bevonden deur het 40 voorttel der clootfche diiehoucken; te weten den houck C A B92tr. 8 (1), de langde A B van d'een plaets tot d'ander 81 tr .4 I (1), en den houck C B A 39 tr . 45 (1). Nu foo veel als doet den voorichreven houck $C A B$, te weten 92 tr. 8 (3), foo veel falmen van $A$ af moèten beginnen te feylen van noorden over weften na zuyden, dat is 87 tr .52 (1) van zuyden na weften, welcke feyling gheduert neem ick 4 tr . verre tot $G$ toe, fulex dat AG doet de felve $4 \mathrm{tr}_{\mathrm{t}}$.

## 2 Bereytfel dienendetotet 2 deel des rovercx.

Anghefien dat de vinding der onbekende palen eens driehoucx fonder ghegheven rechthouck als de voorgaende, mocyelicker valt dan met een ghegeven rechthouck, fo fullen wy een bereyfel ftellen om int volgende te wercken deur driehoucken met een gheg heven rechthouck,aldus: De driehouck B F D heeft drie bekende palen, te weten den houck B F D recht, mette fijde FB 5 tr. deur t'ghegheven, en den houck DBF even fijnde metten houck CBA, doet deui t'eeiftedeel des wercx 39 tri4s (1):Hier meghefocht den houck $D$, en de fijde D B,worden bevonden deur het 34 voorftel der cloorfche driehoucken, te weten den houck D sotr. 26 (1), en de.fijde BD 6 tr. 27 (1), die vergaert tot AB 81 tr. 41 (1), comt voor A D 88 tr. 8 (1).

## 2. Deel des upercx:

Om te vinden op wat ftreeck men fal beginnen te feylen van $G$ nà $B$;ick treck van $C$ deur $G$ tot int middelront $E F$ de booch $C G H$ als middachront, waet me G H D een rechthouckich drichouck is, hebbende drie bekende palen, te weten den houck GHD recht, den houck D gotr. 26 (1) deur het 2 bercytfel, en de fijde GD 84 tr. 8 (1)); want A D doet 88 tr. 8 (1) deur het 2 bereytfel, daer af ghetrocken A G doende 4 tr. deut t'eerfte deel des wercx, blijft alfboven voor GD $8_{4}$ tr. 4 (1): Hier meghefocht den houck H G D, wort bevonden deur het 34 voorttel der clootfche drichoucken van 87 ir. 45 (1) : En op fulcken ftreeck van zuyden na weften moetmen van $G$ feylen na $B, t^{i}$ welek 7 (1) zuydelicker is danmen ran $A$ tot $G$ feylde, want ghetrocken 87 tr. 45 (1), van 87 tr. 52 (1), blijft de felve 7 (1). Nudan van $G$ alduts ghefeylt hebbende foo verre men oirboir verfaer, men fal ons voorder te feylen daer weerom doen als an $G$ gedaen wiert, en derghelijeke tot ander plaetfen foo lang datmen tot $B$ comit.

Merckt ten I dat hoewel de bovefchreven 7(1) zuydelicker tefeylen fo weynich is, datter met een feylende fchip niet gagellagen en can worden,doch
the remainder is $40^{\circ}$ for $A C$. In the same way I produce $F B$ until it meets the pole $C$; then $B C$ will be $85^{\circ}$, for when we subtract $F B=5^{\circ}$ from $F C=90^{\circ}$, the remainder is $85^{\circ}$ for $B C$; and the angle $B C A$, whose magnitude follows from $F E=83^{\circ}$, like the latter is also $83^{\circ}$.

> 1st Part of the Procedure.

In order to find first what course one has to start sailing from $A$ to $B$, I have to know the magnitude of the angle $C A B$, for thus much one will have to sail from north to west. To find this, the said triangle $C A B$ has three known elements, by the preliminary, viz. the angle $B C A=83^{\circ}$, the side $A C=40^{\circ}$, and $B C=85^{\circ}$. When herewith the three unknown elements are sought, they are found by the 40th proposition of spherical trigonometry ${ }^{1}$ ), viz. the angle $C A B=92^{\circ} 8^{\prime}$, the distance $A B$ from one place to the other $81^{\circ} 41^{\prime}$, and the angle $C B A=39^{\circ} 45^{\prime}$. Now as much as the aforesaid angle $C A B$ amounts to, viz. $92^{\circ} 8^{\prime}$, so much one will have to start sailing from $A$, from the north via the west to the south, i.e. $87^{\circ} 52^{\prime}$ from south to west, which sailing continues, I assume, $4^{\circ}$ further to $G$, so that $A G$ is the said $4^{\circ}$.

## 2nd Preliminary, Serving for the 2nd Part of the Procedure.

Since the finding of the unknown elements of a triangle without a given right angle, like the foregoing, is more difficult than with a given right angle, we shall give a preliminary to operate in the following by means of triangles with a given right angle, as follows. The triangle $B F D$ has three known elements, viz. the angle $B F D=90^{\circ}$, with the side $F B=5^{\circ}$, by the supposition, and the angle $D B F$, being equal to the angle $C B A$, by the first part of the procedure is $39^{\circ} 45^{\prime}$. When herewith the angle $D$ and the side $D B$ are sought, they are found by the 34th proposition of spherical trigonometry ${ }^{2}$ ), viz. the angle $D=50^{\circ} 26^{\prime}$ and the side $B D=6^{\circ} 27^{\prime}$; when we add the latter to $A B=81^{\circ} 41^{\prime}$, we get $88^{\circ} 8^{\prime}$ for $A D$.

## 2nd Part of the Procedure.

In order to find what course one should start sailing from $G$ to $B$, I draw from $C$ through $G$ to the equator $E F$ the arc $C G H$ as meridian, in consequence of which GHD is a right-angled triangle having three known elements, viz. the angle $G H D=90^{\circ}$, the angle $D=50^{\circ} 26^{\prime}$, by the 2nd preliminary, and the side $G D=84^{\circ} 8^{\prime}$, for $A D$ is $88^{\circ} 8^{\prime}$ by the 2nd preliminary, and when from this we subtract $A G$, being $4^{\circ}$ by the first part of the procedure, the remainder is, as above, $84^{\circ} 4^{\prime}$ for $G D$. When herewith the angle $H G D$ is sought, it is found by the 34 th proposition of spherical trigonometry ${ }^{3}$ ) to be $87^{\circ} 45^{\prime}$. And that course from south to west one has to sail from $G$ to $B$, which is $7^{\prime}$ more to the south than the sailing from $A$ to $G$, for when we subtract $87^{\circ} 45^{\prime}$ from $87^{\circ} 52^{\prime}$, this $7^{\prime}$ is left. Now therefore, after having sailed thus from $G$ as far as is considered expedient, in order to continue one has to do again as one did at $G$, and similarly at other places until one arrives at $B$.

NOTE in the first place that although the sailing of the above-mentioned $7^{\prime}$ more to the south is so short a distance that it cannot be observed in a sailing

[^132]
## 94. 4 BOVCKDESEERTCLOOTSCHRIFTS,

 verfaetmen daer deur datmen de volghende booch van $G$ vooriwaerig grooter mach nemen dan 4 tr. Maer foo d'eerfte booch te groot had genomen geiveeft, fulcx daumen op een minder met fekerheyt feylen can, tis kennelic datmen dan derekening opeen minder booch behoort te maken. Noch flaet tegedencken datter in dit voorbeelt op even boghen meerder verandering vall by t'punt $B$, dan verder daeraf, want by $B$ commende , men fal moeten van zuyden na weften feylen allecenelick 39 tr:4s (1), (deur dien den houck D B F:foo groot is) t'welck 48 tr: 7 (1) zuydelicker is dan doenmen an A begof, alwaer den houck B A E bevonden wiert van 87tr. 52 (1).MER REX T ten 2 dat foomen begeerde te weten de brecde van t'punt $\mathbf{G}$,om tonderfoucken offe deur dadelicke ervaring foo bevonden wort, als van dergelicke int 1 uychwerckelick voorbeclr ghefeyt is , men foude hier boven benevens den houck DG H des drichoucx DG H, roch vinden de fijde GH, wantfe de begheerde breede anwijf. T B e sivy.t. Wy hebben dan op rechte freken ghefeyli na den eyfch.

## 3 VOORSTEL

## Cromfreken tuychvverckelick te teyckenen.

De dadelicke Eericloormakersghebruycken verfcheyden middelen en reetfchappen totte teyckening der cromfrekenelck dat hem beft bevalt : Een yan
dien
ship, yet it is understood thereby that the next arc from $G$ on may be taken larger than $4^{\circ}$. But if the first arc had been taken too large, so that a smaller arc appears necessary in order to sail with accuracy, it is obvious that one must then make the calculation on a smaller arc. It should also be borne in mind that in this example with equal arcs the change is greater at the point $B$ than further away, for when one gets to $B$, one will have to sail from south to west only $39^{\circ} 45^{\prime}$ (because the angle $D B F$ has this magnitude), which is $48^{\circ} 7^{\prime}$ more to the south than when one started at $A$, where the angle $B A E$ was found to be $87^{\circ} 52^{\prime}$.

NOTE in the second place that if it were required to know the latitude of the point $G$, so as to ascertain whether it is found the same by observation as it has been said in the 1st mechanical example, in the above one would have to find, in addition to the angle $D G H$ of the triangle $D G H$, the side $G H$, because it designates the required latitude. CONCLUSION. We have thus sailed on great-circle tracks; as required.

## 3rd PROPOSITION.

To draw loxodromes mechanically.
Practical globe-makers use various means and tools for drawing loxodromes, each taking that which suits him best. We shall here explain one of them, not in
dien fullen wy hier verclaren, niet om inde daet naghevolght te worden, maer om dattet wel uytdruckt den gront van tghene begheert is, en daer na beter gedaen moet fijn. Laet AB een cloot fijn, hier op befchrijf ick eenich cleender rond $C D E F$, diens middelpunt $G$, welck ront ick deel in 32 even declen, treckende van daer rottet middelpunt $\mathrm{G}_{32}$ boghen, die my de 32 ghemeene ftreken beteyckenen. Hier in anfien ick $\mathbf{C} G E$ voor de booch van noort na zuyt, en FG D daer op rechthouckich yoor de booch van weft na oof. Dit foo fijnde ick maeck een coper clootfche fcheefhouck GHIK op den cloot paffende, en hebbende de fcheef heyt van een ffreeck, want foo veel doet den houck FGH. Nu ghelijck hier ghemaeckt isde clootche fcheefhouck van een ftreeck, alfoo falmender meer maken tot feven toe, te weten voor elcke freeck een die tuffchen F C commen. Defe feven clootfhe fcheef houcken bereyt fijnde, men fal nemen een ander cloot $L$ M N O vande felve grootheyt als A B,alwaer LN het middelront beteyckent, $M$ den noortfchen afpunt, $O$ den zuytfchen, tuf. fchen defetwee arpunten fijn middachronden ghetrocken als $\mathrm{MPO}, \mathrm{MQO}$,


M R O,fnyende het middelront van trap tot trap inde punten $P ; Q, R$. Hier op teycken ick de cromftreecken als volght:Ghenomen datick eerft wil hebben de gromme noortoofttreeck, foo neem ick uyt debovefchreven feven coperen cloot-
order that it may be imitated in practice, but because it shows very well the foundation of what is required, and because hereafter it can be done better. Let $A B$ be a globe; on this I describe a small circle CDEF, the centre of which is $G$, which circle I divide into 32 equal parts, drawing from there to the centre $G$ 32 arcs, which denote the 32 common points of the compass. Herein I look upon $C G E$ as the arc from north to south, and $F G D$, at right angles thereto, as the arc from west to east. This being so, I make an oblique spherical angle of copper GHIK, fitting on the globe and having the obliquity of one point, for that is the magnitude of the angle $F G H$. Now just as here the oblique spherical angle of one point has been made, in the same way others have to be made, up to seven viz. one for each point - which come between $F$ and $C$. When these seven oblique spherical angles have been made, another globe $L M N O$ of the same size as $A B$ must be taken, where $L N$ denotes the equator, $M$ the north pole, $O$ the. south pole; between these two poles have been drawn meridians, viz. $M P O, M Q O$, $M R O$, intersecting the equator from degree to degree in the points $P, Q, R$. Upon this I draw the loxodromes as follows: Assuming that I first want to have the loxodrome of northeast, I take out of the above-mentioned seven oblique

## 964 BOVCKDESEERTCLOOTSCHRIFTS,

cloorthe fcheefhoucken dien welcke de noortooftireeck beteyckent, de felve fy R S T V, diens fijde TV vervought is op een der middachronden, als op M R O,foo dat den houck des coperen cloothoucx paft op R ghemeene fine des middachronts en middelronts L N,en treck van R langs R S een liniken tottet naefte middachront als tot $X$ : vervough daer na den coperen fcheefhouck opt middachront M Q O, en alfo dattet houckpunt $R$ dan comme an $X: T$ reck daer na van $X$ langs de voorfchreven fcheefhoucx fijde het liniken X Y. En alfoa voortgaende na Z tot datmen den afpunt na ghenouch is, of gheraeckt; men fal de cromme noortoofttreeck op den Eertcloot gheteyckent hebben: Wy fegghen hier boven tot datmen den afpunt na ghenouch is, of gheraeckt, doch wifconftelick ghefproken en can niet gherocht worden, want de flangtreck fous. de oneyndèlick daer rontom loopen en altijt naerderén fonder gheraken; Maer
Mechanice. * tuychwerckelick can een fichtbaer afpunt gherocht worden.
Deur t'ghenewy tot hier toeghefeyt hebben vande teyckening der noortcofttreeck, is openbaer de teyckening van al d'ander cromitreken, en kenne. lick hoemen tot alle plaetfen eens Eertcloots de cromme feylftreken teyckenen fal na fijn wille. T bes L vYT. Wy hebben dancromftreken tuychwercke, lick gheteyckent, na den eyfch.

## $V$ ande on Sekerbeyt inde voorg aende rvëfe van teyckening.

Want dear de gheduerighe en menichvuldrghe verfetting van defen coperen fcheefhouck RS T V onfekerheyt int werck can volghen, alfooom dergelijckeredenen oock can in meer ander tuych tot fulcken eynde ghemaeckt, of alwaerder fekerheyt in dat fulcx onbewefen blijft: Soo ift te weten dat wy die manier alleenlick hier gheftelt hebben, eenfdecls op datmen daer deur verface de onfekerheyt dieder is inde cromftreken alfoo op Fertclobten gheteyckent. Ten anderen om dattet wel verclaert degront en eyghenfchappen der cromftreken, daermen op bonwen mach wifconftighe wercking, deur welcke de tuychwerckelicke meerder fekerheyt can crijghen, als blijcken fal, eert befchreven fijnde de tafelsals volght.

## 4 VOORSTEL.

## Tafel der cromitreken te maken.

De fomme defes voorftels is, dat wy moeten vinden in ghetalen, hoe lanck dat fijn de boghen als inde form des 3 voortels $Q X, P Y$, en dergelijcke, want die ghetalen bekent wefende, en na den eyfch vari dien punten gheteyckent als $X, X, a, b, Z, e n$ van t'cen punt tottet ander linikens ghetrocken,men crijcht de begheerde cromftreeck. Het vinden defer bogen foude meugen aldus toegaen:

## EERSTE MAECKSELVANDE TAFELS DER CROMSTREKEN.

Laet $\mathrm{R} \mathbf{Z}$ noch eens de vierde cromftreeck beteyckenen, daer af wy vinden willen de boghén $Q X, P Y$ : Tot defen eynde fegh ick dat de driehouck X QR drie bekende palen heeft; te weten den houck $X R Q 4 s$ tr. den houck $X Q \bar{R}$ techt,en de fijde R Q itr. Hier me ghefocht de fijdé Q X, wort bevonden deur het 36 voorftel der clootfche driehoucken van 59 (1) 59 (2). Om nute vinden delini
spherical angles of copper the one which denotes the loxodrome of northeast; let this be RSTV, whose side TV has been placed on one of the meridians, viz. on $M R O$, so that the vertex of the oblique spherical angle of copper comes in $R$, the point of intersection of the meridian and the equator $L N$, and I draw from $R$ along $R S$ a short line to the next meridian, viz. X. Then place the oblique angle of copper on the meridian $M Q O$, in such a way that the vertex $R$ then comes in $X$, thereafter draw from $X$ along the aforesaid side of the oblique angle the short line $X Y$. And proceeding in this way to $Z$ until one is near enough to the pole or reaches it, one has drawn the loxodrome of northeast on the globe. We said above: until one is near enough to the pole or reaches it, but mathematically speaking it is impossible to reach it, for the spiral must pass around it infinitely and always approach it without reaching it. But mechanically speaking it is possible to reach a visible pole.

From all that we have hitherto said about the drawing of the loxodrome of northeast it is evident how all the other loxodromes have to be drawn and it can be known how in any place of a globe we shall draw the loxodromes we desire. CONCLUSION. We have thus drawn loxodromes mechanically; as required.

## Of the Uncertainty in the Foregoing Method of Drawing.

Because the constant and frequent displacement of this copper oblique angle RSTV may result in uncertainty in the procedure, as may also happen for the same reasons with other tools made for this purpose - or even if the procedure were certain, this remains unproved - it is to be noted that we have only given this method here, on the one hand in order that the uncertainty in the loxodromes thus drawn on globes may be understood thereby; on the other hand because it explains very well the foundation and the properties of loxodromes on which mathematical operations can be based, owing to which the mechanical method may become more certain, as will appear when first the tables have been described, as follows.

## 4th PROPOSITION.

To make a table of the loxodromes.
The gist of this proposition is that we have to find the numerical values of the lengths of the arcs, viz. in the figure of the 3rd proposition $Q X, P Y$, and the like, for when these values are known and points have been marked accordingly, viz. $X, Y, A, B, Z$, and short lines have been drawn from one point to the other, the required loxodrome is obtained. The finding of those arcs might take place as follows.

## FIRST METHOD OF MAKING THE TABLES OF THE LOXODROMES.

Let $R Z$ once again denote the fourth loxodrome, from which we want to find the arcs $Q X$ and $P Y$. To this end I say that the triangle $X Q R$ has three known elements, viz. the angle $X R Q=45^{\circ}$, the angle $X Q R=90^{\circ}$, and the side $R Q=1^{\circ}$. When herewith the side $Q X$ is sought, it is found by the 36th proposition of spherical trigonometry 1) to be $59^{\prime} 59^{\prime \prime}$. Now in order to find the line $P Y$, I draw the arc XC parallel to $Q P$; then $P C$ will also be $59^{\prime} 59^{\prime \prime}$, like $Q X$,

[^133]de lini $P Y$, ick treck de booch $X c$ evewijdich met $Q P$, en fal $P c$ dan oock doen sя(1) s 9 (2), gelijck $Q X$ : Sulcx datter vanden driehouck $Y c \mathbb{X}$, gevonden moet Worden de fijde $c \mathrm{Y}$, om die te vergaren tot P c,en dan te hebben de booch P Y:
 Y X 645 tr. denhouck $\mathrm{Y} c \mathrm{X}$ recht, en de ffjde X X 99 (1) 58 (2), want fo veeldoct dien langdetrap buyten t'middelront deur de ghemeene tafel diemen daer af maeckt, en hier na oock volghen fal;daer me ghefocht de fijde $c Y$, wort bevonden deur het 36 vootftel der clootiche driehourken van 59 (1) 57 (2), die vergaert tot Pc s9(1) 59 (2), comt voor P Y itr. 59 (1) 56 (2), en foo voort met dan d'ander.

## TWEEDEMAECKSELVANDE

TAFELS DER CROMSTREKEN.
Anghefien het maken van volcommen tafels na de voorgaende certe wijfe; langher foude vallen dan my den tijt toetaet, foo fullen wy een ander ftellen, befchrevenen onlancx uytghegheven deur Edparti Wright; want hoewelfe eenige onvolcommenheyt hebben daer wy inden Anhang der cromftreken breeder af fegghen fullen, nochtans connenfe tot verclaring des voornemens dienen.

Tottet makèn vande volgende tafels der cromitreken wort eerft befchreven als bereytfel een tafel der verfaemde fnylijnen van 10 (1) tot 10 (1) aldus: De fnylijn van io (1) doet.
Daer toe de fnylijn yan 20 (1) doende ro000168 comt . 20000210. Daer toe de fnylijn van 30 (1) doende 10000381 comt 30000591.

En fo voort;maer eyntlick falmen overal de vijf laetfte ketters affnyen, en fal cen tafel fijn als volght:

TAFEL
so that of the triangle $Y C X$ the side $C Y$ has to be found, in order to add it to $P C$ and then have the arc $P Y$. For this, the said triangle $Y C X$ has three known elements, viz. the angle $Y X C=45^{\circ}$, the angle $Y C X=90^{\circ}$, and the side $X C=59^{\prime} 58^{\prime \prime}$, for that is the value of this degree of longitude outside the equator by the common table which is made thereof and which is to follow hereafter. When herewith the side $C Y$ is sought, it is found by the 36th proposition of spherical trigonometry ${ }^{1}$ ) to be $59^{\prime} 57^{\prime \prime}$. When we add this to $P C=59^{\prime} 59^{\prime \prime}$, we get $P Y=1^{\circ} 59^{\prime} 56^{\prime \prime}$, and so on with the others.

## SECOND METHOD OF MAKING THE TABLES OF THE LOXODROMES.

Since the making of complete tables by the foregoing first method would take longer than time permits me, we shall give another method, described and recently published by Edward Wrigbt ${ }^{2}$ ), for although they have certain imperfections, which we shall discuss more fully in the Appendix of Loxodromes, yet they may serve to explain our intention.

With a view to the making of the following tables of loxodromes, by way of preliminary a table is first described of the assembled secants, increasing by $10^{\prime}$, as follows:
'The secant of 10 ' is
10,000,042
If to this we add the secant of $20^{\prime}$, being $10,000,168$, we get
20,000,210 If to this we add the secant of $30^{\prime}$, being $10,000,381$, we get 30,000,591
And so on; but finally the five last digits must be discarded, and then the table will be as follows:

TABLE OF ASSEMBLED SECANTS
degrees minutes secants

[^134]TAFELS DER

| $t r$. |  | linen. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 10 | 100 | 5 | 10 | 31 | 10 | 10 | 6132 |
| 0 | 20: | 200 | 5 | 20 | 3205 | $10^{\prime}$ | 20 | 6234 |
| 0 | 30 | 300 | 5 | 30 | 3305 | 10 | 30 | 6335 |
| 0 | 40 | 400 | 5 | 40 | 3.403 | 10 | 40 | 6437 |
| 0 | so | 500 | 5 | so | 3506 | 10 | so | 6539 |
| 1 | 0 | 600 | 6 | 0 | 3606 | II | 0 | 6641 |
| 1 | 10 | 700 | 6 | 10 | 3707 | 11 | 10 | 6743 |
| 1 | 20 | 800 | 6 | 20 | 3808 | 11 | 20 | 6845 |
| 1 | 30 | 900 | 6 | 30 | 3908 | 11 | 30 | 6947 |
| 1 | 40 | 1000 | 6 | 40 | 4009 | 11 | 40 | 7049 |
| 1 | so | 1100 | 6 | 50 | 4110 | 11 | so | 7151 |
| 2 | 0 | 1200 | 7 | $\bigcirc$ | 4210 | 12 | 0 | 7253 |
| 2 | 10 | 1300 | 7 | 10 | 4311 | 12 | 10 | 7355 |
| 2 | 20 | 1400 | 7 | 20 | 4412 | $\mathrm{r}_{2}$ | 20 | 7458 |
| 2 | 30 | 1500 | 7 | 30. | 4513 | 12 | 30 | 7560 |
| 2 | 40 | 1601 | 7 | 40 | 4614 | 12 | 40 | 7662 |
| 2 | so | 1701 | 7 | 50 | 4715 | 12 | so | 7765 |
| 3 | 0 | 1801 | 8 | 0 | 4815 | 13 | 0 | 7868 |
| 3 | 10 | 2901 | 8 | 10 | 4916 | 13 | 10 | 7970 |
| 3 | 20 | 2001 | 8 | 20 | 5018 | 13 | 20 | 8073 |
| 3. | 30 | 2101 | 8 | 30 | 5119 | 13 | 30 | 8176 |
| 3 | 40 | 2201 | 8 | 40 | 5220 | 13 | 40 | 8279 |
| 3 | 50 | 2302 | 8 | 50 | 5321 | 13 | so | 8382 |
| 4 | 0 | 2402 | 9 | 0 | 5422 | 14 | 0 | 8485 |
| 4 | 10 | 2502 | 9 | 10 | 5523 | 14 | 10 | 8588 |
| 4 | 20 | 2602 | 9 | 20 | 5625 | 14 | 20. | 8691 |
| 4 | 30 | 2703 | 9 | 30 | 5726 | 14 | 30 | 8794 |
| 4 | 40 | 2803 | 9 | 40 | 5827 | 14 | 40. | 8897 |
| 4 | so | 2903 | 9 | 50 | 5929 | 14 | 50 | 9001 |
| 5 | 0 | $3 \mathrm{CO4}$ | 10 | 0 | 6030 | 15 | 0 | 9104 |

versaemde Snyinen.


## 100 <br> Tafelsder

| tr. |  | frülinen. | tr. | (1) | nnylinen. | tr. |  | fnÿlinen: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 10 | 18999 | 35 | 10 | 22565 | 40 - | 10 | 26358 |
| 30 | 20 | 19115 | 35 | 20 | 22688 | 40 | 20 | 26489 |
| 30 | 30 | 19231 | 35 | 30 | 22811 | 40 | 30 | 26621 |
| 30 | 40 | 19347 | 35 | 40. | 22934 | 40 | 40. | 26752 |
| 30 | 50. | 19464 | 35. | 50 | 23057 | 40 | so | 26884 |
| 31 | $\bigcirc$ | 19580 | 36 | 0 | 23180 | 41 | 0 | 27017 |
| 31 | 10 | 19697 | 36 | 10 | 23304 | 41 | 10 | 27149 |
| 31. | 20 | 19814 | 36 | 20 | 23428 | 41 | 20 | 27282 |
| 31 | 30 | 19931 | 36 | 30 | 23552 | 41 | 30 | 27416 |
| 31 | 40 | 20048 | 36 | 40 | 23677 | 41 | 40 | 27549 |
| 31 | so | 20166 | 36. | 50 | 23802. | 41 | 50 | 27683 |
| 32 | $\bigcirc$ | 20284 | 3.7 | $\bigcirc$ | 23927 | 42 | $\bigcirc$ | 27818 |
| 32 | 10 | 20402 | 37 | 10 | 24052 | 42 | - 10 | 27953 |
| 32 | 20 | 20520 | 3.7 | 20 | 24178 | 42 | 20 | 28088 |
| 32 | 30 | 20639 | 37 | 30 | 24304 | 42. | 30 | 28223 |
| 32 | 40 | 20757 | 37 | 40 | 24430 | 42 | 40 | 28359 |
| 32 | 50 | 20876 | 37 | so | 24556 | 42 | 50 | 28495 |
| 33 | $\bigcirc$ | 20995 | 38 | 0 | 24683 | 43 | 0 | 28632 |
| 33. | 10 | 23115 | 38 | 10 | 24810 | 43 | 10 | 28769 |
| 33 | 20 | 21234 | 38 | 20 | 24938 | 43 | 20 | 28906 |
| 33 | 30 | 21354 | 38 | 30 | 25065 | 43 | 30 | 29044 |
| 33 | 40 | 21474 | 38 | 40 | 25193 | 43 | 40 | 29182 |
| 33 | 50 | 21594 | 38 | $50^{\circ}$ | 25321 | 43 | 50 | 29320 |
| 34 | 0 | 21715 | 39 | $\bigcirc$ | 25450 | 44 | $\bigcirc$ | 29459 |
| 34. | 10. | 21836 | 39. | 10 | 25579 | 44 | 10 | 29598 |
| 34 | 20 | 21957 | 39 | 20 | 25708 | 44 | 20 | 29738 |
| 34 | 30 | 22078 | 39 | 30. | 25837 | 44 | 30 | 29878 |
| 34 | 40 | 22199 | 39 | 40 | 25967 | 44. | 40 | 30018 |
| 34 | 50 | 22321 | 39 | 50 | 26097 | 44 | 30 | 30159 |
| 35 | 10 | 22443 | 40 | $\bigcirc$ | 26228 | 45 | 0. | 30300 |

versaemde Snylinen.
TOY

| tro |  | fnillinen. | $t r$. | (1). | nnijlinen. |  |  | frÿtixem. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 10 | 30442 | so | 10 | 34902 | 5 | 10 | 39897 |
| 45 | 20 | 30584 | so | 20 | 35058 | 55 | 20 | 40032 |
| 45 | 30 | 30726 | . 50 | 30 | 35215 | 55 | 30 | 40208 |
| 45 | 40 | 30869 | so | 40 | 35373 | ss | 40 | 40385 |
| 45 | so | 31013 | 30 | so | 35531 | 55 | so | 40563 |
| 46 | $\bigcirc$ | 31156 | 51 | 0 | 35690 | S6 | 0 | 40741 |
| 46 | 10 | 31301 | 51 | 10 | 35849 | 56 | 10 | 40921 |
| 46 | 20 | 31445 | 51 | 20 | 36009 | 56 | 20 | 41101 |
| 46 | 30 | 31590 | 51 | 30 | 36169 | 56 | 30 | 41282 |
| 46 | 40 | 31736 | 51 | 40 | 36330 | 56 | 40 | 41463 |
| 46 | 50 | 31882 | si | so | 36491 | 50 | so | 41646 |
| 47 | 0 | 32028 | 52 | 0 | 36654 | 57 | 0 | 41829 |
| 47 | 10 | 32.75 | 52 | 10 | 36816 | 57 | 10 | 42013 |
| 47. | 20 | 32;22 | 52 | 20 | 36980 | 57 | 20 | 42198 |
| 47 | 30 | 32470 | 52 | 30 | 37144 | 57 | 30 | 42384 |
| 47 | 40 | 32618 | 52 | 40 | 37308 | 57 | 40 | 42570 |
| 47 | so | 32767 | 52 | 50 | 37473 | 57 | so. | 42758 |
| 48 | 0 | 32916 | 53 | 0 | 37639 | 58 | 0 | 42946 |
| 48 | 10 | 33066 | 53 | 10 | 37806 | 58 | 10 | 43135 |
| 48 | 20 | 33216 | 53 | 20 | 37973 | 58 | 20 | 43325 |
| 48 | 30 | 33367 | 53 | 30 | 38141 | 58 | 30 | 43516 |
| 48 | 40 | 33518 | 53 | 40 | 38309 | 58 | 40 | 43708 |
| 48 | so | 33670 | 53 | so | 38478 | 58 | so | 43901 |
| 49 | 0 | 33822 | 54 | 0 | 38648 | 59 | 0 | 44095 |
| 49 | 10 | 33975 | 54 | 10 | 38819 | 59 | 10 | 44289 |
| 49 | 20 | 34128 | 54 | 20 | 38990 | 59 | 20 | 44485 |
| 49 | 30 | 34282 | 54 | 30 | 39162 | 59 | 30 | 44681 |
| 49 | 40 | 34436 | 54 | 40 | 39334 | 59 | 40 | 44879 |
| 49 | 50 | 34591 | 54 | 50 | 39508 | 59 | 50 | 45078 |
| So | 0 | 1. 34746 | 55 | 0 | 39682 | 60 | 0 | 45277 |
| - |  |  |  |  |  |  |  | 3 |


| tr. | (1). | frijliners. | -r. (1). finjlinen. |  |  | ${ }^{57}$ |  | frijlinen. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 10 | 43478 | 65 | 10 | 52030 | 70 | 10 | 59960 |
| 60 | 20 | 45679 | 65 | 20 | 52269 | 70 | 20 | 60257 |
| 60. | 30 | 45882 | os | 30 | 52510 | 70 | 30 | 605s5 |
| 60 | 40 | 46085 | ¢ 5 | 40 | 52752 | 70 | 40 | 60856 |
| 60 | so | 46290 | 65 | 50 | 52995 | 70 | 50 | 61159 |
| 61 | 0 | 46496 | 66 | 0 | 53241 | 71. | $\bigcirc$ | 61465 |
| 61 | 10 | 46703 | 66 | 10 | 53487 | 71 | 10 | 61774 |
| 61 | 20 | 46911 | 66. | 20. | 53736 | 71 | 20 | 62085 |
| 61 | 30 | 47120 | 66 | 30 | 53986 | 71 | 30 | 62399 |
| 61 | 40 | 47330 | 66 | 40 | 54.237 | 71 | 40 | 62716 |
| 61 | 50 | 47541 | 66. | 50 | 54491 | 71 | 90 | 63035 |
| 62 | 0 | 47754 | 67 | 0 | 54746 | 72 | $\bigcirc$ | 63357 |
| 62 | 10 | 47967 | 67 | 10 | 55003 | 72 | 10 | 63682 |
| 62 | 20 | 48182 | 67 | 20 | 55262 | 72 | 20 | 64011 |
| 62 | 30 | 48398 | 67. | 30 | 55522 | 72 | 30 | 64342 |
| 62 | 40 | 48616 | 67 | 40 | 55784 | 72 | 40 | 64676 |
| 62 | 50 | 48834 | 67 | 50 | 56049 | 72 | so | 65014 |
| 63. | 0 | 49054 | 68. | - | 56315 | 73 | $\bigcirc$ | 65354 |
| 63 | 10 | 49275 | 68 | 10 | 56583 | 73 | 10 | 65698 |
| 63 | 20 | 49497 | 68 | 20 | 56853 | 73 | 20 | 66045 |
| 63 | 30 | 49720 | 68: | 30 | 57124 | 73 | 30 | 66396 |
| 63 | 40 | 49945 | 68 | 40 | 57398 | 73 | 40 | 66750 |
| 63 | so | 50171 | 68 | 50 | 57674 | 73 | so | 67107 |
| 64 | 0 | 50399 | 69 | 0 | 57953 | 74 | $\bigcirc$ | 67468 |
| 64 | 10 | 50628 | 69 | 10 | 58233 | 74 | 10 | 67833 |
| 64 | 20 | 50858 | 69 | 20 | 58.15 | 74 | 20 | 68202 |
| 64 | 30 | 51090 | 69 | 30 | 58800 | 74 | 30 | 68974 |
| 64. | 40 | 51323 | 69 | 40 | 59086 | 74. | 40 | 68950 |
| 64 | 50 | 51557 | 69 | 50 | 59375 | 74 | 50 | 69:31 |
| 65 | 10 | 51793 | 70 | $\bigcirc$ | 59667 | 75 | 0 | 69715 |

VERSAEMDE SNYIINEN. 103

| tr. 1 (1): |  | $\frac{n \ddot{l l i n e n:}}{70104}$ | tr. (1). nnylinen. |  |  |  | (1). | nülinen. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 10 |  | 80 | 10 | 84354 |  | $10^{\circ}$ | 108865 |
| 75 | 20 | 70497 | 80 | 20 | 84945 | 85 | 20. | 110075 |
| 75 | 30 | 70894 | 80 | 30 | 855.46 | 85 | 30 | 111328. |
| 75 | 40 | 71296 | 80 | 40 | 86158 | 85 | 40 | $112630^{\circ}$ |
| 75 | 50 | 71703 | 80 | 30 | 86781 | 85 | so | 113982 |
| 76 | $\bigcirc$ | 721.14 | 81 | 0 | 87415 | 86 | $\bigcirc$ | H1 3 389. |
| 76 | 10 | 72530 | 81 | 10 | 88061 | 86 | $10 \%$ | 116856' |
| 76 | 20 | 72951 | 81 | 20 | 88719 | 86 | 20 | 118389 |
| 76 | 30 | 73377 | 81 | 30 | 89389 | 86 | 30 | $119993{ }^{\circ}$ |
| 76 | 40 | 73808 | 81 | 40 | 90073 | 86 | 40 | 121675 |
| 76 | so | 74245 | 81 | so | 90771 | 86 | 30 | 123444 |
| 77 | 0 | 74687 | 82 | $\bigcirc$ | 91483 | 87 | 0 | 125209 |
| 77 | 10 | 75134 | 82 | 10 | 92210 | 87 | 10 | 127180 |
| 77 | 20 | 75588 | 82 | 20 | 92952 | 87. | 20 | 129272 |
| 77 | 30 | 76047 | 82 | 30 | 93711 | 87 | 30 | 131498 |
| 77 | 40 | 76512 | 82 | 40 | 94486 | 87 | 40 | 133879 |
| 77 | so | 76984 | 82 | 50 | 95280 | 87 | 50 | 1364.37. |
| 78 | 0 | 77462 | 83 | 0 | 96091 | 88 | 0 | 139200 |
| 78 | 10 | 77947 | 83 | 10 | 96923 | 88 | 10 | 14220; |
| 78 | 20 | 78438 | 83 | 20 | 97775 | 88 | 20 | 145497 |
| 78 | 30 | 78937 | 83 | 30 | 98648 | 88 | 30 | 149139 |
| 78 | 40 | 79442 | 83 | 40 | 99544 | 88 | 40 | 153213 |
| 78 | so | 7995s | 83 | so | 100464 | 88 | so | 157834 |
| 79 | - | 80476 | 84 | 0 | 101409 | S9 | 0 | 163176 |
| 79 | 10 | 81004 | 84 | 10 | 102380. | 89 | 10 | 169501 |
| 79 | 20 | 81541 | 84 | 20 | 103380 | 89 | 20 | 177259 |
| 79 | 30 | 8208; | 84 | 30 | 104409 | 89 | 30 | 187284 |
| 79 | 40 | 82639 | 84 | 40 | 105471 | 89 | 40 | 201513 |
| 79 | so | 832019 | 84 | so | 106565 | 89 | so | 226223 |
| 80 | $\bigcirc$ | 83773 | 85. | 0 | 107696 | 90 | $\bigcirc$ | 000000 |

## 104 4 BOVCKDESEERTCLOOTSCHRIFTS,

Dit bereyifet vande tafel der verfaemde fnijllnen aldus ghedaen Gijnde, enom nu tottet maken vande tafels der cromftreken te commen, foo laet inde voorgaende form $R Z$ beteyckenen deerfte cromitreeck, fulexdar den houck $X R Q$ desdriehoucx $X$ R $Q$ nu dot 7 7 tri4s (1). Om te vinden de booch $Q X$, ick aenfie de driehouck $X R Q$ voor plat, om de cleenheyt der fijden, en fegh dated drie bekeride palen heeft, ec weren den tiouck X Q R recht, X R Q 78 rr. 4 ( 1 , de fijde QR. 1 tr. Hier me ghefocht de fijde QX wort bevoniden deur het 4 voortel der platte drichoucken van $5 \cdot \operatorname{tr} 1$ (1), die ick inde volghende tafel van d'eerfte Cromftreeck ftel byde breeden nevens 1 rr.der langde. Om nual de volghende breeden defestafels met cortheyt te vinden, ick fie inde voorgaende tafel der verfaemde fnijlinen wat ghetal daticr overconit mette bovefchreven's ir. I (1), en bevinde 3014 , want de sitr. hebben 3004 , en noch 10 fija het everedelic decl voorde i(1). Dirghetal van 3014 dient myint gemeen tottet vinden der ghetalen var PY; $\mathbb{d}$, enal d'ander dierghelicke, ${ }^{\prime}$ 'welck aldus toegaet: Totre 3014, vergaert ander $30{ }_{4}$, comt 6028 , daer op vinde ick tovercommen inde voorgaende tafel der verfaemde fnijlinen 10 ur: De felve ftel ick inde volghende tafel van d'eerne cromitreeck byde breeden nevens den 2 tr. der langde, als voor $P$ Y. Daer na vergaer ick totte 6028; andermael 3014 , comt 9042 , dacr 0 p vinde ick tovercommen inde voorgaende tafel 14 tr. 54 (3), de felve ftel ick inde voigen. de tafel nevens den 3 tr. der langde, als voor $d a$, En fo voort mette reft der feven Cromilteken.

MER CK T dat ick totte veorgaende langden en breeden der crömftreken, noch vervoughe haer verheden, dat fijn de langden der bogen $R X, R$ Y,R a,en dierghelijcke om deur t'behulp der felve fonder eertcloot of platte caert, maer alleenelick deur ghetalen, te beantwoorden de voorfellen die vanden handel der cromftreken omgaen, en int volghende befchreven fullen fijn. Defe verheden worden aldusbekent. Ors ten eerfien te vinden de verheyt $R X$,ick fegh den driehouck $X Q R$ te hebben drie bekende palen, te weten den houck $X Q R$ rechi, den hoück XRQ78tr. 45 (3), en de fijde QX vanstr. 1 (1). Hier me ghefocht de fijde RX, wort bevonden deur het 4 voorttel der platte driehoucken van str. 6 (1) 54 (2), die ick ftel in d'eertte tafel by de verheden nevens 1 tu. der langde. Ten anderen om te vinden de verheyt $R Y$, ick fegh den driehouck $\mathrm{Y} c \mathrm{X}$ te hebben drie bekende palen, te weten den houck $\mathrm{Y} c \mathrm{X}$ recht, $\mathrm{YX} \subset 78$ tr. 4)(1), en de fijde $c \mathrm{Y}_{4}$ tr. 59 (1), als blijat deur detafel; want treckendeP $\boldsymbol{\rho}$ tr. 1 (1). als even fijnde met $Q X$, van $P Y$ iotr. blijft voore $Y$ alfvooren 4 tr 99 (1):Met defe drie bekende palen dan, ghefocht de fijde X Y, wort beyonden deur het 4 voorftel der platte drichoucken van $s$ tro 12 (1) 54 (2), die vergaert tot $R X ;$ tr. 6(1) 54 (2),comt voor R Y 10 tr. 19 (1) 48 (2), die ick ftel in d'eerfte cromftréeck byde verheden nevens 2 tr. der langde. En alfoo fal ghevonden wordende verheyt van Ra, met al d'ander.

Merckt dat wy defe verheden niet overal berekent noch gheftelt en hebben, maer alleerielick foo veel als iot ons volghende voorbeelden noodich fijn,eenf. deels dat de tafelen felfgheen ghenouchfaem volcommenheyt en fchijnen te hebben, ghelijck inden Anhang breeder gheleyt fal worden; als oock dat belet van ander faken onst'flve niet toe en laet: Sulcx dat hier alleenelick de wijfe ghetoont is, en open plaets ghelaten om die te meughen volmaeckt worden, by de ghene dieder lußt en gheleghentheyt toe mochten hebben.

TAFEL

This preliminary of the table of the assembled secants thus having been made and in order to come now to the making of the tables of loxodromes, in the foregoing figure let $R Z$ denote the first loxodrome, so that the angle $X R Q$ of the triangle $X R Q$ is now $78^{\circ} 45^{\prime}$. In order to find the arc $Q X$, I look upon the triangle $X R Q$ as a plane triangle, on account of the smallness of the sides, and say that it has three known elements, viz. the angle $X Q R=90^{\circ}, X R Q=78^{\circ} 45^{\prime}$, the side $Q R=1^{\circ}$. When herewith the side $Q X$ is sought, it is found by the 4th proposition of plane trigonometry ${ }^{1}$ ) to be $5^{\circ} 1^{\prime}$, which I put in the following table of the first loxodrome in the column of the latitudes, against $1^{\circ}$ of longitude. In order to find all the subsequent latitudes of this table in a brief way, I look up in the foregoing table of assembled secants what value corresponds to the above-mentioned $5^{\circ} 1^{\prime}$ and find this to be 3,014 , for the $5^{\circ}$ makes 3,004 , and 10 more is the proportional part for the $1^{\prime}$. This value of 3,014 serves me in general to find the values of $P Y, D A$, and all other similar elements, which takes place as follows. When to the 3,014 we add another 3,014 , we get 6,028 . Corresponding to this I find in the foregoing table of assembled secants $10^{\circ}$. I put this in the following table of the first loxodrome in the column of the latitudes, against $2^{\circ}$ of longitude, viz. for PY. Then to 6,028 I add once more 3,014, which gives 9,042 . Corresponding to this I find in the foregoing table $14^{\circ} 54^{\prime}$. I put this in the following table, against $3^{\circ}$ of longitude, viz. for $D A$, and so on with the rest of the seven loxodromes.

NOTE that I further place behind the foregoing longitudes and latitudes of the loxodromes their distances, i.e. the lengths of the arcs $R X, R Y, R A$, and the like, in order to solve by these means, without a globe or a plane chart, but only by numbers, the propositions which concern the subject of loxodromes and which are to be described in the sequel. These distances become known in the following way. To find first the distance $R X$, I say that the triangle $X Q R$ has three known elements, $v i z$. the angle $X Q R=90^{\circ}$, the angle $X R Q=78^{\circ} 45^{\prime}$, and the side $Q X=5^{\circ} 1^{\prime}$. When herewith the side $R X$ is sought, it is found by the 4th proposition of plane trigonometry ${ }^{1}$ ) to be $5^{\circ} 6^{\prime} 54^{\prime \prime}$, which I put in the first table in the column of the distances, against $1^{\circ}$ of longitude. Second, to find the distance $R Y$, I say that the triangle YCX has three known elements, viz. the angle $Y C X=90^{\circ}, Y X C=78^{\circ} 45^{\prime}$, and the side $C Y=4^{\circ} 59^{\prime}$, as appears from the table; for when we subtract $P C=5^{\circ} 1^{\prime}$, as béing equal to $Q X$, from $P Y=$ $10^{\circ}$, the remainder is, as before, $4^{\circ} 59^{\prime}$ for $C Y$. When with these three known elements the side $X Y$ is then sought, this is found by the 4th proposition of plane trigonometry ${ }^{1}$ ) to be $5^{\circ} 12^{\prime} 54^{\prime \prime}$. When we add this to $R X=5^{\circ} 6^{\prime} 54^{\prime \prime}$, we get for $R Y 10^{\circ} 19^{\prime} 48^{\prime \prime}$, which I put in the table of the first loxodrome in the column of the distances, against $2^{\circ}$ of longitude. And in the same way the distance RA, and all the others have to be found.

Note that we have not calculated or noted these distances everywhere, but only as far as they are necessary for our subsequent examples, on the one hand because the tables themselves do not seem to be sufficiently accurate, as will be discussed more fully in the Appendix, but also because we are hindered by other matters from doing so, so that here the method only has been shown, and a blank has been left, to be completed by those who have a mind and an opportunity to do so.

[^135]
# T A F E L S 

D ER
CROMSTREKEN.

TABLES OF LOXODROMES ${ }^{1}$ ).
First Loxodrome

| Longitude | Latitude | Distance |
| :---: | :---: | :---: |
| (degr.) | (degr., min.) | (degr., min.) |

${ }^{1}$ ) We reproduce the tables for the first and for the second loxodrome, and (on p. 539) the end of the table for the seventh loxodrome.

Eerfe Cromftreck.
Tweede CromAtreec.


| lang. | Breede | verbedé | $\begin{aligned} & \text { lang. } \\ & \text { ir. } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { Brecde\| } \\ & \text { Er. (1) } \end{aligned}\right.$ | verhedĕ | $\begin{aligned} & \text { lang. Breede } \\ & \text { tr: } \end{aligned}$ | $\left\|\begin{array}{l} \text { verhede } \\ \text { rr. } \end{array}\right\|$ | $\begin{gathered} \text { lang. } \\ \text { tr. } \end{gathered}$ | $\begin{aligned} & \text { Brecde } \\ & \text { tr. (I) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 5941 | 5. 7. | 61 | 81.14 |  | 91873.1 |  | 121 | 8917 |
| 32 | 60.53 | 10. 20. | 62 | 8136 |  | 928737 |  | 122 | 189 |
| 33 | 62.2 |  | 63 | 81.50 |  | 938743 |  | 123 | 8.921 |
| 34 | 6381 |  | 64 | 82.16 |  | $94{ }^{87} 4^{8}$ |  | 124 | 8922 |
| 35 | $64{ }^{6} 13$ |  | 6s | 8235 |  | 958754 |  | 125 | 8924 |
| 36 | 6514 |  | 66 | 8254 |  | 968759 |  | 126 | 8925 |
| 37 | 6614 |  | 67. | 83.11 |  | $97{ }^{88} \cdot 4$ |  | 127 | 39 27 |
| 38 | 67110 |  | 68 | 88 28 |  | 9888 |  | 128 | 89.28 |
| 39 | $68 \quad 6$ |  | 69 | 83.44 |  | 998813 |  | 129 | 89.29 |
| 40 | 68.59 |  | 70 | 8359 |  | 100888 |  | 130 | 89.30 |
| 41 | 6950 |  | 71 | 8414 |  | 1018822 |  | 131 | 8932 |
| 42 | $70 \quad 39$ |  | 72 | 8428 |  | 10288 26; |  | 132 | 8933 |
| 43 | 7126 |  | 73 | 8442 |  | 1038880 |  | 133 | 8934 |
| 44 | 7211. |  | 7.4 | 8435 |  | 104883 |  | 134 | 89.35 |
| 45 | 72 ss |  | 7.5 | 85 8 |  | 105 88.37 |  | 135 | 8936 |
| 46 | 7336 |  | 76. | 85.20 |  | 10688 40 |  |  | 8937 |
| 47 | 7416 |  | 77. | 8; 31 |  | 1078844 |  | 1378 | 89.38 |
| 48 | 74 SS |  | 78 | 8542 |  | 1088847 |  | 1388 | 89391 |
| 49 | 7532 |  | 79 | 85 S3 |  | 1098830 |  | 13.98 | 8939 |
| so | $76 \quad 7$ |  | 80 | 86 : 3 |  | 11088 |  | 140 | 8940 |
| 51 | 76.41 |  | 81 | 8613 |  | 111885 |  | 141 | 8941 |
| 52 | 77.14 |  | 82 | 8622 |  | 1128858 |  | 1428 | 8942 |
| 53 | 77: 45 |  | 83 | 8631 |  | I13 890 |  | 143 | 8942 |
| 54 | 7815 |  | 84 | 8640 |  | 114893 |  | $144{ }^{8}$ | 8943 |
| ss | 7844 |  | 85 | 8648 |  | 115895 |  | 1458 | 8944 |
| 56 | 79.12 |  | 86 | 8656 |  | 116898. |  | 1468 | 89.44 |
| 57 | 7938 |  | 87 | 87.4 |  | 11789.9 |  | 147 | 8945 |
| 58 | 80.4 |  | 88 | 87.11 |  | 11888912 |  | 1488 | 8946 |
| 59 | 8028 |  | 89 | 8718 |  | 11989813 |  | 1498 | 8946 |
| 60 | \|80 32 ]. |  | 90. | $\left\|\begin{array}{ll}\mid 87 & 25\end{array}\right\|$ |  | $1.120 \mid 8915$ |  |  | 8947 |

DER CROMSTREKEN.


## 136 4 Bovcides Eertciootschrifts,

Tot hier toe fijn befchreven de feven tafels der feven cromftreken: Angaende de achefte die is altijt een ront evewijdich vant middelront, fulcx dattet in breede gheen verandering crijghende, fooen valter van fijn breedefchil niet te fegghen, maer alleenlick van fijn verheyden, tot welex eyndéde volghende tafel dient.

## VANTMAECKSEL DES tafels der acbtste cromffreeck.

Om eert deur een form te verclaren den fin des volghenden tafels, foo laet $A B C D$ cen cloot fijn diens middelront $A B C D$, en afpunt $E$, waer op befchreven is een cleender rondr $F G H$,voort $f$ de deooch $C D$ van I $t r$. als langdefchil tuffchen Cen D, en ghetrocken de twee vierendeceen ronts ED, EC, friende het cleender rondt in $F$ en $G$, foo doet $G$ D neem ick 10 tr. als breedefchil tuffchen Den G. Dit foo fijnde de booch F G doet itr. der langde, en dat 1 otr. verre buyten t'middetront, welcke booch openbaerlick cleender moet fijn dan DCI tr.des middeltonts. Nu is t'voornemen hier te vinden hoe veel itr. F G langhidéchil buyten t'middelront (ie weten op 10 tr. der breede DG) doet in (1) en (2) des middelronts: Dat is, de langde F G vervought fijnde opt middelront, van hoe veel (1) en (2) die daer bevoriden fal worden. Dit verftaen wefende wy fullen totiet voorbeelt commen.

Tghegheven. Het fyi trilangdefchil buyten tmiddelrondt op 10 tr. der brede. Tbegheerde. Wy moe-
 ten fijn grootheyt vinden in (1) en (2) des middelronts.

## T W ER G K.

| Rechthoucx houckmaet | 0000 |
| :---: | :---: |
| Gheeft fchilhoucx houckmaet vande ghegheven 10 tr. doende | 9848078. |
| Wat I tr.des middelronts doende. | 60 (1)? |
| omt voor t'begheerde. | (1) s (2). |
| helijck inde volghende tafel faet, en alfoo metallen ande |  |

## T BEWYS.

Ghelijck de halfmiddeliijn van een cloots grootfte ront, als t'middelront; Totte halfmiddellijn van haer cleender rondt, als het evewijdich rondt opde 10 tr. der breede;
Alfoode booch eens traps des grootte of middelronts;
Totte booch eens raps des cleender ronts op de iotr. der breede.
Maer de halfmiddellijn eensmiddachronts, is even ande halfmiddellijn des middelronts, die ghenomen wort op 10000000 , als rechthouckmaet: En de half. middellijn des rondts befchreven op de breede van 10 tr. is int middachrondt houck-

Up to this point the seven tables of the seven loxodromes have been described. As to the eighth, this is always a circle parallel to the equator, so that, since its latitude does not undergo any change, nothing can be said about its difference of latitude, but only about its distances, for which purpose the following table serves.

## OF THE MAKING OF THE TABLE OF THE EIGHTH LOXODROME.

In order first to explain by means of a figure the sense of the following table, let $A B C D$ be a globe, whose equator is $A B C D$ and the pole $E$, on which a small circle $F G H$ has been described. Further let the arc $C D$ be $1^{\circ}$, viz. the difference of longitude between $C$ and $D$, and when the two quarter circles $E D$ and $E C$ intersecting the small circle in $F$ and $G$ have been drawn, I assume that $G D$ is $10^{\circ}, v i z$. the difference of latitude between $D$ and $G$. This being so, the arc $F G$ is $1^{\circ}$ of longitude, $10^{\circ}$ outside the equator, which are must obviously be smaller than $D C=1^{\circ}$ of the equator. Now the object is to find how much $1^{\circ}(F G)$ of difference of longitude outside the equator (viz. at $10^{\circ}$ of latitude, $D G$ ) makes in minutes and seconds of arc of the equator, i.e. when the longitude $F G$ has been placed on the equator, to how many minutes and seconds of arc this will be found to amount there. This having been understood, we shall pass on to the example.

SUPPOSITION. Let there be $1^{\circ}$ of difference of longitude outside the equator in latitude $10^{\circ}$. REQUIRED. We have to find its magnitude in minutes and seconds of arc of the equator.

## PROCEDURE.

Sine of a right angle
Gives sine of complement of the given $10^{\circ}$, being
What does $1^{\circ}$ of the equator give, being
The required value is
As is to be found in the following table; and the same applies to all the others.

## PROOF.

As the semi-diameter of a great circle on a sphere, viz. the equator,
To the semi-diameter of its smaller circle on said sphere, viz. the parallel in latitude $10^{\circ}$,
So the arc of one degree of the great circle or equator
To the arc of one degree of the small circle in latitude $10^{\circ}$.
Now the semi-diameter of a meridian is equal to the semi-diameter of the equator, which is taken to be $10,000,000, v i z$. the sine of a right angle. And the semi-diameter of the circle described in latitude $10^{\circ}$ is in [the plane of] the meridian the sine of the complement of the arc of $10^{\circ}$, i.e. the sine of $80^{\circ}$, being $9,848,078$.
Therefore, as $10,000,000$
to $9,848,078$,
so the arc of one degree of the great circle or equator to the arc of one degree of the small circle in latitude $10^{\circ}$.
houckmaet des fchilboochs van 10 tr. dats hourckmaet van 80 tr. doende 9848078: Daerom
Ghelijck 10050000.
Tot $98+8078$ :
Alfoo de booch eens traps des grootfe of middelronts,
Totre booch eens traps des cleender rontsop de ro tr. der breede.
Maer 10000000 ghevende 9848078 , foo fal 60 (1) gheven 59 (1) $s$ (2) deut t'werck; daerom 59 (1) $s$ (2) is t'begheerde, $t^{\prime}$ welck wy bewijfen moeften.

## MERCKT.

Alfoofijn Vorstelicke Ghenade t'voorgaende benluytghelefen hadde en ghefien volcommen te wefen, feyde daer op hem ghedachtich te fijn dat hy voormael derghelijcke grootheyt eensboochs als van $F$ tot $G$, ghefocht hadde deur rekening der clootiche drichoucken, om datfe als van clootfche fof volcommender is dan rekening ghelijck de voorgaende: Maer overdenckende de reden van dit verfchil, feyde met onderfcheyt d'cen wijfe tedienen tot belluyt op een vraegh van cromftreken, d'ander van rechtttreken. Als by voorbeelt begeert fijinde hoe lanck de wech valien fal om te varen van $F$ tot $G$ op een cromftreeck; 'dats hier de booch eens cleender ronts, de volcommen wercking fal ghedaen worden alfvooren: Maer fulcken langde begheert wefende van $F$ tot G op een rechtftreeck, dats de booch eens grootfte ronts, de volcommen wercking beftaet dan in rekening der clootfche drëhoucken. T'welck ick hier heb willen anteyckenen, eenfdeels tot ghedachtnis: Ten anderen op dien fulcx duyfterder ontmoeten mocht, hier me verlicht fy.

T'naeckfel des tafels dan aldus verclaert fijnde,wy fullen de afel befchrijven, ghetrocken uyt Cofmographia Petri $\perp$ Lianiparte prima cap. 13 .als volght.

But since $10,000,000$ gives $9,848,078$, by the procedure $60^{\prime}$ will give $59^{\prime} 5^{\prime \prime}$; therefore $59^{\prime} 5^{\prime \prime}$ is the required value; which we had to prove.

## NOTE.

When His Princely Grace had read the foregoing conclusion and had seen it to be correct, he said he remembered having formerly sought such a magnitude of an arc as that from $F$ to $G$, by a calculation of spherical trigonometry, because, the matter being concerned with spheres, this is more correct than a calculation like the foregoing. But reflecting on the reason of this difference, he said that a distinction had to be made here, viz. that the one method served as a solution of a question concerned with loxodromes, the other of one concerned with greatcircle tracks. Thus, for instance, when it is required to know the length of the route when sailing from $F$ to $G$ on a loxodrome, i.e. in this case the are of a small circle, the correct procedure has to be as before. But when this length is required from $F$ to $G$ on a great-circle track, i.e. the arc of a great circle, the correct procedure then consists in a calculation of spherical trigonometry. I wanted to note this here, on the one hand to show that it has been thought of, on the other hand in order that those to whom this should appear obscure might be enlightened by it.

The making of the table thus having been explained, we shall describe the table, taken from Cosmographia Petri Apiani parte prima cap. 13, as follows:

EIGHTH LOXODROME, which is a table of the magnitude of $1^{\circ}$ of difference of longitude outside the equator in minutes and seconds of arc of the equator.

| In this <br> latituide | 10 of differ. of <br> longitude gives <br> the following <br> distance |
| :--- | :---: |
| (degr., min.) | (min., sec.) |

ACHTSTE CROMSTREECK, TWEICK iseen tafel van $t$ ghene $I$ tr. langdefchil buyten tmid-
delront, doet in (1) en (2) des middelronts.


ACHTSTECROMSTREECK, TWELCK is een tafel van t'ghene 1 tr. langdefchil buyten tomiddelront, doet in (3) en (2) des middelronts.


## PHO 4 BOVCKDESEERTCIOOTSCHRIFTS,

Aldus dan inde voorgaende rafels befchreven fïnde der feven crom ftreken breeden in yder middachbooch die van trap tot trapgetrocken fiif, foift openbaer hoemen daer me met groote fekerheyt opeen Eertcloot de cromitreken falmeughen reyckenen, want de punten der breede gheftelt na t behooren; en vand'een tot d'ander linikens ghetrocken, men comt tottet begheerde. Oock dienen de felve rafelen om te fien of cromftreken op Eerclooten of platec caetren wel ghercyckent fijn.

## VANTMAECKSEL DER

COPER CROMSTREKEN.
Maer wanttet tot verclaring der nabefchreven voorftellen bequamer foude vallen, en oock tottet ghebruyck in veel voorbeelden mijns bedunckens niet ongerievich, datmende feven cromftreken van coper'maeCte, om'die te leggen op yder punt des cloots daermen wil, en alfoo ten eerften t'begheerde te fien, Tonder noodich te wefen de cromftreken op een Eertcloot te teyckenen: Ofgcreyckent fijnde fonder te mocten doen de mocylicker wercking daer uyt volghende, foo fulten wy daer af wat breeder uytlegging doen als volght:

Op een Ferteloot gheteyckent fijnde een cromftreeck na de wiffealfboven; ick neem de voorfchreven noortoofttreeck RX Y Z,wefende een vierde,men ial maken een derghelijcke van coper, welcke anghewefen wort mette volgende form efg, welvertaende dat de cant daer ef $f$ an comt, de cyghen lini als RXY Z bediet, waer an noch vervought is het.ffick $b i$, op wiens uyterfte cant $b i$, de lini ef. fiulcken houck maeckt, als R X Y Z opt middelront L N. Defe coper dromftreeck wort oock verftaen te hebben een cloortche hollicheyt, fulcer datif op den cloot gheleyt die overal gheraeckt.


Voort ghelijck hier gemaeckt is defe coper noorroofttreeck, oock dienende voor zuytweftftreeck, alfoo falmen maken d'ander fes, t'famen feven: En noch culcke feven ander, van verkecrde ghestalt der voorgacnde, als by voorbectr de form

After the description in the foregoing tables of the latitudes of the seven loxodromes in each of the meridians drawn from degree to degree, it is clear how with the aid of these we shall be able to draw the loxodromes with great certainty on a globe, for when the points of latitude have been properly marked and small lines have been drawn from one to the other, the required loxodrome is obtained. The said tables also serve to ascertain whether loxodromes have been drawn correctly on globes or plane charts.

## OF THE MAKING OF THE COPPER LOXODROMES.

But since it would be more suitable for the explanation of the succeeding propositions - and further in my opinion not inconvenient for use in many examples - to make the seven loxodromes of copper, so that we may put them on any desired point of the globe and thus see at once what was required, without the necessity of drawing the loxodromes on a globe, or, if they have been drawn, without having to perform the more difficult operations following therefrom, we shall explain this somewhat more fully, as follows:

After a loxodrome has been drawn on a globe in the above way - I assume the aforesaid loxodrome of northeast RXYZ, which is a fourth loxodrome - we should make one like it of copper, which is denoted by the figure efg below, it being understood that the side on which efg comes stands for the line RXYZ itself, while the piece $b i$ has been attached therèto, with whose outer edge $b i$ the line efg forms the same angle as $R X Y Z$ with the equator $L N$. This copper loxodrome is also understood to be spherically concave, so that, when it is placed on the globe, it touches the latter everywhere.

Further, just as this copper loxodrome of northeast, also serving for the loxodrome of southwest, has here been made, in the same way the other six should be made, seven in all. And seven more of them, having the opposite shape to
form $k$, wefende van verkeerde geftalt der noortooftfreeck ef $g$, dienende totte noortwefttreeck, en oock totte zuytoofttreeck. Noch machmen defe coper cromitreken teyckenen met ghetalen, d"eerfte met I, de tweede met 2 , en foo voort, om daer deur met cen opfien te weten de hoemenichfte elck is.

Angaende de 7 cromftreeck veel keeren foude hebben, en daerom flap fijn, men foudefe(metoock ander ftreken diet noodich hadden) meughen verftijven

gheiijck defe form anwijft, of anders mochtmen tot een cromftreeck vericheyden fucken maken. TbeSLVy T. Wy hebben dan cromitreken gheteyckent, na den eyfch.

## 5 VOORSTEL.

Wefendeghegheven langdefchilen breede van twvee plaetfen evener breede : 'Te vinden haer cromftreecken verheyt.

## MERCKT:

Wy fallen in elck der volghende voortellen drie werckinghen befchrijven, d'eerfte mette coper cromitreeck, de tweede mette gecromftreeckten Eertcloot, die beydé * tuychwerckelick fijn, de derde * wifconftich deur getalen, uytgeno- Mechanice. men in dit en teerfvolghende voorftel, alwaer geen werck mette coper crom Matheianfreeck en valt, om datter gheen achtfe coper cromftreeck als onnoodich fijnde tice. ghemaeckt en'wiert. TGHEGHEVEN. Laet hetlangdefchil fijn van 30 tr: en hact
the foregoing ones, as e.g. the figure $k$, having the opposite shape to the loxodrome efg of northeast, serving for the loxodrome of northwest, and also for the loxodrome of southeast. Further these copper loxodromes may be marked with the number of each, the first with 1, the second with 2 ; and so on, so that one may know at a glance which of them is meant.

Since the 7th loxodrome would have many windings and accordingly would be limp, we might stiffen it (as well as other loxodromes which might need it) as shown in the figure below, or otherwise we might combine several pieces to form one loxodrome. CONCLUSION. We have thus designed loxodromes; as required.

## 5th PROPOSITION.

Given the difference of longitude and the latitude of two places of equal latitude: to find their loxodrome and their distance.

## NOTE.

In each of the following propositions we shall describe three operations, the first with the copper loxodrome, the second by means of the globe with the loxodromes drawn thereon, both of which are mechanical operations, the third mathematical, by means of numbers, except in the present and the next proposition, where no operation with the copper loxodrome takes place, because no eighth copper loxodrome has been made, this being unecessary.

## 1424 BOVCR DESEERTCIOOTSCHRIFTS,

en haer breeden 24 tr. Tbegheerde Wy moeten haer cromftreck en . verhcyt vinden.

## 1.VVerckmettengbecromstreeckten Eertcloot.

Anghefien de twee ghegheven breedeneven fijn, foo moet deur ghemeene reghel de beghecrde cromftreeck de achtfe wefen, dat is de ooften weffftreeck, fulce da: daer toe niet anders te doen en is.
Angaende de verheyt ick fegh aldus;foo de twee ghegheven placifen op den Eertcloot gheteyckent ftonden, en vallende op cen evewiddich rondt metter middelront;men fal den paffer fonau openen, dat de rechte lini tuffchen de twee veeten verdocht,gheen hinderlick verichil en hebbe vande cromme des ronts diemien meien moet, als opening van $x$ tr.meer of min, na datdecromheytdes voorgheftelden ronts vereyfcht, want meerder cromite hebben de bogen beden af gunt dan by t'middelront: T'welck foo fijnde, men fal fien hoe dick wils die opernheyt des pafferscomt inde booch tufichen de twee platifn, daer nae de tuapent t'famen vergaert,men fal in dit voorbeelt welghenouch gewrocht fijnde, vinden voor beghecrde verhcyt 27 tr. 24 (1).
Maer foode twee ghegheven platfen opden Eertcloot niet en ftonden, men fal twee uytwaghelicke punten fellen opt ghegheven langdefchil en breeden, die ghebruyckende voor ghegheven.

Maer foofe niet recht en vallen opeen gheteyckent evewijdich ront,men fal int meren des boochs de paffer aliijit doen gaen evewijdich van het naefle evewiddich ront, r 'welck foot u byder ooghe nier nauwe genouch ghedaen en wierde, deux t'behulp van een ander pafferghefchicn can,

## MERCKT.

De vraech mocht nu fijn hoe veel mijlen debovelchreven 27 tr. 24 (1) maken, maer infiende de verfcheydenheyt der mijlen in verfcheyden landen, fo en canmen daer af int ghemeen niet fekers fegghen., Sulex dat wy hier en oock int volghende, de verheytallcenlick deur tr. en (1) befchrijven, die elck verkeeren mach in fulcke mijlen alft hem belieft. Den trap wort van velen gheacht lanck te wefen ontrent 18 uyren gaens eens ghemeenen gancx: Een dier uyren wort ghenomen op 8000 flappen, oock op 1 soo Rijnlantifhe roeden, dat comt den flap op- $2 \frac{1}{4}$ Rijnlantiche voeten. Doch $t$ waer te wenfchen dat Stierlien intgemeen trappen en (1) ghebruyckten, om malcander int ghemeen te verfaen.

$$
2 \text { VV erck door ghetalen. }
$$

Anghefien de twee ghegheven breede even fijn, foo moet deur ghemeene regel, alsoock int I werck ghefeyt is,de begeerde cromfreeck de achrfte wefen.
Om nu de verheyt te vinden, ick foucinde tafel des 8 cromftrecex int 4 voorftel de ghegheven breede van 24 rr.en dacr nevens wat verheyt tot die placts overcomt op I tr. langdefchil, bevinde 54 (1) 48 (2): Hicr me fegh ick, 1 tr.langdefchil, doet tot defe plaets 54 (1) 48 (2) verheyt, wat de ghegheven 30 tr. langdefchil? Comt voor begeerde verheyt 27 tr. 24 (1):wacr aft'bewijs deur 'werck openbaer is. Tbeslyyt. Wefendedanghegheven langdefchil en breede van twec plaeffen erener breede, wy hebben ghevonden haer cromftreeck en verheyt, na den eyfeh.

Mercet.

SUPPOSITION. Let the difference of longitude between the places be $30^{\circ}$ and their latitude $24^{\circ}$. REQUIRED. We have to find their loxodrome and their digtance.
1 st Procedure, by means of the Globe with the Loxodromes Drawn thereon.
Since the two given latitudes are equal, by the general rule the required loxodrome must be the eighth, i.e. the east and west loxodrome, so that nothing else has to be done about this.
As to the distance, I say as follows: if the two given places are marked on the globe and fall on a circle parallel to the equator, one must open the compasses so little that the straight line imagined between the two points does not differ appreciably from the arc of the circle that has to be measured, viz. an opening of about one degree, as the curvature of the circle in question requires, for arcs near the pole have a greater curvature than arcs near the equator. This being so, one must ascertain how often this opening of the compasses is included in the arc between the two places; the degrees afterwards being added up, in the present example - if the procedure has been exact enough - one will find $27^{\circ} 24^{\prime}$ for the required distance.
But if the two given places are not marked on the globe, one must mark two erasable points having the difference of longitude and the latitude given, using them as if they were given.
But if they do not fall exactly on a drawn parallel, in measuring the arc one must always keep the compasses parallel to the nearest parallel, which, if it should not be done accurately enough at sight, can be effected with the aid of another pair of compasses.

## NOTE.

The question might now be asked to how many miles the above-mentioned $27^{\circ} 24^{\prime}$ corresponds, but considering the inequality between miles in different countries, in general nothing can be said with certainty about this. So that here as well as in the sequel we shall only describe the distance in degrees and minutes, which everyone may reduce to such miles as he pleases. A degree is considered by many people to be equivalent to about 18 hours' walk at an ordinary pace. One such hour is taken to be 8,000 paces, also 1,500 Rhineland roods, so that one pace is $21 / 4$ Rhineland feet. But it were to be wished that navigators generally used degrees and minutes, so as to understand each other generally.

## 2nd Procedure, by Numbers.

Since the two given latitudes are equal, by the general rule, as has also been said in the 1st procedure, the required loxodrome must be the eighth.
Now in order to find the distance, I look up in the table of the 8th loxodrome in the 4th proposition the given latitude of $24^{\circ}$, and against it I see what distance corresponds in that place to $1^{\circ}$ of difference of longitude, for which I find $54^{\prime} 48^{\prime \prime}$. I now say: $1^{\circ}$ of difference of longitude gives in this place a distance of $54^{\prime} 48^{\prime \prime}$; what does the given difference of longitude of $30^{\circ}$ give? We get $27^{\circ} 24^{\prime}$ for the required distance; the proof of which is evident from the procedure. CONCLUSION. Given the difference of longitude and the latitude of two places of equal latitude, we have thus found their loxodrome and their distance; as required.

Soo de ghegheven ghetalen niet ganttchelick en overquamen mette ghetalen inde tafel befêhreven, men foude (foo hier als inde volghende voorfellen) om t'begheerde feer na te crijghen, vinden wat her voorgeftelde ghetal eygentlick toecomt,ghelijck in ander tafels ghebruyckt wort, en foo daer voorbeelt af is int in voorftel des houckmaetmacekflls.

## 6 VOORSTEL.

Werende ghegeven verheyt en breede van tvvee plaetfen evener breede: Tevinden haer cromftreeck en langdefchil.

TGHEGHEVEN. Laet tweer plactfen. verheyt fijn van 27 tr. 24 (1), en haer brecden 24 tr . Tbegheerde. Wý moeten haer cromftreeck en langdefuhil vinden.

> I VVerck metten ghecramstreeckten Eertcloot.

Anghcfien de twee ghegheven breeden even fijn, foo moet deur ghemeene. reghiel als int i werck des $s$ voorftels ghefeyt is, de begheerde cromftreeck de achtte fijn.

Angaende het langdefchil,ick fegh aldus: Soo de tweeghegheven plaetifen op den Eertcloot gheteyckent tonden op een evewijdich ront, men fal op den paf. fernemen een deel des middelrontsals $x$ tr. meer of min en meten daer me de ghegheven 27 tr. 24 (1), int voorfchreven rondt dat deur detwee plaetfen ftrea, brenghende voorts onder het middachront t'eynde der felve, daer nae t'begin, en fal alldan debooch des middelronts, begrepen tuffchen foodanige twee mid. dachroinden, t'beghecrde langdefchil fijn,en bevonden worden van 30 tr.

Maer foode twec ghegheven platien óp den Eertcloot niet en ftonden, men faldaer me doen alfoo van derghelijcke gheleyt is int s voortels eerlte werck.

$$
2 V V \text { erckdoor ghetalen. }
$$

Anghefien de twee ghegheven breeden even fijn, foo moet deur ghemeene reghel als int I werck des 5 voorftels ghefeyt is, de begheerde cromftreeck de achette fijn.

Om nu het langdefchil te vinden, ick fouck inde tafel des 8 cromftreecx int 4 voorftel de ghegheven brëede van 24 tri en daer nevens wat verheyt tot die plaets overcomt op itr. langdefchil, bevinde 54 (1) 48 (2): Hier me fegh ick 54 (1) 48 (2), gheven tot defc plaets i tr. langdefchil, wat de ghegheven verheyt 27 tr. 24 (1)? Comt voor begeert langdefchil 30 tr.waer aft'bewijs deur t'werck openbaer is. Tbeslvyt. Wefendedan ghegheven verheyt en breede vath twee plaetfen evener breede, ws hebben ghevonden haer cromitreeck en langdefchil, na den cyfch.

## NOTE.

If the given numerical values do not correspond altogether to the numerical values given in the table, one must (both here and in the subsequent propositions), in order to get the required value very accurately, find what the value in question properly corresponds to, as is commonly done in other tables and in the way of the example given thereof in the 11th proposition of the work on the making of tables of sines 1 ).

## 6th PROPOSITION.

Given the distance and the latitude of two places of equal latitude: to find their loxodrome and their difference of longitude.

SUPPOSITION. Let the distance between two places be $27^{\circ} 24^{\prime}$ and their latitude $24^{\circ}$. REQUIRED. We have to find their loxodrome and their difference of longitude.

## 1st Procedure, by means of the Globe with the Loxodromes Drawn thereon.

Since the two given latitudes are equal, by the general rule, as said in the 1st procedure of the 5 th proposition, the required loxodrome must be the eighth.

As to the difference of longitude, I say as follows. If the two given places are marked on the globe on a parallel, one must take between the compasses a part of the equator, viz. about one degree, and measure therewith the given $27^{\circ} 24^{\prime}$ in the aforesaid circle passing through the two places, bringing first one end thereof and then the other under the meridian; then the arc of the equator contained between these two meridians will be the required difference of longitude and will be found to be $30^{\circ}$.

But if the two given places are not marked on the globe, one must proceed in the same way as has been said of a similar case in the first procedure of the 5 th proposition.

## 2nd Procedure, by means of Numbers.

Since the two given latitudes are equal, by the general rule, as said in the 1st procedure of the 5 th proposition, the required loxodrome must be the eighth.

Now in order to find the difference of longitude, I look up in the table of the 8th loxodrome in the 4 th proposition the given latitude of $24^{\circ}$, and against it I see what distance corresponds in that place to $1^{\circ}$ of difference of longitude, which I find to be $54^{\prime} 48^{\prime \prime}$. I now say: $54^{\prime} 48^{\prime \prime}$ gives in this place $1^{\circ}$ of difference of longitude; what does the given distance of $27^{\circ} 24^{\prime}$ give? We get $30^{\circ}$ for the required difference of longitude, the proof of which is evident from the procedure. CONCLUSION. Given the distance and the latitude of two places of equal latitude, we have thus found their loxodrome and their difference of longitude; as required.

[^136]
## 144

 4 Botcr desemtciootschrifts,7 VOORSTEL.
Wefende ghegheven twveer plaetfen cromftreeck en breeden:Te vinden (midesdatdeghegheven breeden net even en fijn ) haer langdefchilen verheyt.

Tiskennelick foode twee ghegheven breeden even waren, dat de cromftreeck foude de 8 vallen, of waer de ghegheven cromftreeck de achtfte, dat de breeden fouden moeten even fijn: Maer want langdefchil en verheyt gevonden worden deur breedefchil,en dat hier gheen en is, fo en canmen deur fulck ghegheven het langdefchil en de verheyt niet vinden, en daerom ift dat int voorftel defe uytneming ftaet, namelick, midts dat de ghegeven breeden niet everi en fün; waer uyt kennclick is, dat wanneerin voorbeelden defes voorftels de ghegeven cromftreeck feer nae de achtfte faet, datmen inde daet t'befluyt niet feer feker en hecft.

## MERCKT.

T'ghebeurt wel dat cen Sierman feylende van d'een plaets tot d'ander op een felve ftreeck, deur dadelicke ervaring ghenomen heeft die twee plaetfen breede, en dat fy hier uyt wil vinden de verheyt, om te fien hoefijn gifling die hy int reylen daer op ghenomen mach hebben, overcomt met defe reghelen: Voort hoe daer meovercomt het langdefchil dat op Eertclooten en in tafels daer af gheftelt mach fijn: Oft anders foo de voornoemde gifling en langdefchil onbekent waren, hoemen die bekent fal maken, en tot fulcken eynde dient dit voorftel: TGHEGHEVEN. Laet der twee plaetfen cromitreeck fijn de 4 , en de weftelicker breede $s \operatorname{tr} .59$ (1), d'ander breede 28 tr. 42 (1).

Tbegheerde. Wy moeten haer langdefchilen verheyt vinden.

## I VVerckmette coper cromstreeck.

Ick neem een Eertcloot welcke A B C D fy, diens afpunt A, en middeliont. $D B$,teycken daer opeen verborghen of uytvagelick punt $E$, fulcx dat fijn bree: de FE doe str. s9 (1) der ghegheven weftlicker plaets; neem voort na t'inhout van 'ghegeven de vierde coper cromAreeck; welckefy G HIK, vervough haer gront $G H$ opt middelront D B, die daer langs henen fchuyvende tot dat de wijflijn I Kcomt op E; keer daer na den Eertcloot weftwaert (om dat d'ander placts ooftlicker is) tot dat de cromftreeck het middachront deurfnijt in d'ander ghegheven breede van 28 tr .42 (1), iwelck valt neem ick an L ,en de gemeene fne des middachronts en middelronts $\mathfrak{y} y$ aldan M . Dit foo wefende F M is der twee plaetfen langdefchil, t'welck opden Eertcloot in dit voorbeelt bevondenmoet worden voor t'begheerde van 24 tr.

Voort is des cromftreecx lini E L de verheyt, welcke gemeten als int $s$ voorftels eerfte werck, moet in dit voorbeelt bevonden worden voor t'begheerde $\operatorname{van} 32 \boldsymbol{1 r} .8$ (1).

## 2 VVerck metten gjecromstreeckten Eertcloot.

Ick verkies opden Eertcloot eenighe cromftreeck als de ghegeven, dats de 4 en breng dic onder het middachront, fnyende t'felve inden 5 tr. 59 (1) der ghegheven weftelicker breede; lek keer daer na den Eertcloot weftwaert (om dat

## 7th PROPOSITION.

Given the loxodrome and the latitudes of two places: to find (provided the given latitudes are not equal) their difference of longitude and their distance.

It is obvious that if the two latitudes were equal, the loxodrome would be the eighth, or if the given loxodrome were the eighth, the latitudes would have to be equal. Now because the difference of longitude and the distance are found by means of the difference of latitude and there is none in this case, it is not possible to find the difference of longitude and the distance by means of this datum, and that is why the proposition contains this condition, viz. provided the given latitudes are not equal, from which it is obvious that if in examples of this proposition the given loxodrome is very near to the eighth, in practice the solution is not very accurate.

## NOTE.

It sometimes happens that a navigator, sailing from one place to another on the same course, has found the latitudes of those two places by practical observation and that from these he wants to find the distance, in order to see how far his conjecture, which he may have made during the voyage, agrees with these rules. Further, how far the difference of longitude that may be given thereof on globes and in tables agrees with it. Or else, if the aforesaid conjecture and difference of longitude were unknown, how they have to become known; and it is for this purpose that the present proposition serves.

SUPPOSITION. Let the loxodrome of the two places be the fourth, and the latitude of the more westerly place $5^{\circ} 59^{\prime}$, the latitude of the other $28^{\circ} 42^{\prime}$.

REQUIRED. We have to find their difference of longitude and their distance.

## 1st Procedure, with the Copper Loxodrome.

I take a globe, which shall be $A B C D$, whose pole is $A$ and the equator $D B$, and mark on it an erasable point $E$ so that its latitude $F E$ is the $5^{\circ} 59^{\prime}$ of the more westerly of the given places. Further, in accordance with the supposition, I take the fourth copper loxodrome, which shall be GHIK, place its base $G H$ on the equator $D B$, moving it along the latter until the index line $I K$ falls through $E$, then turn the globe to the west (because the other place is further to the east) until the loxodrome intersects the meridian in the other given latitude of $28^{\circ} 42^{\prime}$, which is, I assume, at $L$; and let the point of intersection of the meridian and the equator then be $M$. This being so, $F M$ is the difference of longitude between the two places, which on the globe in this example, to satisfy the requirement, must be found to be $24^{\circ}$.

Further the part $E L$ of the loxodrome is the distance, which, when measured as in the first procedure of the 5th proposition, in this example, to satisfy the requirement, must be found to be $32^{\circ} 8^{\prime}$.

## 2nd Procedure, by means of the Globe with the Loxodromes Drawn thereon.

I choose on the globe a loxodrome for the one given, which is the 4 th, and bring it under the meridian, so that it intersects the latter in the $5^{\circ} 59^{\prime}$ of the

d'andet plaets ooftlicker is) tot dat de cromftreeck het middachront Tnijt inden 28 tr. 42 (1) van d'ander ghegheven breede: T'welck foo fijnde, het middelront verloopen vande eertte ftandt totte tweede, is het langdefchil, dat in dit voorbeelt bevonden moet worden van 24 tr .

Voort is de cromftreecx lini tuffchen die twee ftanden de verheyt,welcke gemeten als int's voorfels i werck, moet in dit voorbeelt bevonden worden voor t'begheerde van 32 tr. 8 (1).

## 3 VVerck door ghetalen.

Ick fouck inde tafel des 4 voortels de ghegheven 4 cromfreeck, en fie wat langden en verheden overcommen op de twee ghegeven breeden, bevinde op de eleenftebreede str. s9:(1), t'overcommen langde 6 tr:verh. 8 tr. 29 (1). En op de grootfe brecde an 28 tr. 42 (1), bevinde. ick t'overcommen
langde zo.verh:40 tr.37(1). Daer af gherrocken langde en verheyt eerte in d'oirden, blift voor t'begheerde langdefchil 24 tr.verh. 32 rr .8 (1). Waerafl'bewijs deurt'werck openbaer is: Tbeslyy t. Wefende dan
$\mathbf{N}$ ghe.
given more westerly latitude. I then turn the globe to the west (because the other place is further to the east) until the loxodrome intersects the meridian in the $28^{\circ} 42^{\prime}$ of the other given latitude. This being so, the part of the equator between the first and the second position is the difference of longitude, which in this example must be found to be $24^{\circ}$.
Further the part of the loxodrome between those two positions is the distance, which, when measured as in the 1st procedure of the 5 th proposition, in this example, to satisfy the requirement, must be found to be $32^{\circ} 8^{\prime}$.

> 3rd Procedure, by means of Numbers.

I seek in the table of the 4th proposition the given 4th loxodrome and look up what longitudes and distances correspond to the two given latitudes. I find that the values corresponding to the smaller latitude $5^{\circ} 59^{\prime}$ are ............ the longitude $6^{\circ}$ and the distance $8^{\circ} 29^{\prime}$, and those corresponding to the greater latitude $28^{\circ} 42^{\prime}$ I find to be ............ the longitude $30^{\circ}$ and the distance $40^{\circ} 37^{\prime}$. When from this we subtract the longitude and distance first mentioned, we get for the required
difference of longitude $24^{\circ}$, for the distance $32^{\circ} 8^{\prime}$; the proof of which is evident from the procedure. CONCLUSION. Given the

1464 Bovck des Eertclootschrifts,
ghegheven tweer plaetfen cromitreeck en breeden : Wy hebbenghevonden (midts dat deghegheven breeden niet even en waren) haer langdefchil en verheyt, na den eyrch.

## 8 VOORSTEL.

## Werende ghegheven tvveer plaetfen breeden en langdefchil: Te vinden haer cromftreeck en verheyt.

TGHEGHEVEN. Laet de breede der weflicker placts fijn van str. 99 (1), dander plaetfens breede 28 tr : 42 (1), en haer langdefchil 24 tr .

TBEGHEERDE. Wy moeten decromfltecek en verheyt vinden.
I ruverck mette coper cromstreeck.
Soo de ghiegheven plaetfen op den Eertcloot niet gheteyckent en waren, men falder uyt vaghelicke puinten fetten, volghende $t$ ghegheven, die ick inde form des 7 voortels neem te wefen de twee punten Een L: Daer na falmen uyt de feven coperen cromftreken een verkiefen die ons uyter oogh dunckt t'begheerde ten naeften te commen, legghende haer gront G. H mette wijflijn opt middelront $B D$,die daer langs henen fchuyvende tot dat des cromftreecx wifflijn I K,comme opd'een der twee ghegheven plaetfen, ick neem op E:Soo dander plaets $L$ alfdan comt te gheraken de felve wijflijn $I K$, fo is die coper ftreeck de begheerde; maerfulcx nier ghebeurende, men fal een ander nemen daer op pafiende, of die nemen welcke ten naeften comt, de felve moet in dit voorbeelt bevonden worden voor t'beghcerde devierde.

Voort is des cromftroecx lini EL de verheyt, welcke ghemeten als int $s$ voorftels.eerfle werck, moetin dit voorbcelt bevonden worden voor t'begheerde van 32 tr .8 (1).

## 2 VVerck metten ghecrampreeckten Eertcloot.

Soo de twee plactfen op den Eertcloot gheteyckentfonden, en datfe by ghevalle opeen felve gheteyckende cromftreeck lagen, tis kennelick datdie cromftreeck de begheerde foude fijn: Maer want dat felden ghebeurt, fo fullen wy de faeckhier by voorbeelt nemen datfe beyde in gheen felve ghetegckendecromftreeck en vallen, waer toe den voortganck dnIdanich is: Keert den cloot tot dat eenige cromftreeck het middachront deurfiijt op de breede van d'een plaets, ick neem de weftelicker: Daer nae anghefien d'ander plaets ooftelicker is, foo keertden cloot weflicker, tor datter een booch des middelronts verloopen is van 24 tr.te weten het ghegheven langdefchil: Siet dan of de ghenomen cromfireeck het middachront deurfnijt, op de ghegheven groottte breededer 28 tr. 42 (1) van dander plaets, want dat foo ghebeurende, die cromftreeck is de begheerde: Dies niet, neemt een ander cromfrreeck, en doet daer me alfworen en derghelijcke foo dickwils tot dat ghy dè begheerde cromftreeck crijcht,of de begheerde ten naeften, welcke in dit voorbeelt bevonden fal worden de vierde.

Om daer na de verheyttehebben,men fal tuffchen de tree bovefchreven plaetfen inde vierde cromftrecck ghevonden, meten de langde des felven cromftreecx met een paffer, als int s voorftels i werck, en moet in dit voorbeelt bevonden worden voor t'begheerde van 32 tr. $s$ (1).

3 Werck
loxodrome and the latitudes of two places, we have thus found (provided the given latitudes are not equal) their difference of longitude and their distance; as required.

## 8th PROPOSITION.

Given the latitudes and the difference of longitude of two places: to find their loxodrome and their distance.

SUPPOSITION. Let the latitude of the more westerly place be $5^{\circ} 59^{\prime}$, the latitude of the other place $28^{\circ} 42^{\prime}$, and their difference of longitude $24^{\circ}$.

REQUIRED. We have to find the loxodrome and the distance.

## 1st Procedure, with the Copper Loxodrome.

If the given places are not marked on the globe, one must mark thereon erasable points, in accordance with the supposition, which in the figure of the 7th proposition I assume to be the two points $E$ and $L$. Thereafter one must choose from the seven copper loxodromes one which at sight appears to approximate the required loxodrome most, placing its base GH with the index line on the équator $B D$, moving it along the latter until the index line $I K$ of the loxodrome falls through one of the two given places, I assume through $E$. If the other place $L$ then falls on the said index line $I K$, this copper loxodrome is the one required; but if this is not the case, one must take another, which does fit on it; or take the one that approximates it most; in this example, to satisfy the requirement, this must be found to be the fourth.

Further the part EL of the loxodrome is the distance, which, when measured as in the first procedure of the 5 th proposition, in this example, to satisfy the requirement, must be found to be $32^{\circ} 8^{\prime}$.

## 2nd Procedure, by means of the Globe with the Loxodromes Drawn thereon.

If the two places were marked on the globe and happened to lie on the same drawn loxodrome, it is obvious that this loxodrome would be the one required. But because this rarely happens, we shall here give an example where the two do not fall on the same drawn loxodrome, for which the procedure is as follows. Turn the globe until a certain loxodrome intersects the meridian in the latitude of one of the places, I assume the more westerly one. Then, since the other place lies further to the east, turn the globe further to the west until an arc of the equator of $24^{\circ}$ has been traversed, viz. the given difference of longitude. Then see whether the chosen loxodrome intersects the meridian, in the given greater latitude of the $28^{\circ} 42^{\prime}$ of the other place, for if this is the case, that loxodrome is the one required. If not, take another loxodrome and proceed therewith as before, and similarly until you get the required loxodrome, or approximately the one required, which in this example will be found to be the fourth.

In order to find next the distance, one must measure, between the two abovementioned places found in the fourth loxodrome, the length of this loxodrome by means of a pair of compasses, as in the 1st procedure of the 5th proposition; in this example, to satisfy the requirement, this must be found to be $32^{\circ} 8^{\prime}$.

Ick fouck inde tafel des 4 voorftels de cleenfte gegeven breede van str . 59 (1); in cenighe der 7 cromitreken; ick neem inde vierde, en fie wat langde dacr me overcomt, bevinde
Daer na fouck ick inde felve vierde cromftreecwat langde datter overcomt op d'ander ghegheven breede 28 tr. 42 (1), bevinde

30 tr.
Daer af gherrocken 6 tr. cerfte in dooirden, blijft langdefchil. $\quad 24$ tr. Byaldien nu t'felve langdefchil niet evenen waer, oft immersniet na ghenouch even metter ghegheven langdefchil, fo en foude die ghenomen tafel der 4 cromitreeck de begheerde niet fijn, en daerom foudemen dierghelijcke moeten verfoucken op een ander cromftreeck, en dat foodickwils tot darmen het derde des oirdens even vonde, of ten naeften even metret ghegheven langdefchil: Maer t'valt in dit voorbeelt even, daerom de begheerde cromftreeck is de vierde.
Om nu de verheyt te vinden, ick fouc inde bovefchreveñ vierde cromfreeck d'een ghegheven breede $s$ tr, 59 (i), vinde daer op te overcommen verheyt van

8 tr. 29 (1),
En inde felve vierde cromftreeck fouck ick d'ander ghegheven breede 28 tr .42 (1), vinde daer op te overcommen verheyt van 40 ir .37 (1). Diens verfchil vande verheyt 8 ri. 29(3) vijfde in d'oirden, is voor de begheerde verheyt.

32 tr 8.(1).
Waer aft'bewiss deur t'werck openbaer is. TBesivy . Wefende dan ghegheven tweer plaetfen breeden en langdefchil, wy hebben ghevonden haer cromiftreeck en verheyr, na den cyfch.

## 9 VOORSTEL.

Wefende ghegeven tvveer plaetfen breede en verheyt: Te vinden de cromftreeck en langdefchil.

## MERCKT.

T'giebeurt dat ymant bekent fijn tweer plaetfen breeden, en verheyt van d'een tot d'ander, deur giffing dieint feylen daer op mach hebben ghenomen gheweeft, en dat hy begheert te weten decromftreeck en langdefchil, om fijn toecommende feyling daer na te rechten, of om fulcke twee plaetfen op den Eertcloot recht te teyckenen, of daer op gheteyckent fijnde, om te fien hoe fijn rckening daer me overcomt, en tot fulcken eynde can dit voorftel dienen.

Tghegheven. Laet de weflicker plaetfens breedefijn van str. 59 (1), van d'ander 28 tr. 42 (1), en haer verheyt 32 tr. 8 (1). TBEGHEERDE Wy moeten haer cromftreeck en langdefehil vinden.

## I VV erckmette coper cromstreeck.

Om eerft de cromftreeck te vinden, ick neem een Eertcloot welcke beteyckent fy mette form des 7 voorftels, fet daer op d'een ghegheven plaets, latet fijn de weflicker, diens breede str. $\$ 9$ (1) als t'punt $E$ : Ick neem daer na een der feven coper cromftreken die my uyter oogh dunckt t'begheerde ten naeften te commen, legghende haergronts wijlijn opt middelront $B D$, die daer langs henen fchuyvende tot dat des cromftreecx wijlijn I K comme opt punt E: lck $\mathrm{N}_{2}$
meet

## 3rd Procedure, by means of Numbers.

I look up in the table of the 4 th proposition the smaller of the given latitudes $5^{\circ} 59^{\prime}$, under one of the 7 loxodromes, I assume under the fourth, and see what longitude corresponds thereto, which I find to be $6^{\circ}$ Thereafter I look up in the said table of the fourth loxodrome what longitude corresponds to the other given latitude $28^{\circ} 42^{\prime}$, which I find to be $30^{\circ}$
When from this we subtract $6^{\circ}$, the first in the present list, the difference of longitude is

Now if the said difference of longitude were not equal, or at least almost equal, to the given difference of longitude, the chosen table of the 4th loxodrome would not be the one required, and consequently we should have to try similarly with another loxodrome, until the third figure in the present list were found to be equal, or approximately equal, to the given difference of longitude. But in this example it is equal, consequently the required loxodrome is the fourth.

Now in order to find the distance, I look up in the above-mentioned table of the fourth loxodrome the one of the given latitudes $5^{\circ} 59^{\prime}$, and find as the distance corresponding thereto

And in the said table of the fourth loxodrome I look up the other given latitude $28^{\circ} 42^{\prime}$, and find as the distance corresponding thereto

The difference of the latter from the distance $8^{\circ} 29^{\prime}$; the fifth in the present list, is, for the required distance,
$32^{\circ} 8^{\prime}$
The proof of which is evident from the procedure. CONCLUSION. Given the latitudes and the difference of longitude of two places, we have thus found their loxodrome and their distance; as required.

## 9th PROPOSITION.

Given the latitudes of and the distance between two places: to find the loxodrome and the difference of longitude.

## NOTE.

It sometimes happens that a man knows the latitudes of two places and the distance from one to the other, by a conjecture which he may have made in practice, and that he wants to know the loxodrome and the difference of longitude, in order to direct his future sailing thereby, or in order to mark these two places correctly on the globe, or, if they are marked thereon, to see how his reckoning agrees therewith, and for this purpose the present proposition may serve.

SUPPOSITION. Let the latitude of the more westerly of the places be $5059^{\prime}$, that of the other $28^{\circ} 42^{\prime}$, and their distance $32^{\circ} 8^{\prime}$. REQUIRED. We have to find their loxodrome and their difference of longitude.

## 1st Procedure, with the Copper Loxodrome.

In order to find first the loxodrome, I take a globe, on which the figure of the 7th proposition shall have been drawn. I mark thereon the one given place, let it be the more westerly one, whose latitude is $5^{\circ} 59^{\prime}$, viz. the point $E$. I then take one of the seven copper loxodromes which at sight appears to me to approximate the required loxodrome most, putting its base on the equator $B D$, moving it along the latter until the index line $I K$ of the loxodrome falls through the point $E$.

## 1484 Bovcr des Eertciootschrifts;

meet voort met een paffer na de wijfe alsint 5 voorftel van Elangs de wijliijn der cromftreeck, tot dat ick heb de ghegeven verheyt 32 tr. 8 (1), die comt neem ick an L , welck punt foo vallende, dat fijn breede de ghegheven is van 28 rr. 42 (1); die ghenomen coper cromftreeck is de begheerde:Maer fulcx niet ghebeurende, men fal een ander nemen; en daer me dergelijcke doen;en dat fodickwils tot datmen eencrijcht waer in fulcke breede alfooeven valt, of ten naeften comt, t'welck in dit voorbeelt'moet fijn voort'begeerde de vierde cromftreeck.

Om daer na het langdefchil te hebben, men falt foucken vande twee punten $\mathrm{E}, \mathrm{L}$, t'welck fy FM , en moet indit yoorbelt bevonden worden van 24 tr .

$$
2 \text { ruverck mettenghecrom/freeckten Eertcloot. }
$$

Om eerft de cromiftreeck te vinden, ick verkies op een ghecromftreecken Eertcloot eenighe cromftreeck die my uyter oogh dunckt $t$ 'begheerde ten naeften te commen: Latet inde form des 7 voorftels fijn de cromfrecek 1 K , teycken daer op deen ghegheven plaets, latet fijn de weftelickerals t'punt E , diens breedeFEstr. $s 9$ (1): Ick meet voortmer een paffer na de wijfealsint's voorftel, van E langsde cromftreeck tor dat ick heb de ghegheven verheyt van 32 tr. 8 (1), die comt neem ick an $t$ 'punt $L$, welck punt foo vallende, dat fijn breede I M de ghegheven is van 28 tr .42 (1), de ghenomen cromftreck is de begeerde. Maer fulex nier ghebeurende, men fal een ander nemen, en daer me dergelijcke doen, en dat fódickwils tot datmen een crijcht waer in fulcke breede alfo even valt, of ten nacften comt, t'welck in dit voorbeelt moet fijn voor 'begheerde de vierde cromftreeck.
Om daer na het langdefchil te hebben, men falt foucken vande twee punten E,L,t'welck fy F M, en moet in dit voorbeelt bevonden worden voor t'begeerdevan 24 tr.

## 3 raverckdoor ghetalen.

Om eerf de cromftrecck te vinden, ick fouck inde tafels des 4 voorftels d'een ghegheven breede in een der cromftreken, latet fijn de cleenfte van $s t r .59$ (1); voor t'cerfe inde 4 cromftreeck, en fie wat vertreyt daer me overcomt, bevinde

```
8 tr. 29 (1).
```

Daer toe ghedaen de ghegheven verheyt (ick fegh daer toe ghedaen
om dat deerfte breede de cleenfte was, want waerfe de grootte
gheweeft men foude moeten aftrecken)doende
32 tr 8(1).
Comt verheyt
Daer na fienick inde felve vierde cromftreeck, wat breede datter
overcomt op de verheyt van 40 tr. 37 (1) derde ind'oirden, bevinde 28 tr. 42 (1).
Defe breede even fijnde mette ghegeven breede der tweede plaets, foo is défe ghenomen vierde cromftreeck de begheerde: Waerré daer me oneven gheweeft,mien foude derghelijcke moeten met een ander verfoucken, tot datmen fulcx bevonde te overcom. men, of ten naeften.
Om nu het langdefchil te vinden, ick fouck eerft de cromftreeck alfvooren, en fie wat langde datter overcomt op d'en ghegeven breede van 28 tr. 42 (1), bevinde

I next measure by means of a pair of compasses, by the method described in the 5 th proposition, from $E$ along the index line of the loxodrome until I have got the given distance $32^{\circ} 8^{\prime}$, which I assume to be in $L$; and if this point falls in such a way that its latitude is the given latitude $28^{\circ} 42^{\prime}$, the chosen copper loxodrome is the one required. But if this is not the case, one must take another and proceed similarly therewith, until one gets a loxodrome in which this latitude is equal or nearly so, which in this example, to satisfy the requirement, must be the fourth loxodrome.

In order to get next the difference of longitude, one must seek it for the two points $E$ and $L$, which shall be $F M$, and this in the present example must be found to be $24^{\circ}$.

## 2nd Procedure, by means of the Globe with the Loxodromes Drawn thereon.

In order to find first the loxodrome, I choose on a globe with the loxodromes drawn thereon a loxodrome which at sight appears to me to approximate the required one most. Let it be, in the figure of the 7th proposition, the loxodrome $I K$. I mark thereon the one given place, let it be the more westerly one, viz. the point $E$, whose latitude $F E$ is $5^{\circ} 59^{\prime}$. I next measure by means of a pair of compasses, by the method described in the 5th proposition, from $E$ along the loxodrome until I have got the given distance of $32^{\circ} 8^{\prime}$, which I assume to be in the point $L$; and if this point falls in such a way that its latitude $L M$ is the given latitude $28^{\circ} 42^{\prime}$, the chosen loxodrome is the one required. But if this is not the case, one must take another and proceed similarly therewith, until one gets a loxodrome in which this latitude is equal or nearly so, which in this example, to satisfy the requirement, must be the fourth loxodrome.
In order to get next the difference of longitude, one must seek it for the two points $E$ and $L$, which shall be $F M$, and this in the present example, to satisfy the requirement, must be $24^{\circ}$.

## 3rd Procedure, by means of Numbers.

In order to find first the loxodrome, I look up in the table of the 4th proposition the one given latitude - let it be the smaller one of $5^{\circ} 59^{\prime}$ - under one of the loxodromes, to begin with under the 4th loxodrome, and I see what distance corresponds thereto, which I find to be $8^{\circ} 29^{\prime}$ When we add thereto the given distance (I say: add, because the first latitude was the smaller one, for if it had been the greater one, we should have to subtract), being The distance becomes

Thereafter I see in the said table of the fourth loxodrome what latitude corresponds to the distance of $40^{\circ} 37^{\prime}$, the third in the present list, which I find to be
Since this latitude is equal to the given latitude of the second place, this chosen fourth loxodrome is the one required. If it had not been equal to it, we should have to try similarly with another, until we found it to correspond, or nearly so.

In order to find now the difference of longitude, I first seek the loxodrome, as before, and see what longitude corresponds to the one given latitude $28^{\circ} 42^{\prime}$, which I find to be

S'ghelijex wat langde datter overcomt op d'anderghegeven breede de van $s$ tr. $s 9$ (1), bevinde 6 tr.
Die ghetrocken vande 30 ur.vififde in d'oirden, blijft voor begheert langdefchil
Waer af t'bewijs deur t'werck openbaer is. TBestivyt. Wefende dan gheglieven tweer plaeten breede en verheyt, wy hebben ghevondea de cromftreeck en langdefchil, naden cyrch.

## 10 V O ORSTEL.

Wefendeghegeven tvveer plaetfen cromftreeck, lang, defchil, en d'een plaetfens breede:Te vinden d'ander plaetfens breede en verheyt.

Tghegheven. Lact de cromftreeck fijn de vierde, langdefchil 24 tr. en d'een plaetfens breede wefende de weftelickfte en cleenfte $s$ tr. $s 9$ (1).

TBEGHEERDE. Wy mocten vinden dander plaetens breedeen verheyt.

## I UVerck mette coper cromftreeck.

Om ten ecrften te vinden d’ander plaetfens breede, ick teycken op eenighicn Eercloioials die des 7 voorftels sen puint ghelijck E; op de ghicgeven breede van s. (r. s.9(0): Daer na, want de ghegeven cromftrecek de vierde is, fo vervough ick de vierde coper cromifrecck alfoo, dathaer gronts wiiflijn G H padfe opt middelront D B , en dat de wifilijn I K gerake t'punt E: T Telve gebrocht on. derhet middachront;ick teycken des middachrondts fne $F$ int middelrondt D B, keer daer na den Eertcloot weftwaert tot datter int middelront van $F$ af deurloopen fijn 24 tr. des ghegheven langdelchils, t twelck valt neem ick van Ftor M; en teycken aldan des middelronts frie inde cromftreeck, als tet plaets van L: Dit foo fijnde, L M is dander plaetfens begheerde breede, die in dit voorbeelt bevonden moet worden van 28 tr: 42 (1). En EL is de begheerde verheyt, welcke ghemeten meteen paffer na de wijfedes s voorftels, moet in dit voorbeelt bevonden worden van $; 2$ tr. 8 (1):

## 2 VUerckmettenghecromstreeckten Eecrtcloot.

Om eerft te vinden d'ander plaetfens breede, anghefien de vierde cromiftreeck de ghegheven is, ick teycken op den ghecromftreeckten Eertcloot in eenighe 4 cromitreeck welcke $I K$ fy, een punt als E ,op de ghegheven breede van str: $s 9$ (1): Tfelve punt E ghebrochtonder het middachront, ick teycken des middachronts fine Fint middelront D B: keer daer na den Eertcloot weft waert, tot datter int middelront van $F$ af deurloopen finn 24 tr.des ghegheven langdefchils, $t$ 'welck valt neem ick van $F$ tot Mjen teycken alfdan des middelironts fne inde cromifreeck;als ter plaets van $L$. Dit foo fijnde L M is dander plaetfens begeerde breede, die in dit voorbeelt bevonden moet worden van $28 \operatorname{tr} .42$ (1). En E L de begheerde verheyt, welcke ghemeten nade wijfe des svoortels moet in ditvoorbeelt bevonden worden van 32 tr. 8 (1).

Likewise what longitude corresponds to the other given latitude $5^{\circ} 59^{\prime}$, which I find to be

When we subtract the latter from the $30^{\circ}$, the fifth in the present list, the remainder is, for the required difference of longitude, $24^{\circ}$ The proof of which is evident from the procedure. CONCLUSION. Given the latitudes of and the distance between two places, we have thus found the loxodrome and the difference of longitude; as required.

## 10th PROPOSITION.

Given the loxodrome and the difference of longitude of two places, and the latitude of one place: to find the latitude of the other place and the distance.

SUPPOSITION. Let the loxodrome be the fourth, the difference of longitude $24^{\circ}$, and the latitude of one place, being the more westerly and smaller one, $5^{\circ} 59^{\prime}$.

REQUIRED. We have to find the latitude of the other place and the distance.

## 1st Procedure, with the Copper Loxodrome.

In order to find first the latitude of the other place, I mark on a globe, viz. the one of the 7th proposition, a point, viz. E, in the given latitude of $5^{\circ} 59^{\prime}$. Thereafter, because the given loxodrome is the fourth, I place the fourth copper loxodrome in such a way that the base $G H$ fits on the equator $D B$ and the index line $I K$ passes through the point $E$. The latter having been brought under the meridian, I mark the point of intersection $F$ of the meridian with the equator $D B$, then turn the globe to the west until the $24^{\circ}$ of the given difference of longitude have been traversed in the equator from $F$, which I assume to be from $F$ to $M$, and then I mark the point of intersection of the equator with the loxodrome, $v i z . L$. This being so, $L M$ is the required latitude of the other place, which in this example must be found to be $28^{\circ} 42^{\prime}$. And $E L$ is the required distance, which, when measured with a pair of compasses by the method described in the 5 th proposition, in this example must be found to be $32^{\circ} 8^{\prime}$.

## 2nd Procedure, by means of the Globe with the Loxodromes Drawn thereon.

In order to find first the latitude of the other place, since the fourth loxodrome is the given loxodrome, I mark on the globe with the loxodromes drawn thereon, on a 4th loxodrome, which shall be $I K$, a point, viz. $E$, in the given latitude of $5^{\circ} 59^{\prime}$. The said point $E$ haying been brought under the meridian, I mark the point of intersection $F$ of the meridian with the equator $D B$, then turn the globe to the west until the $24^{\circ}$ of the given difference of longitude have been traversed in the equator from $F$, which I assume to be from $F$ to $M$, and then mark the point of intersection of the equator with the loxodrome, viz. L. This being so, $L M$ is the required latitude of the other place, which in this example must be found to be $28^{\circ} 42^{\prime}$. And $E L$ must be the required distance, which, when measured by the method described in the 5th proposition, in this example must be found to be $32^{\circ} 8^{\prime}$.

## 3 VVerck met ghetalen.

Ick fouck de ghegheven breede 5 tr. 59 (1) inde tafel des 4 voorftels inde ghegheren vierde cromfreeck, en fie wat verheyt en langde daer op overcomt, bevinde verheyt
En langde 8 tr.29-
6 tr.
Daer roc vergaert het ghegheven langdefchil (ick fegh vergaert om dat de ghegheven breede de cleenfte is, waerfe de groottte men fou moeten aftrecken)doende

## Comt tangde

Daer op vinde ick te overcommen inde bovefchreven 4 ftreeck, de breede der tweede plaets voor t'begheerde 28 tr.42(1). En vinde oock daer nevens de verheyt van 40 tr. 37.
Diens verffhil vande verheyt 8 tr. 29 (1), eerfte in d'oirden, doet yoor beghecrde verheyt

32 tr. 8.
Waeraf t'bewijs deur t'werck openbaer is. Tbeslyyt. Wefende dan gegeven tweer plaetfen cromftrecck, langdefchil, en d'een plaetfens breede; Wy hebben ghevonden d'ander plaetfens breede en verheyr, na den eyfch.

## UVOORSTEL.

Wefendeghegheven tvveer plaetfen cromftreeck, d'een plaetfens breede en verheyt: Te vinden d'ander plaetfens breede en het langdefchil.

MERCKT.

Genomen an ymant kennelick te fijn op wat cromftreeck datmen van d'een plaers tot d'ander feylt, voort d'een plaetfens breedeen de verheyt, die deur giffing int feylen mach ghevonden fijn, waer me hy begheert te vinden d'ander plaettens breede, en het langdefchil, om die op een Eertcloot te teyckenen, of daer op wefende temeughen fien hoe fijn rekening daer me overcomt, en tot fulcken eynde can dit voorftel dienen. Tghegheven. Laet do cromiftreeck fijnde 4 , de breededer weftelicker plaers de cleenfte wefende van str. 59 (1),en de verheyt 32 tr. 8 (1). Tbegheerde. Wy moeten vinden c'ander plaetfens biecde, en het langdefchil.

## - VVerck mette coper cromstreeck.

Ick teycken op den Eertcloot des 7 voorftels eenich punt als E; op deghegeven breede van s tr. 59 (i), vervough daér op de vierde coper cromftreeck, te weten alfoo dat den gront $G$ H paffe opt middelront D B, en de wijnijn I K op E: Ick meet voorts met een paffer langs de felve wijnijn $1 \dot{K}$, van E oof waert (om dat E deur t'gegeven weftelicker is) na $K$, de ghegheven verheyt van 32 tr .8 (1), na de wijfedes $s$ voorftels, welcke comt neem ick tot $L$. Dit foo fijnde, ick fouck de breede van $L$,welcke is $L M$, die in dit voorbeelt bevonden moet worden voor t'begheerde van 28 tr. 42 (3).

Daer na fouck ick der twee plaetfen langdefchil F M,t'welckmen in dit voorbeelt bevinden moet voor t'begheerde van 24 tr .

## 3rd Procedure, by means of Numbers.

I look up the given latitude of $5^{\circ} 59^{\prime}$ in the table of the 4 th proposition under the given fourth loxodrome, and see what distance and longitude correspond thereto, and I find the distance to be $8^{\circ} 29^{\prime}$ And the longitude $6^{\circ}$
When we add thereto the given difference of longitude (I say: add, because the given latitude is the smaller one; if it were the greater, we should have to subtract), being $24^{\circ}$ The longitude becomes $30^{\circ}$
Corresponding thereto in the table of the above-mentioned 4th loxodrome I find the required latitude of the second place

And I also find against it the distance
The difference between the latter and the distance $8^{\circ} 29^{\prime}$, the first in the present list, is the required distance
The proof of which is evident from the procedure. CONCLUSION. Given the loxodrome and the difference of longitude of two places and the latitude of one place, we have thus found the latitude of the other place and the distance; as required.

## 11th PROPOSITION.

Given the loxodrome of two places, the latitude of one place, and the distance: to find the latitude of the other place and the difference of longitude.

NOTE.
Assuming that a man knows on what loxodrome one sails from one place to the other, further the latitude of one place and the distance, which may have been found by conjecture in practice, from which he wants to find the latitude of the other place and the difference of longitude, in order to mark them on a globe or, if they are marked thereon, to see how his reckoning agrees therewith, for this purpose the present proposition may serve. SUPPOSITION. Let the loxodrome be the 4th, the latitude of the more westerly place, being the smaller one, $5^{\circ} 59^{\prime}$, and the distance $32^{\circ} 8^{\prime}$. REQUIRED. We have to find the latitude of the other place and the difference of longitude.

## 1st Procedure, with the Copper Loxodrome.

I mark on the globe of the 7 th proposition a point, viz. $E$, in the given latitude of $5^{\circ} 59^{\prime}$, place thereon the fourth copper loxodrome, viz. in such a way that the base $G H$ fits on the equator $D B$ and the index line $I K$ passes through $E$. I next measure with a pair of compasses along the said index line $I K$ from $E$ eastward (because $E$ by the supposition is more westerly) to $K$ the given distance of $32^{\circ} 8^{\prime}$, by the method of the 5 th proposition, which I assume to come as far as $L$. This being so, I seek the latitude of $L$, which is $L M$, which in this example, to satisfy the requirement, must be found to be $28^{\circ} 42^{\prime}$.

I next seek the difference of longitude $F M$ of the two places, which in this example, to satisfy the requirement, must be found to be $24^{\circ}$.

# Vande Zeymstrexen. <br> 2 VV erck metten ghecromStreeckten Eertcloot. 

Ick verkies eenighe gheteyckende vierde cromftreeck daer ick de ghegheven breede in teyckenen can : Latet inden Eercloot des 7 voorttels fijn de cromfreeck 1 K , waer in gheteyckent is t'punt E , foodat fijn breede F E doe de ghe gheven str. 59 (1): Ick mect voort meteen paffer langs de wijlijn 1 K van E ooftwaert (om dat E deur t'ghegheven de weftlicker plaets is) nà K , de ghegheven verheyt van 32 tr .8 (1), na de wijfe des $s$ voorftels, welcke comt neem iek tot L . Dit foo fijnde ick fouck de breede van $L$, welck is $L M$, die in dityoor: beelt bevonden moer worden voor $t$ 'begheerde van 28 tr. 42 (1).
Daer na fouck ick der twee plaetfen langdefchil $F M$, t'welckmen in dit yoorbeelt bevinden moet voor t'begheerde van 24 tr.

## 3 VVerck door ghetalen.

Ick fouck de ghegheeven breede $s$ tr. 59 (1) inde ghegeven vierde cromftreeck der tafelsdes 4 voorftels,en fie wat langde en verheyt daer op overcomt, bevin-
de langde 6 tr.
En verheyt
Daer toe vergaert de ghegheven verheyt (ick fegh vergaert om dat deghegeven breede de cleenfte is, waerfe de grootfte men foude mocten afirecken) doende
Comt verheyt
Die ghefocht inde bovefchreven vierde cromfreeck, ick vinde daer nevens te overcommen voor begheerde breede der tweede plaets
En vinde oock daer nevens de langde van

```
28tr.42(1).
```

Diens verfchil vande langde 6 tr. eerfte in d’oirden, doet voot begheert langdefchil. 30 tr.

Waer aft'bewijs deur t'werck openbaer is. TBESLYYT. Wefende dange. gheven tweer plaetfen cromitreeck, deen plaetfens breede en verheyt:Wy hebben ghevonden d'ander plaetfens breede, en het langdefchil, na den eyfch.

## MERCKT.

Wy hebben hier vooren ghefeyt vant feylen op rechte en cromme feylltreken, maer wantter in groote zcevaerden, noch ghebruyckt wort daert de gheleghentheyt toelaet een wijfe van feyling ghemengt van beyden, te weten een achtite freeck met een middachront, foo fullen wy daer af hier wat vermaen doen. Laet inde volghende form A B den Eertcloot beteyckenen, diens middelront $A$ B, en noortfchen afpunt $C$, voort fijn D, E, twee platifen van verfcheyden langden en breeden, deur welcke ghetrocken fijn de twee evewijdige tonden DFen EG. Omnu van Etot D te feylen, niet op een rechte noch cromme Atreeck alfvooren, maer op een middachront met een achtite ftreeck: Men feylt eerft van Eaf recht noortwaert an, opt middachront E F, tot datmen fich vint op de.breede diemen weet $D$ te hebben, $t^{\text {tw }}$ welck fy neem ick tot $F$ :daer na keertmen weftwaert, blijvende gheduerlick op de felve breede, dat is geduer. lick varende op de achtfte cromitreeck tot datmen ter begheerde plaets D comt.

Merckt noch datmen foudemeughen cerft beginnen te feylen van $E$ recht
welt-

2nd Procedure, by means of the Globe with the Loxodromes Drawn thereon.
I choose a certain drawn fourth loxodrome on which I can mark the given latitude. Let it be, on the globe of the 7 th proposition, the loxodrome $I K$, on which the point $E$ has been marked, so that its latitude $F E$ is the given $5^{\circ} 59^{\prime}$. I next measure with a pair of compasses along the index line $I K$ from $E$ eastward (because $E$ by the supposition is the more westerly place) to $K$ the given distance of $32^{\circ} 8^{\prime}$, by the method of the 5 th proposition, which I assume to come as far as $L$. This being so, I seek the latitude of $L$, which is $L M$, which in this example, to satisfy the requirement, must be found to be $28^{\circ} 42^{\prime}$.

I next seek the difference of longitude $F M$ of the two places, which in this example, to satisfy the requirement, must be found to be $24^{\circ}$.

## 3rd Procedure, by means of Numbers.

I look up the given latitude of $5^{\circ} 59^{\prime}$ under the given fourth loxodrome of the table of the 4th proposition, and see what longitude and distance correspond thereto, and I find the longitude to be And the distance
When we add thereto the given distance (I say: add, because the given
latitude is the smaller one; if it were the greater, we should have to subtract), being
$32^{\circ} 8^{\prime}$ The distance becomes 40ㅇ․

This being looked up under the above-mentioned fourth loxodrome, I find against it, as the value corresponding thereto, the required latitude of the second place
And $I$ also find against it the longitude $30^{\circ}$
The difference between the latter and the longitude $6^{\circ}$, the first in the present list, is the required difference of longitude

The proof of which is evident from the procedure. CONCLUSION. Given the loxodrome of two places, the latitude of one place, and the distance, we have thus found the latitude of the other place and the difference of longitude; as required.

## NOTE.

We have spoken above of sailing on great-circle tracks and loxodromes, but because on long voyages use is also made, as occasion permits, of a method of sailing that is a combination of the two, viz. an eighth loxodrome and a meridian, we shall say something about this here. In the figure overleaf let $A B$ designate the earth, whose equator is $A B$ and the north pole $C$; further $D$ and $E$ are two places of different longitudes and latitudes, through which have been drawn the two parallels $D F$ and $E G$. Now in order to sail from $E$ to $D$, neither on a great-circle track nor on a loxodrome, as above, but on a meridian and an eighth loxodrome, one first sails from $E$ straight to the north, on the meridian $E F$, until one is in the latitude which one knows $D$ to have; let this be, I assume, at $F$. Thereafter one turns to the west, remaining constantly in the same latitude, i.e. constantly sailing on the eighth loxodrome until one arrives at the desired place $D$.

Note further that one might first begin to sail from $E$ straight to the west,

## 152 4 Bovcrides Eertciootschrifts,

weftwaert an, dats gheduerlick op de achtte cromftreeck, tot datmen hadde de langde van $D$, als tot $G$,en daer na van $G$ recht noortwaert an, tot datmen op Dcomt:Doch alft niet en waer uyt oirfaeck van winden of ftroomen, diemen van te vooren wiff dat hinderlick fouden fijn, fo waert beter ecrft te feylen van


E op F, en van F op D, dan eerft van E op G, en van G op D, uyt oirfacck dat. men met meerder fekerheyt van $F$ tot D op een felve breede can blijven, dan van $G$ tot $D$ op een felve langde, inder voughen dat foo veel men deur afleydende ftroomen of qua rekening, in langde mifgifte,foo verre foudemen te ooftlick of weftlick van D commen:Ia fulcx, datmen fomwijlen als Deen cleen Eylant waer, niet weten en foude (ghelijckt metter daet dickwils ghebeurt (ofmen daer afooft of weft waer, niet teghenftaende men de breede verfekert hadde: Maer van Eecrft rioortwaert an varende, t'fy datmen wat ooflicker of weftlickerdan op $\mp$ ter beghcerde breede comt, ten doet daer fulcken hinder niet, want blijvende int feylen nae D-altijt op de behoirlicke breede, men moet Dont. moeten.
Tot defe wijfe van feyling op een achtfe cromftreeck met een middachront, en behouftmen gheen rekeninghen als de voorgaende van rechte en cromme feylftreken,maer ten is foo conten wechniet, gelijekmen inde form openbaer. tick fiet.
i.e. constantly on the eighth loxodrome, until ons is in the longitude of $D$, viz. at $G$, and then from $G$ straight to the north, until one arrives at $D$. But if it were not because of winds or currents which one knew beforehand would be troublesome, it would be better first to sail from $E$ to $F$ and then from $F$ to $D$, rather than first from $E$ to $G$ and then from $G$ to $D$, because one can remain with greater certainty in the same iatitude from $F$ to $D$ than in the same longitude from $G$ to $D$, so that as much as the conjecture concerning the longitude was wrong owing to diverting currents or miscalculation, so much one would arrive too far to the east or west of $D$, even to the extent that sometimes, if $D$ were a small island, one would not know (as often happens in actual fact) whether one was to the east or west of it, in spite of the fact that one had made sure of the latitude. But if one first sails from $E$ to the north, it does not matter so much if one arrives in the required latitude somewhat further east or west. than $F$, for if in sailing to $D$ one always remains in the proper latitude, one is bound to come to $D$.

For this method of sailing on an eighth loxodrome and a meridian one requires no calculations like the foregoing, of great-circle tracks and loxodromes, but it is not so short a route, as is plainly seen in the figure.

# Vande Zeyistreken. 153 <br> AN H A N G DERCROMSTREKEN. 

## ${ }^{1}$ HOOFTSTICK.

Verhael opde oirden der cromftreken.
 Ommige als Robert Ḧues, nemen de cromftreken te beginnen vant middachront af na t'middelront toe, noemende die van noort ten ooften d'eerfte, noort noortoof de twieede, en foo voörts. Ander als Edwart Wright, tellen van t'middelront af ina 'middachront; noemendede cromitreeck van ooft ten noorden d'eerfe, oof noordoof de tweede, en foo voorts. Maer wanttet om twijffeling te weeren, goct waerdat alle die van defe ftof handelen, int noemen der cromftreken een felve oirden volghden,foo heeft my oirboir ghedocht mijn ghevoclen te verclaren,waerom ick meyn datter meerder reden is te beginnen van het middachront, ghelijck wy hier vooren oock ghedaen hebben, dan van t'middelront, jals volght:

Voor al wanneermen feghtd'eerfe cromitreeck die te wefen, welcke eerft na t'middelront volght,foo en is dat niet eyghentlick gefproken den * Doen- Effricius. der buyten t'middelront fijnde, dadelick of deur t'gheftelde; wantmen infulck anfien dan niet en foude moeten fegghen d'eerfte cromftreeck vant middelront af, dan d'eerfte cromftreeck van een evewijdich rondt mettet middelront: Maer dat foo ghenomen, t'felve evewijdich ront en fal in d'oirden der cromftreken niet vallen, $t^{\prime}$ welck nochtans gheen rechire ftreeck fijnde een cromitreeck is, volghende haer bepaling. Dit anghemerckt; de natuerlicke oirden fchijnt te vereyffchen datmen t'middachront neme voor begin, want van daer af tellende, foo valt de ooftenwefttreeck me onder de cromitreken; wefendealtijt de achtfte na t'behooren, en daerom hebben wy hier vooren die wijfe ghevolght.

## 2 HOOFTSTICK.

## Van Petrus Nonius feyl, angaende de ghetalen der cromftreken.

Nadien de Portuguijfen en Spaengnaerden cerft ernfelick de groote zeevaerden anghevanghen hadden, foo viel by hun anmercking op de gedaente en eyghenfchappen der cromftreken: Waer af den vermaerdenWifonftnaer Petrus Nonius handelende, heeft ghefchreven vandeghetalen dienende tottet formen der felve, maer fy en wierden by hem niet rechtghenouch getroffen; t'welck ick niet en fegh tot fijn verachting, want den gront daer hy op boude, haddeuyterlick foo vaften anfien; dat d'alder ervarenfte voor t'eerfte lichtelick fouden ghemeent hebben de faeck foo te wefen, en by aldien hem fulcke oirfaeck van proef ontmoet hadde, als anderen na hem wel bejeghende; hy foude foo wel als anderen t'ghebreck bemerckt hebben.
Tis dan te weten dat hy int 23 Hoofttick fijns 2 boucx de Reg. or instr. befluyt de houckmaten der boghen vanden afpunt totte cromftreeck in
*ghe-

## APPENDIX

OF THE LOXODROMES.

## 1st CHAPTER.

Account about the order of the loxodromes.
Some people, like Robert Hues 1), regard the loxodromes as starting from the meridian and proceeding to the equator, calling that of north by east the first, north northeast the second, and so on. Others, like Edward Wright 2), count from the equator to the meridian, calling the loxodrome of east by north the first, east northeast the second, and so on. But since, to avoid doubt, it would be advisable for all those dealing with this subject to follow the same order in naming the loxodromes, it seemed expedient to me to set forth my view why I think there is more reason to start from the meridian, as we have done in the foregoing, than from the equator, as follows:

Especially if we say that the first loxodrome is the first, reckoning from the equator, this is not properly expressed, when the observer is outside the equator, in actual fact or by the supposition, because in this respect we ought not to say the first loxodrome from the equator, but the first loxodrome from a parallel to the equator. But even if this is done, this parallel will not fall under the order of the loxodromes, and yet, not being a great-circle track, it is a loxodrome according to the definition. Considering this, the natural order of things seems to demand that the meridian be taken as the starting-point, for, reckoning thence, the east and west track also falls under the loxodromes, being always the eighth, as it should be, and that is why we have followed this method in the foregoing.

## 2nd CHAPTER.

Of the error of Petrus Nonius ${ }^{3}$ ), concerning the numerical values of the loxodromes.

When the Portuguese and the Spaniards had seriously started on long seavoyages, their attention was caught by the appearance and properties of the loxodromes. The famous mathematician Petrus Nonius, dealing with this, wrote about the numerical values serving to form them, but he did not fix these values accurately enough, which I do not say to disparage him, for the foundation on which he built seemed outwardly so secure that even the most experienced people would at first easily have thought that the matter was like this. And if he had had the same opportunity of testing it as others after him found, he would have perceived the error just as well as others.

Thus it is to be noted that in the 23rd Chapter of his 2nd book de Reg. $\mathcal{E}$ instr. ${ }^{4}$ ) he concludes that the sines of the arcs from the pole to the loxodrome

[^137]
## 154 4 BovCredes EERTCIOOTSCHRIFTS,

Continua proportione.
*gheduerighe everedenheyt te wefen; Als inde voorgaende form des 3 voor. ftels, (alwaer wy nemen $R Z$ de vierde te fijn)dat ghelijck houckmaet van MR, tot houckmaet van M X, alfo houckmaet van M X, tot houckmaet van M Y,en van MYtot die van Ma, en van Matot die van Mb; en van $M b$, tot die van $M Z$; en daerom oock ghelijck houckmaet van $M R$, tot houckmaet van $M X$, alfoo houckmaet van $M b$, tot houcknact van $M Z$ : Doch dat gemift te wefen blijckt aldus: De driehouck MR X heeft drie bekende palen, te weten de fijde MR 90tr. den houck MR X 4 s tr.en den houck R M X 1 tr. Hierme ghefoche de fijde $M$ X, wort bevonden van 89 tr. diens houckmaet doct 9998 : Sulcx dat de houckmaet van $M R$, in foodanighen reden is totte houckmaet van $M X$, als 10000 tot 9998. Laet nu de cromftreeck van R tot $b$, foo na den $*$ afpunt ghecommen wefen, dat $M 6$ doe 10 tr. diens houckmaet is 1736. Dit foo ghenomen, de houckmaet van $\mathrm{M} Z$ foude moeten doen 1736 , want feggende houckmaet van M R 10000, gecft houcmaet M X 9998,wat houckmact van M $b_{1736}$ ? Comt houckmaet die fijn foude voor M Zalfvooren 1736: Maer de felve foo niet te wefen wort aldus bethoont: De driehouck $M b \mathrm{Z}$ heeft drie bekende palen, te weten de fijde $M b 10$ tr. den houck $M b Z 45$ tre en den houck $b M Z$ I tr. Hier me ghefocht de fijde M Z, wort bevonden deur het 42 voorftel der clootfche driehoucken van 8 tri.33 (1), diens houckmaet 1487, groot verfchil heeft vande voorfchreven 1736 , t'welck fy foude moeten doen om met d'ander everedenich te fijn. Sulcx dat de booch MZ, die volghende tgheftelde maer en doet 8 tr.33(I), wort na d'ander reghel bevonden van jotr. t'welck I tr. 27 (1) te veel is. Maer fulcken feyl vallende op alleenelick een everedenheyts wercking, foo machmen dencken wat grootet feyl datter op M Z boven dat noch moet commen; deur al de voorgaende verfaende feylen der werckinghen eern men totten bovefchreven 10 tr. vanden afpunt gheraeck.

## 3 HOOFTSTICK.

Vant feyl inde tafels der cromftreken deur Edvpart. VVright.

Na de Portuguyfen en Spaengnaerden fijn in groote zeevaerden de Enghel. fchen ghevolght, welcke op defeghedaente der cromitreken oock acht nemende, hebben t'feyl van Nonius bemerckt, en tot verbetering van dien foo fijnder onlancx uyrghegheven tafclen der cromftreken deur Edwart Wright, als die des 4 voorftels van defen, welcke de facck naerder commen : De proef daer ick fulcke meerder naerheyt deur vermoede, was datick na d'eerfte wijfe des maeckfels der tafels vande cromftreken int bovef̣hreven 4 voorftel, focht de breeden des vierden cromftreecx, (in welcke t'werck licht valt, deur gheduerighe vergaring fonder menichvulding of deeling, om dat raecklijn en rechthouckmaet van 45 tr. daer even vallen) en dat tot op den 78 tr. der langde, waer op ick bevant tovercommen 61 tr. 26 (1): Maer Wraghts tafels hebben tot fulcken plaets 6 Itr. 14(1), die op foo grooten langde maer 12 (1) en fchillen: Boven dien was my noch bekent dattet ware ghetal, volghende fulck gheftelde, minder moeft fijn dan die 61 tr. 26 (1): Sulcx dat my dit,als ghefeyt is, vermoen gaf van die tafelsde. fake na te commen : (Maer hoe de ghetalen der tafels van ander cromftreken met fulcke rek eningen overcommen, en heb ick deur ander belet niet verfocht) Doch en iffer de rechte gront noch niet volcommelick ghetroffen. Om hier af perclaring te doen,foo fchrijf ick eenft'navolghende

VER-
form a continued proportion. Thus, in the foregoing figure of the 3 rd proposition (where we assume $R Z$ to be the fourth loxodrome), as the sine of $M R$ is to the sine of $M X$, so is the sine of $M X$ to the sine of $M Y$, and that of $M Y$ to that of $M A$, and that of $M A$ to that of $M B$, and that of $M B$ to that of $M Z$; and consequently also: as the sine of $M R$ is to the sine of $M X$, so is the sine of $M B$ to the sine of $M Z$. Now that this is wrong, appears as follows: The triangle $M R X$ has three known elements, viz. the side $M R=90^{\circ}$, the angle $M R X=$ $45^{\circ}$, and the angle $R M X=1^{\circ}$. When herewith the side $M X$ is sought, it is found to be $89^{\circ}$, the sine of which is 9,998 , so that the sine of $M R$ is to the sine of $M X$ in the ratio of 10,000 to 9,998 . Now let the loxodrome from $R$ to $B$ have come so near to the pole that $M B$ is $10^{\circ}$, the sine of which is 1,736 . Assuming this, the sine of $M Z$ would have to be 1,736 , for when we say: sine of $M R=10,000$ gives sine of $M X=9,998$, what does the sine of $M B=1,736$ give? The sine, which would be that of $M Z$ - as before - is 1,736 . Now that this is not true, is proved as follows. The triangle $M B Z$ has three known elements, $v i z$. the side $M B=10^{\circ}$, the angle $M B Z=45^{\circ}$, and the angle $B M Z=1^{\circ}$. When herewith the side $M Z$ is sought, it is found by the 42 nd proposition of spherical trigonometry ${ }^{1}$ ) to be $8^{\circ} 33^{\prime}$, the sine of which $=1,487$ differs a good deal from the aforesaid 1,736, which it would have to be in order to be proportional to the other. So that the arc $M Z$, which according to the supposition is only $8^{\circ} 33^{\prime}$, according to the other rule is found to be $10^{\circ}$, which is $1^{\circ} 27^{\prime}$ too much. Now if such an error occurs in only one operation of proportion, one may consider how much greater will be the error that must occur in $M Z$ in addition, from all the previous errors accumulated of the operations carried out before one reaches the above $10^{\circ}$ from the pole.

## 3rd CHAPTER.

Of the error in the tables of the loxodromes by Edward Wright.
The Portuguese and the Spaniards were succeeded in long sea-voyages by the English, who, also paying attention to this appearance of the loxodromes, noticed the error of Nonius; and to correct this error, tables of the loxodromes were recently published by Edward Wright, viz. those of the 4th proposition of the present work, which are more accurate. The test on the ground of which I expected this greater accuracy was that I sought the latitudes of the fourth loxodrome according to the first method of making the tables of the loxodromes in the above-mentioned 4th proposition (in which case the operations are easy, owing to constant addition, without multiplication or division, because the tangent of an angle of $45^{\circ}$ is equal to the sine of a right angle 2), up to $78^{\circ}$ of longitude, with which I found $61^{\circ} 26^{\prime}$ to correspond. But Wright's tables have for this place $61^{\circ} 14^{\prime}$, which differs only $12^{\prime}$ on so great a longitude. Moreover it was known to me that the correct value, according to this supposition, must be less than this $61^{\circ} 26^{\prime}$, so that - as I have said - this made me expect that those tables were rather accurate (But since I was prevented by other business, I have not examined how the values of the tables of other loxodromes agree with these

[^138]
## VERTOOCH.

Ghelijck des cromftreecx afvvijcking vant middelront op haer voortganck eens langdetraps, tot haer afvvijcking op haer voortganck van noch een langdetrap daer an volghende: Alfoo feer na fnylijn door t'begin van die laette voortganck, tot fnylijn door t'begin deseerften voortgancx.

Tghegheven. Laet ABC Deen Eertcloot fijn diensafpunt A, middelront $B E D$, waer in gheteyckent fijn de vier punten $E, F, G, H$, fulcx dat $E F$, FG, G H, elckdoen i tr. Op defe vier punten $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, fijn ghetrocken de vier middachboghen A E, A. F, A G, A H; voort y $E$ I een cromftreeck, ick neem d'eerfte, fnyende de vier middachboghen in $K, L, M, I$; Daer na fy gherrocken de booch K N evewijdich met $\mathcal{F}$ E, en LO met G E, fnyende A F in P, fghelijcx fy ghetrocken de booch MQR evewijdige met H Een fnyende AG in $Q$ : Daer

nafy
calculations). But the correct basis has not yet been perfectly laid. To explain this, I first give the following

## THEOREM.

As the deviation of the loxodrome from the equator during its advance through one degree of longitude is to its deviation during its advance through the next degree of longitude, so very nearly is the secant through the beginning of the latter advance to the secant through the beginning of the former advance.

SUPPOSITION. Let $A B C D$ be a globe, whose pole is $A$, the equator $B E D$, in which are marked the four points $E, F, G$, and $H$, so that $E F, F G$, and $G H$ are each $1^{\circ}$. On these four points $E, F, G$, and $H$ are erected the four meridians $A E, A F, A G$, and $A H$. Further let $E I$ be a loxodrome, I assume the first, intersecting the four meridians in $K, L, M$, and $I$. Thereafter let the arc $K N$ be drawn parallel to $F E$, and $L O$ parallel to $G E$, intersecting $A F$ in $P$; similarly let the arc $M Q R$ be drawn parallel to $H E$ and intersecting $A G$ in $Q$. Thereafter let the first loxodrome be drawn from $N$ via $P$ to $Q$, which must be equal and similar to the part $K L M$.

This being so, $F K$ is the deviation of the loxodrome from the equator $F E D$ during its advance through one degree of longitude; i.e. the loxodrome having advanced from $E$ to $K$, where its change of longitude was one degree, $E F$, during this advance through one degree of longitude its deviation has become $F K$, or $E N$, as being equal thereto, because $K N$ is parallel to $F E$ by the supposition. And in the same way it is to be understood that NO is the deviation of the loxodrome during its advance through another degree of longitude, coming from $K$ to $L$, where it has received as much deviation as from $N$ to $O$, because $L O$ is parallel to $G E$ by the supposition. And for the same reason $O R$ is the deviation of the loxodrome during its advance through yet another degree of longitude,

# 1564 BOVCRDESEERTCIOOTSCHRIFTS, 

na fy ghetrocken d'eerfte cromftreeck van $N$ deur $P$ tot $\mathbf{Q}$, die even en gelijck moet lijn mettet deel K L M.
Dit foo wefende FK is descromftreecx afwijcking vant middelront F E D op haer voortganck eens langdetraps: Dat is, de cromftreeck voorfghegaen heb. bende van $E$ tot $K$,daerfe in langde verandering ghecreghen heeft een trap $E F$; foo is op die voortganck eens langderraps, haer afwijcking gheworden FK, of E $N$ als daer me even fijnde, om dat $K$ N evewijdich is met $F E$ deur t'gegeven: En alfoo falmen vertaen dat N O is des cromftreecx afwijcking op haer voort: ganck van een langdetrap meer, met re commen van $K$ tot L , waer op fy afwijcking ghecreghen heeft foo veel als van N tot O , om dar $\mathrm{L} \mathbf{O}$ evewijdich is met G Edeur t'ghegheven: En om derghelijcke redenen is OR des cromftreecx afwijcking op haer voortganck van noch een langdetrap meer, met te commen van $L$ rot $M$. Sulcx dat $N O$ is des cromftreecx afwijckingop haer voortganck eenslangdetraps, en OR afwijcking op haer voortganck van noch een trap daer an volghende. Tbegheerde. Wy moeten bewijfen dat ghelijck NOtor $O R$, alfoo feer na de fnylijn van des cloots middelpunt deur $L$ begin des laetfen voortgancx $L$ M, tot fnylijn deur $K$ begin des eerften voortgancx K L: Maer de fnylijn deur $N$, is even ande fnylijn deur $K$, om dat $K$ Nevewijdighe is met $F$ E: En foghelijcx is de fnylijn deur O, even ande fnylijn deur $L$, om dat LO evewijdighe is met $G E$, en dacrom mocten wy bewijfen dat ghelijck N O tot OR,alfoo fnylijn deur O , tot fnylijn deur N .

Maer om hier te fegghen tot wat eynde dit ftreckt, en de fomme des voornemens int cort te verclaren, foo is te weten dat wy bethoonen fullen, de ghetalen inde bovefchreven tafel ghevonden, niet te overcommen met defe evereden. heyt, en daerom niet heel recht te wefen. Voort hoemen deur fulcken gront ghewiffe tafels can maken, hoe wel deur een moeylicker wercking.

## TBEWYS.

Laet ons nemen de form in d'eerfte bepaling des houckmaetmaeckfess, waer in teanfien valt dat den driehouck ABI, ghelijck is mettendriehouck AFC, diens * lijckftandighe fijden everedenich fijn, re weten Ghelijck A I tot A B, alfoo AC tot A F , Maer $A C$ is even met $A B$, en $G C$ met $A F$,daerom Ghelijck A I tot A B, alfoo AB tot GC.
Maer A I is fnylijn, A B rechthouckmaet, en GC houckmaet van C E, te weten des fchilboochs van B C, daerom fegh ick by ghemeene reghel, dat Ghelijck cens boochs fnylijn tot rechthouckmaet, alfoo rechthouckmaet, tot fchilboochs houckmaet.
Dit foo fijnde,wy commen nu totte form defes vertoochs, waer me ick om defe bewefen everedenheyt aldus fegh:

Ghelijck int vierendeelronts A E, fnylijn deur $N$, dats fnylijn des boochs N E,tot rechthouckmaet, alfo rechthoucmaet, tot fchilboochs houckmact van N E wefende houckmaet van A N: Dats andermacl int cort ghefeyt: Ghelijck fnylijn deur $\mathbf{N}$, tot rechthouckmaet, alfoo rechthouckmaet, tot houckmaet van AN. En weerom Ghelijck fnylijn deur $O$,tot rechthouckmact, alfoo rechthouckmaet, tot houckmaet van A O.
coming from $L$ to $M$. So that NO is the deviation of the loxodrome during its advance through one degree of longitude, and $O R$ the deviation during its advance through yet another subsequent degree. REQUIRED. We have to prove that as $N O$ is to $O R$, so very nearly is the secant from the centre of the sphere through $L$, the beginning of the latter advance $L M$, to the secant through $K$, the beginning of the former advance $K L$. Now the secant through $N$ is equal to the secant through $K$, because $K N$ is parallel to $F E$. And similarly the secant through $O$ is equal to the secant through $L$, because $L O$ is parallel to $G E$, and consequently we have to prove that as $N O$ is to $O R$, so is the secant through $O$ to the secant through $N$.

Now in order to state here for what purpose this serves and to set forth briefly the sum of what we propose to say, it is to be noted that we are going to stress the fact that the numerical values found in the above-mentioned table do not agree with this proportion, and consequently are not quite exact. Furthermore, how it is possible to make accurate tables on this basis, though by more difficult operations.


PROOF.
Let us take the figure in the first definition of the work on the making of tables of sines ${ }^{1}$ ), where it can be seen that the triangle $A B I$ is similar to the triangle $A F C$, whose homologous sides are proportional to each other, viz.:

As $A I$ to $A B$, so $A C$ to $A F$;
Now $A C$ is equal to $A B$, and $G C$ to $A F$, therefore
As. $A I$ to $A B$, so $A B$ to $G C$.
Now $A I$ is the secant, $A B$ the semi-diameter, and GC the sine of $C E$, viz. of the complement of $B C$; I therefore say by the general rule that

As the secant of an arc is to the semi-diameter,
So is the semi-diameter to the sine of the complement.
This being so, we now come to the figure of the present theorem, about which on account of this proved proportion I say as follows:

As in the quarter circle $A E$ the secant through $N$, i.e. the secant of the arc $N E$, is to the semi-diameter, so is the semi-diameter to the sine of the complement of $N E$, being the sine of $A N$. That is, stated briefly once again: As the secant through $N$ is to the semi-diameter, so is the semi-diameter to the sine of $A N$. And again:
As the secant through $O$ is to the semi-diameter, so is the semi-diameter to the sine of $A O$.

[^139]Maer rechthouck màt aldus inde twee voorgaende everedenheden middel. everedenighe finde, foo volght daer uyt dat.

Ghelijck fnylijn deur N ; tot fnylijn deur O ; alfoo houckmaett van A O, tot houckmaet van A N:
Maer ghelijck houckmaet van A O, tot houckmaet van A.N, alfoo het rondt diens halfmiddellijn'de houckmaet is van $A O$; dats t'rondt daer $L P$ deel af is; tottet rondt diens halfmiddelijn dehouckmaet is van $\mathrm{A} N$, dats, 'ront daer $\mathrm{K} \mathbf{N}$ declafis: Daerom

Ghelijck fnytijn deur N , tot fnylijn deur O , alfoo het rond daer LP deel af is, rottet rondt daer $K \mathbb{N}$ deel af is.
Maer ghelijck het rondt daer L. Pdeeliaf is, tottet iondr daer K N deel af is; alfoo het deel $L P$, tottet deel $K N$, want elck is itr. fijns rondts deur t'ghegheven : Daerom.

Ghelijck fnylijn deur N , tot fnylijn deur O , alfoo $\mathrm{L} P$, tot $\mathrm{K} N$.
MaerL P en K N fijn lijckftandighe fijden in twee driehoucken QLP; PK N, die na ghenouch ghelijck fijn, (ick legh na ghenouch, uyt oirfaeck datfe fo na malcander ftaen, en fo cleene fijden hebben, waer deur oock int vertooch ghefeyt is $A l f o 0$ feer $n a$ )dacrom fy fijn met d'ander lijckflandighe Q L, PKeve. redenich, dat is

Ghelijek LP tot K $N$, alfoo $Q$ L.tot $P K$ : En vervolghens
Ghelijck fnylijn deur N, ot fnylijn deur $O$,alfoo $Q$ L tot $P K$.
Màer $R O$ is even met $Q$, en $O N$ met $P K$ : Daerom

En deur yerkecrde reden,
Ghelijck $O N$ tot $O R$, alfoo fnylijn deur $O$, tot fnylijǹ decri $N$.
Tbestyyt. Ghelijck dan des cromftreecx afwijcking vant middelront, op haer voortganck eens langdetraps, tot haer afwijcking op haer voortganck van noch een langdetrap daer na volghende: Alfoo feer na fnylijín door t'begia van die laette voortganck, tot fnylijn door tbegin des eeriten voortgancx, t'welck wy bewiffen moeften.

Defe everedenheyt aldus vaft en bekent Gijnde, wy fullen tot ons voorghenomen verclaring van t'feyl der tafels commen.

Laet EI inde form defes verioochs, beteyckenen d'eette cromitreeck, daer in wy ons vooritellen te moeten vinden de twee breeden FK, G L. Üm dan eerf tevinden $F K$, ick fegh den drichouck KFE (die ick ten eerten voor plat anfie; om dat fulcke driehoucken inde rafels voor plat ghenomen wierden) it hebben drie bekende palen, te weten den houck KEF78 tr. 4s (1), KFE rechs, en FE i tr. Hier me ghefocht de fijde K F; en alles berekent met rechihouckmaet van 10000000 , tot op (2) toe, wort bevonden deur het 4 voorftel der platte driehoucken van's tr. 1 (1) 38 (2). Maer $E N$ is even anFK, dacrom EN doet oock $s$ tr. I (1) ; 8 (3). Nu dan N E bekent fijnde, en om na de regel des voorgaenden vertoochs te vinden N O, ick fegaldus: Snylijn deur N, dats van N ES tr.1 (1) 38 (2) doénde:10038616, gheeft fnylijn deur E doende 1000c000, (die wy hier fnylijn heeten, hoe wel het eyghentlick gheen en is, maer om de naem na de reghel te ghebruycken) wat de booch NE str, 1 (1):38 (2)? Comt voor de booch NO stro.(2) 28 (2): Die vergaertot NE , tri] (1) 38 (2), comt voor EO, dats oock voor de begheerde G L y otr, 2 (1) 6 (2): En foo veel wort oock volcommelick bevonden volghende d'eertte wijfe des maeckfels vande tafels der cromitreken int 4 vooritel, want N K als gront des rechthouckighen driehoucx P K N; doet s9.(1) 4.6(2),waer me de reghel gevolght, deur rekening der platte drichoucken,

Now since thus the semi-diameter in the two foregoing proportions is the mean proportional, it follows from this that

As the secant through $N$ is to the secant through $O$,
So is the sine of $A O$ to the sine of $A N$.
Now as the sine of $A O$ is to the sine of $A N$, so is the circle whose semi-diameter is the sine of $A O$, i.e. the circle of which $L P$ is a part, to the circle whose semidiameter is the sine of $A N$, i.e. the circle of which $K N$ is a part. Therefore:

As the secant through $N$ is to the secant through $O$, so is the circle of which $L P$ is a part to the circle of which $K N$ is a part.
Now as the circle of which $L P$ is a part is to the circle of which $K N$ is a part, so is the part $L P$ to the part $K N$, for each is $1^{\circ}$ of its circle by the supposition. Therefore:

As the secant through $N$ is to the secant through $O$, so is $L P$ to $K N$.
Now $L P$ and $K N$ are homologous sides in two triangles $Q L P$ and $P K N$, which are nearly similar (I say: nearly, because they are so close to each other and have such small sides, on which account the theorem also spoke of so very nearly), therefore they are proportional to the other homologous sides $Q L$ and $P K$, i.e.:

As $L P$ is to $K N$, so is $Q L$ to $P K$. And consequently:
As the secant through $N$ is to the secant through $O$, so is $Q L$ to $P K$.
Now $R O$ is equal to $Q L$, and $O N$ to $P K$. Therefore:
As the secant through $N$ is to the secant through $O$, so is $R O$ to $O N$.
And by the inverse proportion:
As $O N$ is to $O R$, so is the secant through $O$ to the secant through $N$.
CONCLUSION. As therefore the deviation of the loxodrome from the equator during its advance through one degree of longitude is to its deviation during its advance through the next degree of longitude, so very nearly is the secant through the beginning of the latter advance to the secant through the beginning of the former advance; as we had to prove.

This proportion thus being established and known, we shall come to our proposed exposition of the error of the tables 1 ).

Let $E I$ in the figure of the present theorem designate the first loxodrome, on which we propose we have to find the two latitudes $F K$ and GL. In order to find first $F K$, I say that the triangle $K F E$ (which to begin with I regard as plane, because such triangles were taken as plane in the tables) has three known elements, viz. the angle $K E F=78^{\circ} 45^{\prime}, K F E=90^{\circ}$, and $F E=1^{\circ}$. When herewith the side $K F$ is sought and everything is calculated with a semi-diameter $=10,000,000$, to the nearest second of arc, it is found by the 4th proposition of plane trigonometry ${ }^{2}$ ) to be $5^{\circ} 1^{\prime} 38^{\prime \prime}$. But $E N$ is equal to $F K$, therefore $E N$ is also $5^{\circ} 1^{\prime} 38^{\prime \prime}$. Now $N E$ thus being known, in order to find $N O$ according to the rule of the foregoing theorem, I say as follows: Secant through $N$, i.e. $N E=$ $5^{\circ} 1^{\prime} 38^{\prime \prime}$, being $10,038,616$, gives secant through $E$, being $10,000,000$ (which we here call secant, although properly speaking it is no secant, but we do so in order to use the name that accords with the rule); what does the are $N E=5^{\circ} 1^{\prime} 38^{\prime \prime}$ give? The arc $N O$ becomes $5^{\circ} 0^{\prime} 28^{\prime \prime}$. When we add this to $N E=5^{\circ} 1^{\prime} 38^{\prime \prime}, E O$, i.e. also the required $G L$, becomes $10^{\circ} 2^{\prime} 6^{\prime \prime}$. And exactly the same value is also found according to the first method of the making of tables of the loxodromes in
${ }^{1}$ ) Cf. Introduction, p. 488-490.
${ }^{\text {2 }}$ ) Stevin's Trigonometry (Work XI; i, 12), p. 147.
men bevint $K P$, dats oock voor $N O$ van $s$ tr. 0 (1) 28 (2), en vervolghensE $O$ inde bovelchreven volcommenheyt. Maer nietalfoo deur de iweede wijfe,want alles met (2) ghewrocht, daer comt voor G Lio tr. (1). Maer om de felve iwecde wercking hier breeder te verclaren ick fegh aldus:Ghefocht inde tafel der verfaemde fnylijnenwatter overcomt op str. (1) 38 (2) van EN, wort bevonden 3020 , daer toe vergaert noch eens 3020 comt 6040 , waer op indefelve refel overcommen voor $G$ L of $E O$ sotr. 1 (1), die'I (1) 6 (2) verichillen van d'ander totr. 2 (1) 6 (2), en daerom en is dit niet heel volcommen, want hier me voortgaende men gheraecktallenx tot noch wat meerder verfchil.

Merckt noch wijder de reden te vereyfichen, datmen int foucken van K F des driehoucx KF E, den felven driehouck niet en behoort te nemen voor plat, gemerckt de twee fijden daermen rekening me maecktals EF, F.K boghen fijn, fulcx dat FK gefocht deur rekening der clootfche driehoucken, wort beronden van s tr.o (1) 51 (2), dic van d'ander 5 tr. 1 (1) 38 (2) verichillen 47 (3): Want hoeweldie in haer felven voor t'cerftecleen fijn,int vervolgh wordet feyl grooter.

## 4 HOOFTSTICK.

## Hoe t'maeckfel van ghevviffe tafels der cromftreken foude meughen ghefchien na t'ghevoelen des Schrijvers.

Ghelijck ghevonden is $\mathbf{N O}$, deur een wercking getrocken uyt het vertooch int 3 Hooftflick defes Anhangs, alfoo fal ghevonden worden OR; fegghende fnylijn van C E, gheeft fnylijn van NE, wat de booch NO? t'gene daer uyt comt is voor de booch $O R$, welcke vergaert tot $O$ E, men crijcht $E R$, dats oock H M breede des 3 tr. der langde. En om daer naete vinden de breede van noch een langdetrap voorder, die ick neem te wefen R S, ick fegh: Snylijn van R E, gheeft fnylijn van O E, wat de booch OR ? ?'ghene daer uyt comt is voor de booch R S, en foo voort met d'ander.

MER CK T nu noch dat deur tinemen van cleender boghender langde, fekerder werck valt dan deur grooter,om bekende oirfaken:Maer om verfekert te fijn datmen de boghen cleen ghenouch neemt; dat fal ghefehien deur een dobbel wercking, aldus toegaende: Benevens t'vinden der breeden deur t'nemen der langdeboghen van trap tot trap als hier vooren, foo falmen noch doen een ander wercking van halve trap tot halve trap, $\mathbf{f 0 0}$ langhe alffe gheen hinderlick verfchil en hebben: Maer beginnende hinderlick verfehil te crijghen , men fal d'eerfte wercking van trap tot trap verlaten, blijvende by die van halve trap'tot halve trap, en daerbenevens noch vougende een wercking van vierendeel traps tot vierendecl traps, dats van is (1) tot is (1), welcke voorder commende, foofe oock hinderlick veifchil creghen, men fal die van halve trap tot halve trap verlaten, en voughen by d'ander een wercking van noch cleender boghen als van 10(1) tot io.(1). En daer me canmen, hoe wel de wercking moeylick valt, tot fekerheyt commen, want gheen hinderlick verfchil vallende tuffchen twee werckinghen, d'eene deur t'nemen van heele langdetrappen, d'ander van halve, ten is niet noodich foo verre met noch cleender boghen te wercken dan met halve; want t'ghene men daer deur naerder vonde, foude door meerder mocyte ghefchien fonder tot voordeel te frecken.

Merckt noch dat foomen defe wercking wilde doen na d'eerfte wijfe des maeckfels vande tafels der cromftreken int 4 voorftel, t'foude oirboir fijn eerft te maken een tafel van tghene itr. langdefchil buyten t'middelront, doet
the 4th proposition, for $N K$, being the base of the right-angled triangle $P K N$, is $59^{\prime} 46^{\prime \prime}$, and when the rule is followed, by a calculation of plane trigonometry, $K P$, i.e. also $N O$, is found to be $5^{\circ} 0^{\prime} 28^{\prime \prime}$, and consequently $E O$ is found as exactly as above. But it is not like this by the second method, for when everything is calculated to the nearest second, $G L$ becomes $10^{\circ} 1^{\prime}$. Now in order to set forth this second operation more fully, I say as follows: When one looks up in the table of the assembled secants what value corresponds to the $5^{\circ} 1^{\prime} 38^{\prime \prime}$ of $E N$, this is found to be 3,020 . When one adds thereto another 3,020 , this becomes 6,040 , to which there corresponds in the said table for $G L$ or $E O 10^{\circ} 1^{\prime}$, which differs $1^{\prime} 6^{\prime \prime}$ from the other value of $10^{\circ} 2^{\prime} 6^{\prime \prime}$, and consequently this is not quite exact, for if one continues in this way, the difference gradually increases.

Note further that reason demands that when seeking $K F$ of the triangle $K F E$, one ought not to regard this triangle as plane, since the two sides by means of which the calculation is made, viz. $E F$ and $F K$, are arcs, so that $F K$, when sought by a calculation of spherical trigonometry, is found to be $5^{\circ} 0^{\prime} 51^{\prime \prime}$, which differs $47^{\prime \prime}$ from the other, $5^{\circ} 1^{\prime} 38^{\prime \prime}$. For although at first it is small in itself, the error will become greater in the sequel.

4th CHAPTER.
How the making of accurate tables of the loxodromes might be effected in the opinion of the author.

As $N O$ has been found, by an operation derived from the theorem in the 3rd Chapter of this Appendix, so OR must be found, saying: secant of CE gives secant of NE, what does the arc NO give? The result of this is the value of the $\operatorname{arc} O R$, and when we add this to $O E$, we get $E R$, i.e. also $H M$, the latitude at $3^{\circ}$ of longitude. And in order to find then the latitude at yet one degree of longitude further, which I assume to be RS, I say: Secant of $R E$ gives secant of $O E$, what does the arc $O R$ give? The result of this is the value of the arc $R S$, and so on with the others.

NOTE further that when taking smaller arcs of longitude, the operations are more accurate than when taking larger ones, for known reasons. Now to ensure that the arcs are taken small enough, a double operation has to be performed, as follows. Besides the finding of the latitudes by taking the arcs of longitude from degree to degree, as hereinbefore, another operation must be performed from one half degree to the next half degree, as long as they have no appreciable difference. Now when an appreciable difference begins to appear, one must stop the first operation from degree to degree, keeping to that from one half degree to the next, and adding thereto an operation from one fourth degree to the next one fourth degree, i.e. from $15^{\prime}$ to $15^{\prime}$, and when this has gone on for some time, if again an appreciable difference arises, one must stop the operation from one half degree to the next, and add to the other an operation with even smaller arcs, viz. from $10^{\prime}$ to $10^{\prime}$. And thus, though the operation is difficult, one can attain to accuracy, for if there is no appreciable difference between two operations, the one by taking whole degrees of longitude and the other by taking half degrees, it is not necessary to operate further with arcs even smaller than half arcs, for what one might thus gain in greater exactness would be obtained by greater trouble without yielding any advantage.

Note further that if one wanted to perform this operation according to the
in (1),(2) en (1) des middelronts, als de tafel des achtften cromftreecx, en dat niet tan 30 tot 30 (1) der breede, inoch berekent tot op (2) als die, maer van (1) tot (1) der breede, en berckent tot op (1).

De moeyte des maeckfels van fulcken tafel ghedaen wefende, tis kennelick dar de yoorder wercking dan ghefchien foude alleen deur menichvulding fonder deeling, daermen na de voorgaende ander wijfe met fnylijnen, benevens de menichvulding een deeling moet doen, doch en iffer dan fulcken tafel niet te maken.
Dit is de fekerfte wech die my nu te vooren comt., en hoe wel de wercking moeylick foude vallen, doch eens wel ghedaen wefende, men foude hem dacr op meughen betrouwen. Mäer fooder middeler tijt deur ymant ander lichter wercking met ghenouchfaem bewefen fekerheytghevonden wierde, t'waer billich die te aenvaerden.

## 5 HOOFTSTICK.

## Hoemen fcherper opt Zeecompas foude connen feylen dan na t'ghemeen ghebruyck.

Het zeecompas placht eertijts ghedeelt te fijn in 8 ftreken; t'welck daer nae doen de wijder zcevaerden nauwer toeficht vereyfchten, ghecommen is tot 32: En hocwel eenige die halven, voorder commende tot $\sigma_{4}$ freken; doch houden ander defe laetfe deeling voor onnoodich, achtende ('menfcher géficht in een varende fehip op foo cleeneghedeelten'des ronts gheen feker oirdeel te connen hebben. Maer fijn V ORSTELICKE GHENADE defenhandelder fcherpreyling grondelick overdenckende, heefi daer af middel voorgewent, om fmenfchen oirdecl feker te connen fijn niet alleen op $\sigma_{4}$ freken, maerop ftreken van trap tor trap der 3 to daermen de ronden in deelt, ja tot op ghedeelten eens traps, fulex dat verfcheyden menfchen op een varende fchip r'famen in het zeecompasfiende, fullen al ghelijckelick uyt eenen mont noemen een felve trap, ja helft of vierendeel van dien, na dat den tuych groot en forch ruldelick mocht ghemaeckt fijn. Ende want dit fof is mette voorgaende ghemeenfchap hebbende,foo vervough ick t'felve in defen Anhang, daer af een corte verclaring doende met twiee voorbeclden,

## t T-ocrbeelt deir cenzeecompas mette lely.pp stüf papier.

Iaet A B C D EFG een zeecompas beduyen; waer in een rondt fifif papier fy, niet met' 32 ftreken na de ghemeene wijfe, maer met 360 tr, te weten elck vierendeclronts in go tr.gheteyckent opt uyterftedes cants van't'felve papier, en beginnendë de telling in yder vierendeel vant middachrờnd af: Eñ daer onder noch een ander rondt ftijf papier,waer in hee yfer geftreken met zeylfteen vaft light, om alfoo na t'ghemeen ghebruyck de afwijcking des yfers vande lely foo groor te ftellen; als de feylnaeldens afwijcking vant noorden op de tegenwoordighe placts vereyfcht.

Opden buytecant der caffe van fulcken compas, fy ghetrocken een lini recht over cynde als C E, daer ria het liniken CH, van C na i'middelpunt des compas Areckende, en noch een ander van $H$ reche neerwaert evewijdich commende met C E: Voort fy het punt A foo, dat de verdochte lini van C tot A , frecke
first method for the making of the tables of the loxodromes in the 4th proposition, it would be expedient first to make a table of what $1^{\circ}$ of difference of longitude outside the equator is equivalent to in minutes, seconds, and sixtieths of seconds of the equator, like the table of the eighth loxodrome, not from $30^{\prime}$ to $30^{\prime}$ of latitude, nor calculated to the nearest second, like the latter, but from minute to minute of latitude and calculated to the nearest sixtieth of a second.

The trouble having been taken to make this table, it is evident that the further operations would then have to be performed only by multiplication, without division, whereas according to the foregoing other method by means of secants it is necessary besides the multiplication to perform a division, but in that case no such table has to be made.

This is the most accurate method that I can think of now, and even though the operations should be difficult, once they had been performed satisfactorily, one might rely thereon. But if at any time an easier operation of sufficiently tested accuracy were found by someone else, it would be reasonable to adopt it.

## 5th CHAPTER.

How one might steer more exactly by the mariner's compass than is usually done.

The mariner's compass was formerly divided into 8 points, which number was afterwards, when the longer voyages called for greater accuracy, increased to 32. And although some people halve these, thus arriving at 64 points, others consider this latter division unnecessary, being of the opinion that man's eyesight cannot judge with accuracy in a moving ship about such small parts of a circle. But His Princely Grace, thoroughly reflecting on this subject of accurate steering, put forward a means to ensure the accuracy of a man's judgment not only with 64 points, but with points from degree to degree of the 360 into which a circle is divided, and even to parts of a degree, so that several people in a moving ship, when looking together at the compass, will all with one accord and unanimously name the same degree, or even one half or one fourth thereof, according as the instrument has been constructed large and accurate. And because this is a subject that is connected with the foregoing, I include it in this Appendix, giving a short explanation thereof with two examples.

## 1st Example, by means of a Mariner's Compass with the Fleur-de-lys on Cardboard.

Let ABCDEFG denote a mariner's compass, containing a circular piece of cardboard, not with 32 points, as usual, but with 360 degrees, viz. each quarter of the circle marked in 90 degrees on the circumference of the said piece of cardboard, the counting commencing in each quarter from the meridian. And underneath it there is yet another circular piece of cardboard, on which the needle touched with loadstone is fixed, in order to adjust by the general custom the deviation of the needle from the fleur-de-lys to the value required by the deviation of the magnetic needle from the north at the place in question.

On the outside of the box of this compass let there be drawn a vertical line, viz. $C E$, then the small line $C H$ extending from $C$ to the centre of the compass, and yet another from $H$ vertically downward, coming parallel to $C E$. Further let

recht over t'middelpunt vant compas: Daer na fy van $A$ noch cen lini recht neertwaert ghetrocken opden buytecant tot $G$, als $A G_{7}$ fulcx dat de verdochte lini van. $E$ tot $G$, ftrecken moet recht onder t'middelpunt vant compas. Dit foo fijnde, Laet nu IKL M degrontteyckening van een fchip bedien, waer in NO is de plactsdaermen al feylende t'compas op ftelt: Op r'plat van t'flve fal ghe-

trocken worden een lini PQ. evewijdich freckende mettet kiel des fchips, (die ick daerom kiellini noem)te weten in een lini of gefpannen draet als 1 L , commende uyt het middel vant achterfte des fchips, totter middelfte vant voorfte. Maerwant P Q in defe teyckening feer cort valt, foo falick om int volghende bequamelicker verclaring te meughen doen, andermael trecken een langher lini R S, die ick nu houde alsvoor kiellini in een fchip ghetrocken te fijn, na de meyning alvoooren. Op defe kiellini R S falmen het compas fellen, foo dat de twee punten Een Geffen commen daer op te paffen.

Om nu hier deur met fekerheyt te feylen tot op trappen of cleender gedeelte ${ }_{3}$ als by voorbeelt te moeten ghefeylt worden opden 17 tr.van weften na zuyden, men fal t'fchip foo ftieren, dat den felven 17 tr.altijt paffe op de lini die gefeyt is te frecken van H neerwaert evewijdeghe met C E, want foo lang die overcommen, machmen feggen t'voorghenomen oirdeel van nauwer fekerheytgevon. den te wefen, overmits dat fo haeft dien felven 17 tr. een trap of een halve wijet vande voorfchreven lini onderH;al de ghene diet fien, fullen, al of fy uyt eenen montfpraken,terfont l'famen connen feggen hoe veel het buyten den wech is.

2 Foor.
the point $A$ be such that the imaginary line from $C$ to $A$ extends straight through the centre of the compass. Thereafter let there be drawn from $A$ a line vertically downward on the outside to $G$, viz. $A G$, so that the imaginary line from $E$ to $G$ must pass straight below the centre of the compass. This being so, let IKLM denote the plan of a ship, in which NO is the place where during the voyage the compass is mounted. In the plane of this let a line $P Q$ be drawn parallel to the keel of the ship (which I therefore call "keel-line" ${ }^{1}$ ), viz. in a line or stretched thread, viz. IL, extending from the middle of the rear part of the ship to the middle of the front part. But because $P G$ in this drawing is very short, in order to make possible a more convenient explanation in the following, I will draw once more a longer line $R S$, which I now consider as having been drawn for the keel-line in a ship, as meant before. One must place the compass in this keel-line $R S$, so that the two points $E$ and $G$ coincide exactly therewith.

Now in order to steer an exact course by this means to the nearest degree or smaller divisions, e.g. if one has to sail on the 17th degree from west to south, one must steer the ship in such a way that the said 17 th degree always coincides with the line which has been said to extend from $H$ downward parallel to $C E$, for as long as these coincide, we can say that the intended more accurate judgment has been found, since, as soon as the said 17th degree deviates one degree or one half degree from the aforesaid line through $H$, all those who see it will be able to say with one accord, as if they were speaking with one mouth, how far it is out of the course.

[^140]
## 2 Voorbeelt deur eenzeecompas met een feylnaelde.

Maer want de punt van een feylnaelde alleen draeyende fonder ftijf papier, fcherper en fekerder verthoont de naeldens natuerlicke wijfing, dan twee cromme beftreken ylerkens diemenghemeenelick ruytwijs teghen t'papier, plackr, foo can fulcx deur foodanighen bloote feylnaelde met noch meerder fekerheyt gedaen worden,aldus: Deff A B C D E EG HR S van beteyckening fijndeals int eerte voorbeelt, men fal inden binnecant der caffe daer de lini van H neerwaert incomt, teyckenen de 360 tr. te weten viermael 90 tr. beginnende t'een vierendeel van $H$ na $B$, tander van $H$ na $D$, fgelijex van $A$ na $B$, en van $A$ na $D$.


Voort falmen an $t$ 'punt H ichrijven noort, an A zuyt: Maer an B ; t 'welck na de ghemeene wijleweff foude fijn,falmen ooft fellen, en an Dweft. Daer na foo veel de feylnaeldensafwiicking ter teghenwoordighe plaets is, op fulcken verheyt falmen $t$ 'punt E vande kiellini R Stellen. Als by voorbeclt wefende de afwicking 10 tr. van noort na ooft,men falden rotrap van $C$ na $B$ doen overcommen op de kiellini R S,want aldan moet t'punt Eoock 10 tr.vande kiellini verfchillen. Dit foo fijnde, en datmen by voorbeelt ghefeyt wilde varen $i_{7}$ tr. van weft na zuyt, men falt 'fchip foo ftieren, dat de punt vande feyInaelde paffe opden 17 trap vant weften af na zuyt dat inde caffe ftaet, en is openbaer datmen dan t'begheerde fal doen, met meerder fekerheyt dan na d'eerfte wijfe.

Maer foomen vreefde dat defe verkeerde ftelling van ooft en wett,om d'onghewoonte wille dwaling mocht veroirfaken, voor de bootfghefellen die te roer flaen: De Stierman foude in plaets vande namen der vier winden, meugen ghebruycken de vier letters A, B,C,D, en in plaets van hun te bevelen datef feylen fouden 17 tr.van weft na zuyt, mach bevelen te feylen 17 tr.vap D na $A$.
Voort om met meerder bequaemheyt het noort der caffe of'punt $E$, fo verre vande kiellini te ftellen, als de naeldens afwiicking vereyfcht, men foude van de kielliniaf over beyde fijden 40 of soit. meughien teyckenen, om de caffens punt Ete ftellen op fulcken trap als de afwijcking mebrengt, makende int middelpunt van fulcken ront een pinneken, om de caffe met haer bodems middelpuit (een putken daer in gheboort fijnde) op te draeyen.

> DERYLSTREKEN
> EXNDE.

## 03

## 2nd Example, by means of a Mariner's Compass with one Magnetic Needle.

Now because the point of a magnetic needle turning by itself, without a piece of cardboard, shows the natural pointing of the needle more sharply and accurately than two bent magnetized irons such as are usually stuck in the form of a rhomb against the paper, this can be done with even greater accuracy by means of a simple magnetic needle, as follows: The figure $A B C D E F G H R S$ having the same letters as in the first example, in the inside of the box, where the line descends from $H$ downward, the $360^{\circ}$ must be marked, viz. four times $90^{\circ}$, starting one quarter from $H$ to $B$, the other from $H$ to $D$, similarly from $A$ to $B$ and from $A$ to $D$. Further one must write north at the point $H$, south at $A$. But at $B$, which ordinarily would be west, one must place east, and at $D$ west. Thereafter, as much as is the deviation of the magnetic needle in the place where the ship is at the moment, at such a distance 1) from the keel-line $R S$ one must place the point $E$. Thus, for instance, if the deviation is $10^{\circ}$ from north to east, one must cause the 10th degree from $C$ to $B$ to coincide with the keel-line $R S$, for then the point $E$ must also deviate $10^{\circ}$ from the keel-line. This being so, and if one wanted, for instance, to sail $17^{\circ}$ from west to south, one must steer the ship in such a way that the point of the magnetic needle coincides with the 17th degree from west to south marked in the box; it is obvious that one will then perform the required operation with greater accuracy than by the first method.

But if one should be afraid that this reversed placing of east and west might cause errors, on account of its unusual nature, for the sailors who are at the helm, the navigator might use instead of the names of the four points of the compass the four letters $A, B, C$, and $D$, and instead of ordering them to steer $17^{\circ}$ from west to south may order them to steer $17^{\circ}$ from $D$ to $A$.

Furthermore, in order that one may place the north of the box or the point $E$ more conveniently as far from the keel-line as the deviation of the needle requires, one might mark $40^{\circ}$ or $50^{\circ}$ from the keel-line to both sides, in order to place the point $E$ of the box on such a degree as the deviation calls for, fitting in the centre of the circle a small pin for the box to pivot on at the centre of its bottom (in which a small pit has been drilled).

END OF THE SAILINGS.

[^141]
## DE WYSENTYT

## THE AGE OF THE SAGES

From the Wisconstighe Gbedachtenissen (Work XI, i, 21)
This chapter forms the introduction to Stevin's Physical Geography. He gives an exhaustive exposition of his views about the "Age of the Sages", which was already discussed by us in the introduction to Vol. I (p. 44; cf. also the Discourse, pp .59 ff .). In connection with the promise there made we now reproduce two fragments of this chapter, while a summary is given of the rest. This treatise gives a curious insight into Stevin's personality and into his opinions about language, the Renaissance, and the study of science generally.

> WYSENTYT noemen vvy die, vvaer in by de menfchen een feltfaem vvetenfchap ghevveeft heeft, t'vvelck vvy deur feker teyckens ghevviffelick mercken, doch fonderte vveten by v vie, vvaer, of vvanneer.

Anghefien het int volghende dickwils te pas fal commen, tonghewoonlick woort Wyfentët te noemen, en dat mijn voornemen is t'fijnder plaets te weten inde navolgende vernieuwing des Wy fentëts, verclạing te doen, hoemen mijns bedunckens de faeck an foude meughen legghen, om weerom tegheraken tot alfulcken groote werenfchappen foo in Hemelloop als ander foffen, ghelijck wy mercken by demenfchen eerrijts gheweeft te hebben, fo heefi my noodich ghedocht den felven tijt te bepalen alfvooren.

Maer om hier af breeder verclaring te doen ick fegh aldus: Tisint ghebruyck datmen den tijt van over ontrent neghen of thien hondert jaren, totover ontrent 1 so jaren, nocmt Barbarum feculum, foo veel te fegghen als Leecketijt, om dat de meafchen feven of acht hondert jaren lanck waren als leecke, fonder oeffening der letters of vrye conften: T'welck fijn oirfpronck nam doen de Chriftenen d'overhant creghen boven de Heydenen: Van welcke fy te vooren veel gheleden hebbende, en daer benevens de Heydenfche Religie feer hatende, verbranden en vernielden niet alleenelick alle boucken der Religie, mette ghene daer cenich vermaen van hare Goden in font, maer oock der vrye conflen d'een metten anderen, waer fyle crijghen conden. Ten laettiten heeft dit een eynde ghenomen, fulcx darmen heel verkeert de verborghen overbleven Heydenfche boucken, weerom in allen houcken ghefocht heeff, int licht ghebrocht,en met groote neerficheyten cof doen drucken, niet alleen van vrye conften, maer.oock hun Goden aengaende, fulcx dattet nu yder Chriften vry flaet die in fijn ghedichten te aenroepen; la ghedichten der Chriftelicke Religie te vermenghen met veerfen vande rammeling der Heydenfche Goden, en die daer in feer ervaren fijn, worden daerom oock feer gheleert ghenoemt. Nu alfoo benevens eenighe ydelheden, oock ernftighe dinghen voort quamen, en dat de tetcresen vrye conften weerom op de beenen gherochten, men heeft die voorfchreven tijt van feven oft acht hondert jaren, tor onderfcheyt des tijts diet nu is, en ontrent duyfent jaer daer te vooren was, ghenoemt alsghefeyt is Leecketijt, by welcke d'ander verleken, Wüjetÿt foude meughen heeten: Doch tot fulcke Wÿfetÿr en ftreckt ons meyning in de bovefchreven bepaling niet, want die met d'ander feven of acht hondert jaren, al tiamen nier dan leecke tijt en fijn, verleken by den onbekenden tijt die wy deur teyckens fekerlick mercken gheweeft te hebben. Maer om vande felve teyckens breeder verclaring te doen ick fegh:
TEN EERSTEN datter byde menfchen eengroote ervaringen kennis des Hemelloops gheweeft heeft, welcke ten tijde van Hypparchus en Piolemeus bycans te niet en vergaen was, fulcx dat al t'ghenefy daerafbefdrreven hebben, maer voor overblijffels te houden en fijn van t'ghene datter gheweelt haddes want den eerften grondt waer deur het inhoudt dier overblijffels ghevonden. wiert, te weten de ervaings dachtafeis, fijn veiloren, en men heftrfedert gheen ander ghemacckt.
Angaende het ongheregelt roerfel der Dwaelders dat Prolemeus de * tweede

## 6th DEFINITION.

AGE OF THE SAGES we call that time in which exceptional learning was to be found among men, a fact which we perceive with certainty from certain signs, but without knowing among whom, where or when.

Since in the sequel the unusual term Age of the Sages will often be mentioned, while it is my intention to set forth in its place, to wit in the subsequent treatise on the restoration of the Age of the Sages, how in my view we might set out to attain once more to such great learning, both in astronomy and in other subjects, as we perceive was formerly found among men, it appeared necessary to me to define this time as above.

Now to set this forth more fully, I say as follows. It is customary to call the time from about nine hundred or one thousand years ago to about 150 years ago Barbarum saeculum, that is to say Age of the Ignorant, because for seven or eight hundred years men were ignorant, not practising letters or the liberal arts; which [condition] originated in the days when the Christians prevailed over the pagans. Having previously suffered a great deal from the latter and moreover deeply hating the pagan religion, they burned and destroyed not only all religious books, along with those which contained any information whatever about their gods, but also those on the liberal arts, one along with the other, wherever they could lay hands on them. Finally this came to an end, so that on the contrary the hidden pagan books that were left were again sought for in every corner, brought to light, and printed with great zeal and at great expense, not only those on the liberal arts, but also those concerning their gods, so that now every Christian is free to invoke them in his poems, nay, to introduce in Christian religious poetry verses concerned with the whole lot of the pagan gods, and those who are greatly proficient in it are called very learned on this account. Now since, besides some trivialities, also serious things emerged, and letters and the liberal arts were thus restored again, the aforesaid period of seven or eight hundred years was named - to distinguish it from the present time and that of about one thousand years ago - as has been said: Age of the Ignorant, in comparison with which the other period might be called Age of the Sages. But it is not this Age of the Sages which we mean in the above definition, for this, along with the other seven or eight hundred years, is nothing but an age of the ignorant in comparison with the unknown period which, judging from certain signs, we perceive with certainty to have existed. Now to set forth these signs in greater detail, I say as follows:

Firstly, that there existed among men great experience and knowledge of astronomy, which at the time of Hipparchus and Ptolemy had almost disappeared, so that all they have written about it is only to be regarded as remnants of what had existed, for the first foundation on which the content of those remnants was based, to wit the empirical ephemerides, have been lost, and no other such tables have since been made.

As to the irregular motion of the planets, which Ptolemy calls the second inequality, about which he says in the 4th chapter of his 5th book, and even more clearly in the 2nd chapter of his 9th book, that he thinks he was the first to have observed it and that it had not been noted by his predecessors, frequently accusing them of carelessness in observing the positions and motions of the heavenly bodies - to this it is replied that his predecessors must have seen the said second

## JO BOVCK DESEERTCLOOTSCHRIFTS,

onevenheyt noemt, 'twelck hy int 4 Hooftitick fijns s boucx, en noch meer int 2 Hoofftick fijns 9 boucx, meent felfs eert gaghenaghen te hebben, en by fijn voorganghers niet bemerckt gheweeft te fijn, befchuldighende dickmael hun onnachufaemheyt int gaflaen vande plaetfen en loopen der Hemelfche lichten: Daer wort op gheantwoort, dat de voorgangers de felve tweede onevenheden ghefien hebben, eer hun meughelick was d'eerfe onevenheyr, of Dwaelders middelloop foo acrdich te befchrijven ghelijekfe Prolemews daer nae gecreghen heeft, en datfe om tot foo grooten vondt te gheraken niet onachtfaem en hadden gheweeft, maer necrfigher danmen van Hypparchustijt af, en voor hem boe langhe en weet ick niet, tot nu toe gheweeft heeft, of meughelick is gheweeft te fijne,om datmen na den Wijfentijt, de faeck op fulcken voet niet aenghetaft en heef ghelijckmen doen dede, foo wy terfont 'fijnder plaets daer af breeder verclaring fullen doen.
Het voorgaende wort bevefticht deur dienme nae Prolemeus tijt in ettelicke Abirche ichrifien vernomen heeft, dat voor hem by vericheyden * ghellachten van volck int ghebruyck is gheweef, de vafte fterien op de Hemelclooten in ander formen te teyckenen dan deghemeene Egypfche, van welcke Ptolemeus noch Hypparchus nerghens eenich ghewach en doen: Soodanighe heeft my ghetoont den Edelen Hoochgheleerden Heer iofephus Ssaliger, in boucken met verclaring der teyckens ghiedaen in Arabifche fpraeck, en dat niet op een wijfe, maer wel tot drie clooten toc,elck verfcheyden vanden anderen. De formen van een dier clooten wierden ghefeyt Hemelteyckens der Indianen, van welcke namen, doch fonder fchilderie, my oock ghedenckt ghelefen te hebben in een Latijns bouck van feer ouden druck, maer des fchrijvers naem is my vergeten, ick en weet oock niet waer t'bouck bleven is. Een deelander teyckens heb ick gefchildert gefien tegen de mueren van een camer op f'Coninex hof in Polen tot Craco, wefende monters, dieris leden gemengt waren uyt verfheyden afcomften vanghedierten, en ftontdaer by gefchreven SIG NA HERMEI Is, dats teyckens van Hermes. Niet een van al de bovelchreven Hemelteyckens en vinde ick alsghefeyt is by Prolemews vermaent te fijn: Waer uyt fchijnt te meughen belloten worden, die $\mathrm{I}^{\prime}$ fijnder handt niet ghecommen te wefen, veel min de Hemelloopfche leeringhen die elck * ghellacht na fijn wijfe daer op ghegront hadde. Voort hebben de Hemelmeters eertijts. wel gheweten dat den Eertcloot om de Son draeyde, fonder dat de eyghentlicke voorftellen van dien Psolemerus, foot fchijnt, ter hant ghecommen fijn, want had hyfeghefien, tisdaer voor te houden dat hy (foomen oirdeelen mach uyt fijn verftandt en redelickheyt inde reff)foude toeghelaten hebben het matuerlick roerfel byde ervaren Hemelmeters befchreven, en dat der eerte leerlinghen verlaten, of alleenlick leerings halven by * ftelling gebruyckt. Van dit roerfel des Eertcloots hebben vernomen Pbilolatus Pytagoricus als Pluzarthous fight,voort Carisiarchus Santiit nier en olst ghen befloten worden, inhoudende dar Arifardbus $\mathrm{Cctireefteghende} \mathrm{Hemel-}$ meters die de weerelt feydén cen cloot te fijn, wiens middelpunt des Eertcloots. middelpunt is, en halfmiddetlijn even ande lini tulfchen t'middelpunt der Son, en t'middelpunt des Eertoloots, welcke lini (benevens ander Olechticheded) d'een tijt langher wefende als dander, foo en fchijnter niet veel befebeyts in.
Proporionix. Voort foomen infiet de form der * everedenheyds by 1 rifarchous aldus gheftelt:
inequalities before they were able to describe the first inequality, or the planets' mean motion, as nicely as Ptolemy afterwards succeeded in doing, and that, to make such a great discovery, they cannot have been careless, but more diligent than people were from the time of Hipparcbus and I do not know how long before him up to the present, or may have been, because after the Age of the Sages the matter was not tackled on the same scale as it had been, as we shall presently set forth more fully in its place.

The foregoing is confirmed by the fact that after the time of Ptolemy it became known from some Arabic writings that before him it was customary among various nations to mark the fixed stars on celestial globes in figures different from the common Egyptian ones, of which neither Ptolemy nor Hipparchus makes mention anywhere. Such figures were shown to me by the Noble Very Learned Mr. Josephus Scaliger 1), in books with an explanation of the figures given in the Arabic language, not in one way, but on as many as three globes, each different from the others. The figures on one of these globes were said to be constellations of the inhabitants of India, about which names, but without a representation, I also remember having read in a Latin book of a very old edition, but I have forgotten the author's name, nor do I know what has become of the book. Other signs I have seen painted on the walls of a room in the royal palace at Cracow in Poland 2); these were monsters whose members were a combination of those of different species of animals, with an inscription: Signa Hermetis, i.e. signs of Hermes. As has been said, I do not find any of the above-mentioned signs mentioned in Ptolemy, from which it may apparently be concluded that they had not been transmitted to him, and even less so the astronomical doctrines which every nation in its own way had based thereon. Further, astronomers formerly knew quite well that the earth revolved round the sun, but the actual propositions concerning this apparently had not come down to Ptolemy, for if he had seen them, it is to be assumed that (if we may judge by his intelligence and reasonability in the rest) he would have admitted the natural motion described by experienced astronomers and would have abandoned that according to the earlier doctrines ${ }^{3}$ ) or used it merely for instructive purposes, by way of hypothesis. The following authors learned of this motion of the earth: Pbilolaus Pythagoricus, as Plutarch says ${ }^{4}$ ), further Aristarchus Samius, as Archimedes states in the book of the number of the grains of sand 5). Now that this did not happen in the Age of the Sages apparently can be concluded sufficiently from Archimedes' words, which are to the effect that Aristarchus wrote against the astronomers who said that the world is a sphere whose centre is the earth's centre, while its radius is equal to the line joining the centre of the sun and the centre of the earth, this line (among other imperfections) being longer at one time than at another, and so it does

[^142]
# VAN SYNBEPALinghenint GHemeen. il Gbelijck cloots middelpunt, <br> Tot clootvlack, Alfoo Eertclootwech, Tot verheyt der vaste fierres. 

Alwaer tegen Wifconftenaers reghel verlijcking van * verfcheenlachtighe Heetroge: fijnde, te weten punt met vlack, foo fehiijnet felve als vooren ghefeyt is daer uyt nem te moghen befloten worden. Angaende Archimedes de bovefchreven everedenheyt uyleght, en feght aldus behooren verftaen teworden:

Ghelÿck Eerctloot,
Totet ghene men de weevels noemt,
LIffoo Eertclootwechs cloot,
Tot vaste fierrens cloot.
T'mach daer me fijn hoet wil, dan wilconftighe redenen vereyffchen gewiffe woorden: In fomme daer en is gheen teycken van wijfentijt.
Ander geruychnis van een groote ocffening dieder voor Psolemeeus tijt inden Hemelloop geween heeff, hebben wy doorde verfcheyden manieren van leeringen der clootiche driehoucken op verfcheyden gronden gefticht, naderhant te voorfchijneghecommen in Arabifche fpracck, en daer uyt int Latijn gherocht. Want nadien de menfchen eeriijis faghen hoe noodich goede manier van rekening der cloorfche drichoucken was, om na volcommen kennis des hémelloops te trachten, foo heeft hun verftant in die ftof wonderlick gearbeyt. De manier an Ptolemeuster hant ghecommen, en door hem befchreven, is cort en aerdich, beftaende in vergaring en afirecking van redens der linien, die verdocht worden in feker plar datmen $*$ clootfne noemt, maer t'gebruyc is moeye- Saliophhelick, want den Doender ant werckeommende, en vint in dien befehreven drie: rica. houckhandel tot alle ontmoetende voorbeelden gheen geformde $*$ werckftuc. Problemataken,om die met lichticheyt te volgen, maer moet geduerlick becommert fijn; met toverdencken wat manier van vergaring of aftrecking der redens hy tot fijn voorbeelt uyt de clootfne verkiefen fal. Een ander manierif diemen oock ghebruyckt mer bedencking der gemeene fneen van platten der ronden op den cloot gheteyckent. En noch een ander diemen by Regiomontanus bevint.

Angaende fommighc achten de vonden des Hemeiloops niet foo feer oudt te wefen, maer dat de meefte befonderheden van dien deur Hypparchus tor fmenfchen kennis fouden ghecommen fijn. En dat Timochares ghelceft hebbende 30 jaren ra den Grooten Alexander, onder de fterficke den eerften was, die t'vinden en opfehrijuen der plaerfen vande vafte fterren beneerftichde, mijn gevoelen is daer af anders:Wel wili ick tocitaé; dat fo Hypparchus uyt de boucken van fijn voorgangers niet befctreveen en hadde her bouck daer na Ptolemeus ter handt ghecommen, en van hem tot ons gherocht, dat wy nu vanden loop der Dwaelders weynich kennis fouden hebben: Maer dat hy van die feltrame voorftellen een vinder foude gheweef fijn, ten fchijnt niet om onder anderen defe reden: Ptolemeus fegt int in Hoofttick fijns 4 boucx, dat Hypparchus een fwaricheyt ontmocte, om dat hy deur * ftelling des Maenloops in cen * inrondt, tot Poffionem. anderbefluyt quam dan deur felling in eeñ *uytmiddelpuntichront: Bewijf Epincto. voort dar fulck verichil niet en quam deur de verfcheydenheyr die Hypparchus Ecrentric. inde twee fellinghen vermoet, dan deur fijn mifrekening, of ander ongheval: Dit foo fijnde, her fchijnt te meughen belloten worden, dat Hypparchus onder ander vonden diemen hem toefchrijft, vooralgheen vinder en was des* ver- Theormatoochs, deur t'welck bewefen wort d'een en d'ander ftelling een felve belluyt te ${ }^{5}$. gheyen, maer veel eer dat hy fulck vertooch ('welek wy niet en fegghen tor fijn
not seem to make us much wiser. Further, if we understand the form of the proportion, given as follows in Aristarchus:

As the centre of the sphere is to the surface of the sphere,
so is the earth's orbit to the distance of the fixed stars, where, contrary to the rule of mathematicians, heterogeneous things are compared, to wit a point and a surface, it seems that the aforesaid statement may be inferred therefrom. As to the fact that Archimedes explains the above-mentioned proportion and says it ought to be understood as follows:

As the earth is to that which is called the world,
so is the sphere of the earth's orbit to the sphere of the fixed stars, however this may be, mathematical arguments call for exact words. To sum up, there is no sign of the Age of the Sages there.

Other evidence of the fact that people were greatly versed in astronomy before Ptolemy's time we have through the various doctrines about spherical triangles, established on different foundations, which afterwards appeared in Arabic and thus got into Latin. For since people formerly saw the necessity of a good method for calculations on spherical triangles in striving to attain perfect knowledge of the heavenly motions, their minds worked marvellously at this subject. The method which came into Ptolemy's hands and was described by him 1) is short and elegant, consisting in addition and subtraction ${ }^{2}$ ) of the ratios of the lines which are imagined in a given plane, which is called "section of the sphere", but the practical application of it is difficult, for when the practician sets to work, in this treatise on trigonometry he does not find for all the examples encountered by him worked-out problems, which can easily be followed, but he has to be continually concerned to think which manner of addition or subtraction of the ratios he has to choose for his example from the section of the sphere. Another method is that also used in studying the common intersections of the planes of the circles drawn on the sphere. And yet another method is that found in Regiomontanus.

As to the fact that some people think the astronomical discoveries are not so very ancient, but that most of the particulars about the subject have come to men's knowledge through Hipparchus, and that Timocharis ${ }^{3}$ ), who lived 30 years after Alexander the Great, was the first among mortals to have diligently practised the finding and writing down of the positions of the fixed stars, I am of a different opinion about this. I am prepared to admit indeed that, if Hipparchus had not written - on the basis of his predecessors' books - the book which afterwards came into Ptolemy's hands, and through him has reached us, we should now have little knowledge of the motion of the planets. But that he was one of the discoverers of these extraordinary propositions does not seem to be true, among other things for the following reason. Ptolemy says in the 11th chapter of his 4th book that Hipparchus encountered a difficulty because by assuming the moon to move on an epicycle he reached another result than by assuming it to move on an eccentric circle. He further proves that this difference was not due to the difference between the two hypotheses as suspected by Hipparchus, but

[^143]
## 12. I BOVCK DESEERTCIOOTSCHRIFTS,

vermindering maer om t'voornemen ie bewijfen)nict begrepen en heeft, wans Mathemati. anders her waer fo veel al of ymant wel verfaende *: wifconfich bewijs vant cam demon- laetfte voorftel des eerften boucx van Euclides, nochtans daer na totte dadelicke grationem. ervaring commende, twiffelde of de-twee viercanten der twee cortfe fijden eens rechthouckigen driehoucx, even fijn ant viercant der langfte fijde, om dat hyfe dadelick bevint te verfchillen, fonder te weten dat fulex nict en comt deur ghebreck des voortels, maer deur feyling der handen, ooghen, deur mifrekening, of ander ongeval. Angaende dat Ptolemeus int 2 Hooffifick fijns 3. boucx, de manier van Hypparchus prijit voordie der ouden, nopende het vinden der Sonnens plaets tuffchen de vaftefterren, om daer uyt de lanckheyt des jaers te berckenen, welcke platis fy meynen de ouden ghefocht te hebben deur de Sonnens cvenaer breede doenfe was in haer * Noortfant, welcke onderfoucking Hyparchius nict meerder fekerheft dede doenfe inde lentfne was. Hier op fegtmen, dat fy die door foodanige langductighe feltfaem offieninghen en fecrooginghen,gherocht waren ter kennis van der Dwaelders middelloopen, niet en fouden bemercki hebben:foodanighe ervaringhen gantich onbicquamelick in Sonftant ghedaen teworden, ick en fiender gheen teycken af: Macr by aldienfe haer ervatinghen in Sonflant ghedaen hebben, foo Hipparcbus feght, tis te vermpedendar falex niet en ghcbeurde deur.onderfouckirg vande Sounens evenaerbreede, maervecl eer met meerder fekerheyt deur t'nemen der fchijnbaes duyfteraerlangde tuffchen haer en cenige der vafte fterren. Wanife beneven de Son, alfmen plietelick ghenouch fteerooght, ghefien connen worden: T'welck Prolcmeus ounbekent wefende, foen fchijat fijn vetheffing van Hipparchus vont, boven die van fijn oude voorganghers in gheen ghenouchfaem reden gegront. Soo veel Timoobares angaet; dat hy als ghefeyt is onder de ferflicke den eerfen foude gheweet hebben, die t'vindenen opichrijven der plaetien vande valte fterien berreerfitichde: Anghefien hemtien die dat fegghen, en Timarbares me, onbekentefhipnen ghewreft de befchuijyinghen der Hemelclooten, op welcke haer oude'voorganghers van verfcheyden ghellachten, de ferren in ander formeri vervinghenals vooren ghefeyt is,foen fchijnt Timoibares fulcken eerften gaflagher der vafte fterren iniet gheweof te hebben. Te meer dat der. Dwael: ders midjelloopen Hypparcbus ter hant ghecommen, ghevonden fehijnen deur fekerder befchrijving der vafte fterren dan vanTimochares, die 10 (1) voorcleen. ftemaet ghebruyckte,foo in Pralemeus tafelen blijckt.
Het Tweede teycken isde wonderlicke ervarentheyt die wy fien certijts by de menfehen inde Telconft geweeft te bebben, waer afmen een van de vreemde feltaemheden houden mach de * Sielreghel, die over weynich ja: ren deur A rabifche boucken weer te voorfchijne gecommê is, daer afmen deur naghelaten fchriften nieten merckt gheweten te hebben Cakdecn, Hebreen, Griecken(want Diophanties is jonck) of Romeynen, al weicke gheen* Telders diemen deur weerdicheyt Telders noemt, gheweeft enfijn. Oockinfiende dat hemlien daer toe noodighe teetfchap ghebrack, namelick talletters, met foodanighe thiende woortganck als de uyrghefproken getalen hebben, fo waft hemlien onmeughelick: Maer mochtenfulcketelders fiji; als die nu met penninghen legghen, of met exijefchreefkens rekenen, of dierghelijcke. Defé talteyckens van thiende vootrganck fijn inde Arabifche fpraeck weerom voortghecommen, in fulcker voughien datmen daer me anvanghende, mach leeren wat t'begin of punt des ghetais is, t'welck de lecckenriji (ick meen vanden anvang der vermacrde Griecken tot nutoc) qualick verftaende,ghefeyt heefi de * eenhejt te wefen. Want den Edelen Hoochgelecrden Heer Lofephus Scaliger, heeft myge-
to his faulty calculation or some other accident. This being so, it may apparently be concluded that Hipparchus, though many other discoveries were attributed to him, was not the discoverer in particular of the theorem by means of which it is proved that the two hypotheses give the same result, but much rather that he did not understand this theorem (which we do not say to belittle him, but to prove our intention), for otherwise it would be as if a man, though properly understanding the mathematical proof of the last proposition ${ }^{1}$ ) of the first book of Euclid, yet, when afterwards it comes to practical work, should doubt whether the two squares on the two shortest sides of a right-angled triangle are [together] equal to the square on the longest side, because he finds them to differ in actual practice, without knowing that this is not due to a defect in the proposition, but to errors of the hands or eyes or to faulty calculation or some other accident. As to the fact that Ptolemy in the 2nd chapter of his 3rd book praises the method of Hipparchus above that of the ancients, concerning the finding of the sun's position among the fixed stars, in order to calculate therefrom the length of the year, which position they thought the ancients had sought by means of the sun's equatorial latitude when it was at its summer solstice, which research Hipparchus carried out with greater accuracy when it was at the vernal equinox, - to this it is said: I see no evidence that those who through such prolonged and exceptional practice and watching had arrived at knowledge of the planets' mean motions should not have noticed that such observations are made quite improperly at the solstice. Now if they made their observations at the solstice, as Hipparchus says, it may be suspected that this was not done by seeking the sun's equatorial latitude, but rather with greater accuracy by taking the apparent ecliptic longitude between the sun and some of the fixed stars. For if we watch diligently enough, they can be seen by the side of the sun; and since this was not known to Ptolemy, his exaltation of Hipparchus' discovery above those of his ancient predecessors seems to be founded on insufficient grounds. As regards Timocharis, viz. that - as has been said he should have been the first among mortals to have diligently practised the finding and writing down of the positions of the fixed stars: since those who say this, and Timocharis as well, seem to have been unacquainted with the descriptions of the celestial globes on which their ancient predecessors of different nations marked the stars in other figures, as has been said above, Timocharis does not seem to have been this first observer of the fixed stars. The more so because the planets' mean motions which were handed down to Hipparchus seem to have been found by a more accurate description of the fixed stars than that of Timocharis, who used $10^{\prime}$ for the smallest measure, as appears from Ptolemy's tables.

The second sign is the wonderful experience in arithmetic which it has been found man formerly possessed, one of the curious peculiarities of which may be considered to be Algebra, which came to light again a few years ago from Arabic books, which subject, from the writings they left, is seen not to have been known to the Chaldeans, the Hebrews, the Greeks (for Diophantus is no ancient writer 2)) or the Romans, all of whom were no arithmeticians worth the name. Considering also that they lacked the necessary instruments, viz. numerals, with the same tenth progression as the numbers have when pronounced, it was impossible for

[^144]
## VANSYN BEPAIINGHENINTGHEMEEN. 33

my getoont, dat de A rabiers daer voor teyckendé een punt; aldus . t'felve oock punt noemende, en wierden die punten onder de talletters ghebruyckt in placts daer wy o fellen, overcommende mettet ghene wy over eenighe laren in onfe Franfche Arithmetique onder de 2 bepaling daer affeyden. D'oirfaeck waerom in plaets van dat punt, byde Europianen nu cen o geftelt wort, acht ick defe, dat wy ghetwoon lijn punten te ghebruycken int eynde eri onderfcheyding der gefchreven redens, welke punten oock dickwils achrer ghetalen volghen, macr foomen daer punten ftelde, fy fouden twijfeling maken oft een punt waer des ghetals, dat onbehoirlick vermeerderende, off een punt als onderfcheyt des tedens, en om foodanighe twijffeling te voorcommen, heeftmen het puint verandert, en daer voor een o ghefchreven. Nu dan o inden Wyfentijt punt geheeten hebbende, wy fullentom die te volghen nu vororaen oock dien naem gheven, en dat tot onderfcheyt vant meetconftich punt, Talpuninoemen, verlatende deerfe naem Begin, die wy daer toe dus langhe gebruyckt hebben. Angaende dat fommighe nier ghenouch deur natuerlicke reden connen oirdeelen, hun ghedraghen totte * loofweerdicheyt der ghene die dacr af ghehandelt hebben, Autorita* ick achr dic op een goeden wech te wefen, midts darfe de loofweerdichfte loof- tem. weerdicheyt volghen, dar fijn de ervaren Telders des Wyfentijts, en verlaten de Griecken diegheen telders en waren, noch volcommelick fijn en conden deur ghebreck van rechre ralreyckens als vooren ghefeyt is: want hoe wel Earlides fchoor:e T elconftighc * vertooghen befchrijft, die uyt den Wyfentijt t'fijnder Tbeoremata. hant grtocht waren, daer en fijn * wercknucken noch * Teldaet by, welcke als Problemata ghefeyt is onlancxie voorfchijn commen fijn in Arabifche fpraeck. Sulex dat neque praxe Euclides vertoog!.cn ghetuyghenis gheven des Wyfentijis die 'te voren geweeft Arithnetica. hadde, en doen niet en was. De reden waerom wy hier foernftelick van dit punt reggen, is dat bepaling der eenheyt voor punt desgetals, onder anderen getuychnis geeft des $W$ yfentijis diet was doenment punt teyckende en dàer voor hiclt: En oock des Lecckenijijs diet federt geweet heeft,fo onvolcommen * Telders Arishmetimakende, als bepaling des deels der grootheyt voor punt der grootheyt', eos. on volcommen Mcters foude mebrenghen. Noch canmen mercken, dat inden Geomariots. felven Wyfentijt veel Telconftige werckingen met befonder lichticheyt afgeweerdicht wierden deur rckening op thiende voortganck ghegront. Om van iwelck breeder reden te verclaren, het is te weten dat alfoo ick over cenige laren de thiende befchreef,en my inbeelde met grootelichticheyt te meugen gebruyct worden in deyling der houckmaten en bogen met thiende voortganck; En alio ick daer nade felve maniereyghentlick befchrecf, in fulcker vougen als van dies inden volgenden Hemelloop t'lijnder plaets een hooftfuck ghemaect fal worden meef fülckecortheyt als blijcken fal: So hebick daer na bemerat dat fgelijcx voor my al gedaen had geweeft,oft immers gedac̃ fcheen geweeft te fijne in out. den tijr,die ick meyne dat den Wyfentijt was, om defe redenē: De tạfel der houcmaten van Regiomontanus, diens halfmiddellijngedeelt is in 10000000, begreep in haer volcommelick den thienden voortganckdieick focht: Want nemende de halfmiddellijngedeelt te fijn in 100 even deelen, in placts van 60 der Egyptenaers, En daer nae my felven voorfteilende de deeling tewefen vain thiende voortganck, in plaets derr'feftichde vande Egiprenaers, ick bevant met die tafel alghedaen werck, ooo veel de houckmaten angaet: En meende doen Regiomontanius daer afeen eerfte vinder geweeft te fijne, te meer dat hy int begin van fijn houckmaetmaeckrel, feght dat die voor hem geweet dijn, de middellijn in weynich ttucken declden, als Ptolemeusin 120 , Adrzabelin 300 , deelende elck van denin 60 (1), en elcke 1 (1) in 60 (2). Maer naderhant is my yette vooren ghecommen, waer uyt ick nu anders vermoede, t'welck aldus toeginck: Alfoo ick
them; but they may have been arithmeticians of the kind who now count by laying out pennies or reckon with chalk marks, or the like. These numerals of the tenth progression have come to light again from Arabic books, so that, beginning with this, we can learn what is the origin or point of number, which the Age of the Ignorant (I mean from the beginning of the famous Greeks up to the present), misunderstanding it, stated to be unity. For the Noble and Very Learned Mr. Josephus Scaliger has shown me that the Arabs drew a point for it, as follows: ., also calling it point, and these points were marked underneath the numerals, where we put 0 , which corresponds to what we said about it some years ago in our French Arithmétique, in the 2nd definition 1 ). I consider that the cause why instead of this point a 0 is now used by Europeans is that we are accustomed to use points at the end and the demarcation of written sentences, which points also often succeed numbers; if there points were used, they would raise doubt as to whether is was a point belonging to the number, increasing the latter unduly, or a point destined to demarcate the sentence, and in order to prevent such doubt, the point was changed and replaced by a 0 . Now then, since in the Age of the Sages 0 was called point, in order to imitate them we shall henceforth also give it this name and call it Numerical Point, so as to distinguish it from the geometrical point, abandoning the previous name of Commencement, which we hitherto used for it. As to the fact that some people, not being able to judge sufficiently by means of natural reason, act on the authority of those who have dealt with the subject, I consider that they are on the right road, provided they follow the most authoritative authority, i.e. the skilled arithmeticians of the Age of the Sages, and do not follow the Greeks, who were no arithmeticians, nor could perfectly be so, through lack of the proper numerals, as has been said above. For though Euclid writes elegant arithmetical theorems, which had come down to him from the Age of the Sages, they include neither problems nor practice of arithmetic, which, as has been said; have recently come to light from Arabic books, so that Euclid's theorems bear witness to the Age of the Sages which had previously existed and did not then exist. The reason why we here discuss this point so seriously is that the definition of unity as the point of number is evidence, among other things, of the Age of the Sages which existed when the point was drawn and looked upon as such; and also of the Age of the Ignorant which has existed since then, producing as imperfect arithmeticians as the definition of a part of a magnitude as a point of the magnitude would testify to imperfect geometers. It may also be noted that in this Age of the Sages many arithmetical operations were performed with extraordinary ease by means of computation based on the tenth progression. In order to explain this more fully, it is to be noted that while some years ago I described the Tenth and imagined that it might be used with great ease in the division of sines and arcs according to the tenth progression; and while thereafter I described this method properly, in such a way as in its place a chapter is to be made about it in the subsequent book on astronomy, with the succintness that will appear there, I perceived afterwards that this had already been done before me, or at least seemed to have been done in ancient times, which I think was the Age of the Sages, for the following reasons. The table of sines of Regiomontanus, whose radius is divided into $10,000,000$, completely comprised the tenth progression which I sought. For assuming the radius to be divided into 100 equal parts instead
$\left.{ }^{1}\right)$ Vol. II B, pp. 495 et seq.

## 14 BOVCXDESEERTCIOOTSCHRIFTS,

eens wilde onderfoucken ofmen deur de houckmaettafel van Regiomontanpe, de reden van des ronts middellijn totten omtreck, fo na foude vinden dat de palen bleven tuffehen de palen van Archimedes reden, of niet : İck fach tor defen eynde hoe veel de houckmaet van 1 (1) dede, bevantife van 2909 , in fücke deelen alfer de halfmiddellijn 1000000 doet, Maer die houckmact is bycans even an haer booch, on des boochs cleenheyt wille, dacrom de. $\$ 400$ (1) makende t'vierendeclronts, fijn bycins even an 5400 mael 2900 ,dats evề met 15708600 , waer deur het vierendeelronts by na in fulken reden is totte halfmiddellijn, als 15708600 tot 10000000 . En vervolgens het heel ront doende viermael fo veel, dats 62834400 , is by na in fulcken reden totte heele middellijn, als 62834400 tor 20000000 . Defe reden bevant ick binnen de voorfchreven palen der reden van Archimedes, te weten cleender als van 22 tot 7 , en grooter don van 227 tot 7 . Nu alfulcken inval als ick hier hadde, van ie willen onderfoucken de reden der middellijn totten omtreck deur de houckmaetrafels, dergelijckeinval fchijnt eertijis. byde ouden oock geweeft tefijn,om defe redenen:Ter hant van Georgius Peurbachius gecommen fijnde feker fchriftén(foo hy feght in fijn handel opt houckmaetmaeckfel) inhoudende t'ghevoelen van verfcheyden geflachten, als Indianen, Egiptenaers,enArabiers, angaende de seden van des ronts middellijn totten omtreck, datter oock eenige geweeft fijn diefe felden op van 20000 tot 62832 , ghenouchfaem de felve letters alfvooren, doch de ware reden noch wat naerder. Maer die dat deden, en fulcken houcmaettafel gebruycten, de felve tafel haddede middellijn van 2 met ettelicke talpunten, welcke in menichte nier alleen feven en wàren, gelijck in Regiomonianses tafel, maer moeften foot fehijnt van een talpunt meet Gijn, uyt oirfacck dat dit ghetal 62832 , vaft gaet tot op de vijfde letter, daer het onfe maer vaft en gaet tot op de vierde: T'wele blijít alfmen de palē des redens veel näuwer neeimt,gelijcgedaë heefí dẹ vermaerden * Telder M.Ludolf vä Ceulen,te wetē dat allmen de middellijn neemt Op 200000000000000000000 Soo is den omtreck corter dan 628518530717958647694 Macr langherals 628318530717958647690 Inder vougen dattet chiint te meughen befloten worden, datmen voor Regiomonsamus tijt de halfmiddellijn inde houckmaetafel gedeelt heeft in 1000000 , of in een ghetal met een talpunt meer, $t^{\prime}$ welckmen met reden vermoeden mach den onbekenden wyfenuift gheweeft te hebben, ghemercke datter geen teycken cn is fulcs in bekende tijit ghefchiet te fijn.

Tot hier toe is ghefeyt van der Ouden deeling der houckmaten met thiende voortganick, maer datfe boven dien oock alroo den booch des vierendeelronts meugen gedeclt hebben,om daer deur te becommẽ de lichticheyt die indě An* hang des Hemelloops verclaert fal worden, dat machmẽ vermoen uyt des ronts deeling in 1600 , daermen voormael de * Wifconftuygen in deelde, na rreggen van Ptolemeus int 2 Hoofutick fijns 3 boucx, waer uyt volghde dat ghelijick het vierendecl rontṣ na de Egipfche wijfe in 90 tr, ghedeelt wort,en in de wifconftuygen elcke trap dickwils in vieren, niet tegenftaende men in rekening de tfefichde voortganck volghide: Dat hier alfoo elck vierendeelronts in: 100 tr-ghedeelt wiert, en inde wifconftuyghen elcke trap dickwils in vieren, niet teghenftaende in rekeningen de thiende voortganck ghevolgt wiert. Want dat fy ftelders der talletters met thiende voortganck, en der reghels van reckeninghen dic. deur opficht der thiende voortganck ghewrocht worden, ghelijck wy daer af int bouck der ghemengde foffen eyghentlicker fegghen fullen, niet en fouden bemerckt hebben het groot voordeel der thiende voortganck, inde deyling des ronts foo dick wids in rekeninghen der Hemelloopen te vooren commende, en fchijnt niet.

Het
of the 60 of the Egyptians, and subsequently imagining the division to be in tenths instead of in sixtieths of the Egyptians, I found that in this table the work had already been accomplished as far as the sines are concerned. And I then thought that Regiomontanus had been the first discoverer of it, the more so as at the beginning of his trigonometry he says that those who preceded him divided the diameter into a small number of parts, e.g. Ptolemy into 120, Arzabel 1) into 300 , subdividing each of them into $60^{\prime}$ and each minute into $60^{\prime \prime}$. But later on I hit upon something on account of which I now have different surmises; this happened as follows. When one day I wanted to investigate whether by means of the table of sines of Regiomontanus the ratio between the diameter of a circle and its circumference would be found so closely that the limits remained within the limits of Archimedes' ratio or not, I looked up to this end how much was the sine of $1^{\prime}$ and found it to be 2,909, in the same parts as the radius has $10,000,000$. But this sine is nearly equal to its arc, because of the smallness of the arc; consequently the $5,400^{\prime}$ constituting a quarter circle are nearly equal to 5,400 times 2,909 , i.e. equal to $15,708,600$, so that the quarter circle is to the radius nearly in the ratio of $15,708,600$ to $10,000,000$. And consequently the whole circle, which is four times as great, i.e. $62,834,400$, is to the whole diameter nearly in the ratio of $62,834,400$ to $20,000,000$. I found this ratio to fall within the aforesaid limits of the ratio of Archimedes, to wit less than 22 to 7 and greater than 223 to 712 ). Now the same idea which struck me, viz. that of wishing to seek the ratio of the diameter to the circumference by means of the tables of sines, also seems to have occurred formerly to the ancients, for the following reason. Georgius Peurbachius ${ }^{3}$ ) having laid hand on certain writings (as he says in his treatise on trigonometry) containing the opinions of different nations, such as inhabitants of India, Egyptians, and Arabs, about the ratio of the circle's diameter to its circumference, there were also some who put it at 20,000 to 62,832 , almost the same figures as above, but a little closer still to the true ratio. Now the table of sines used by those who did so had the diameter 2 with some numerical points, whose number was not only seven, as in Regiomontanus' table, but apparently must have been one point more, because this number of 62,832 is accurate to five figures, whereas ours is accurate only to four. This becomes evident when the limits of the ratio are taken much narrower, as was done by the famous arithmetician Mr. Ludolf van Ceulen ${ }^{4}$ ), to wit that when the diameter is taken
$200,000,000,000,000,000,000$
the circumference is shorter than 628,318,530,717,958,647,694 but longer than
$628,318,530,717,958,647,690$,
so that it may apparently be concluded that before the time of Regiomontanus 5) the radius in the table of sines was divided into $10,000,000$ or into a number with one point more, which time may reasonably be supposed to have been the unknown Age of the Sages, since there is no evidence that this happened in known times.
${ }^{1}$ ) Abû Ishậq Ibrâhîm Ibn al-Zarqâla, usually called Abraham Arzachel, was a Jewish astronomer, who lived at Toledo in the second half of the eleventh century (c. 1029 to $c$. 1087).
${ }^{2}$ ) The figure 227 instead of 223 in the Dutch text appears to be a printer's error.
${ }^{8}$ ) See note 2 on p. 315.
${ }^{4}$ ) On this Dutch mathematician, who lived towards the end of the sixteenth century, see the notes in Vol. II, particularly on p. 3 and p. 767.
${ }^{6}$ ) See note 1 on page 319.

## Van syn Bepalinghen int ghemeen. is

Het derdeteycken is de Meetconf, want hoe welde Griecken daerin feer ervaren fijn geweeff, doch wort by velen bevefticht dat fyle van ander gecregen hebben. Voorwaer een feer wonderbaerlicke conft, vaft getuychnisgevende van cen feltfame wetenfhap der gene, wiefe oock meughen gheweeft:fijn, diefe tot fulcken grootheyt gebrocht hebben. Hier af is onst'meefte befcheytghebleven inde beginfelen van Euclides, waer in benevens de ftofder Meetconft, noch wat feer befonders, feltfaems en nutelicx te fien en leeren is, namelick des Wijfentijisoirden in befchrijving der Wifconften, daer afick inde volghende vernieuwing des $\mathrm{W}_{\mathrm{ij} \text { fentijts breeder mijn gevoelen fal feggen. }}$

Voor vierdeteyckenfchijnt datmen foude meugen houdē den handel der Damphooghde, onlancx inde Arabiche fpraeck weerom te voorfchijn commen, en hier na verclaert int Eertclootfchrifisderde bouck beruyghende datter eertijis by de *. Wifconftenaers een feltfaem onderfoucking ghe- Marbematiweeft is vande weerelts gheftalt en natuerens verborghen eyghenfchappen.

Hetvyfdeteycken is den wonderbaerlicken feerfelfamen handel der * Stoffcheyding, by de Grieckë onbekent, die ónlancx begoft heeft hacr Alcbimie. weerom te vertoonen, deur welcke de menichen het wefen der foffen tot ha. ren grooten voordeele, anders onderfoucken en kennen, dan hemlien fonder die groote confl meughelick was te begrijpen. Hier in achtmen Hermes. Trifmegitfus den ervarenfein gheweeft te Gijn daer fchriftelick befcheyt af bleven is, doch onbekent wie hy was, uyt wat lant, of tot wat tijt hy leefde, hoewelmen hem voor feer oudt acht.

Angaende dat de Griecken met hun navolgers die Philofophigenoemt worden, handelen vande natuer, feggende alle ftofte beftaen in vier beginfelen, als eerde, water, locht,en vyer, mette vervolgen diefer uyt trecken: Seker hun neerfticheyt is lovelick geweeft, als gedaen hebbende watfe connen, maer wachacrmen t'w as al van hooren feggen, met weynich befcheyt, met veel dwalinghen, en fonder kennis der oirfaken, wantfe yeel gehaelt wort uyt de dadelickeStoffcheyding daer fy niet af en wiften.

Angaende dat defe weerdighe Conft, defe onuytputtelicke brun der wijfheyr, by velen in verachting gherorat is, deur dien ettelicke hun daer in oeffenende bedrieghers of miffers fijn, brenghende ander lieden tot fchade, hun belovende goutte maken van flof gheen gout wefende: Daer wort op ghefeyt, fulck mifbruyck te meughen frecken tot verachting der mifbruyckers, maer niet der looflicke Conf.

Het sesteteycien isde.* Gheefthandel, waerin men feght dat Magia over feer langhe tijt eenighe volcken met kennis der oirfaken hunvlietelick gheoeffent hebben, want hoewel fulcx fchrickelick is, foo mercktmen nochtans wat groore werenfchappen datter uyt de * Wifconften volghden, diemen Mathemativan foodanighe grondelicke kennis voor oirfacck houdt, en wat een felfaem mi. $_{\text {. }}$ wij Cheyt datter voormael byde menfchen gheweelt hecff, welcken tijt wy den Wijfentijt noemen.

Maer hoemen de faeck na ons meyning foude meugen anleggen om weerom daer an te gheraken, dat fullen wy inde volghende VER CLAR I $\operatorname{c}$ gidgemeen befchrijven: En hoemen weerom totte voorgeweten kennis der Dwaclderloopen foude meughen commen, dat fal inde befchrijving der Dwaelderloopen int befonder noch eyghentlicker ghefeyt worden.

B 2 . MERCKT.

Up to this point we have spoken of the Ancients' division of the sines according to the tenth progression, but that they may moreover also have divided the arc of a quarter circle in this way, in order thus to get the ease to be set forth in the Appendix to the Heavenly Motions, may be assumed from the division of the circle into 1,600 , into which mathematical instruments were formerly divided, as stated by Ptolemy in the 2nd chapter of his 3rd book, from which it followed that, as a quarter circle is divided according to the Egyptian manner into 90 degrees, and in mathematical instruments each degree is often subdivided into four parts, in spite of the fact that in computations the sixtieth progression was followed, here each quarter circle was thus divided into 100 degrees, and in mathematical instruments each degree was often divided into four parts, in spite of the fact that in computations the tenth progression was followed. For it does not seem likely that they, having devised the numerals according to the tenth progression and the rules for computations which are performed with regard to the tenth progression, as we shall describe more precisely in the book on miscellaneous subjects, should not have perceived the great advantage of the tenth progression in the division of a circle so frequently occurring in calculations relating to the heavenly motions.

The third sign is geometry, for though the Greeks were greatly versed in this, it is yet confirmed by many that they got it from others. It is indeed a very wonderful science, giving sure evidence of exceptional learning in those who brought it to such a high level, whoever they may have been. About this the most complete information has been preserved in the elements of Euclid, in which besides the subject of geometry something very peculiar, extraordinary, and useful is also to be noted and learned, viz. the systematic order observed by the Age of the Sages in the description of mathematics, about which I will give my views more fully in the subsequent treatise on the restoration of the Age of the Sages.

The fourth sign may apparently be considered to consist in the discussion on the height of the atmosphere, recently brought to light again by a treatise in Arabic and hereafter set forth in the third book of Geography, which states that in former times among mathematicians an exceptional inquiry into the form of the world and of nature's hidden properties took place.

The fifth sign is the marvellous and very unusual subject of alchemy, unknown among the Greeks, which recently began to make its appearance again, by means of which people are able to inquire into the nature of substances, to their great profit, in another way than was possible for them to understand without this great science. In this, Hermes Trismegistus ${ }^{1}$ ) is considered to have been the most skilled of those of whom written information has come down to us, but it is unknown who he was, from what country, or in what time he lived, though he is thought to be very ancient.

As to the fact that the Greeks, with their imitators, who are called Pbilosopbi, treat of nature, saying that every substance consists of four elements, viz. earth, water, air, and fire, with the conclusions they draw therefrom, their diligence was indeed praiseworthy; for they did what they could, but alas, they had it all from hearsay, with little real knowledge, with many errors, and without

[^145]
# VANDE VERNIEVWING DES $V V y f e n t y t s, t^{\prime}$-upelck is revelaring boet fobünt datmen de faeck mocht anleggher, om allencx roveerom te ghe- <br> raken an fulcke groote roveten/chappen alfer <br> indenVVyfentyt gerveest fyn: 


knowledge of the causes, because these are frequently deduced from practical alchemy, with which they were not acquainted.
As to the fact that this worthy science, this inexhaustible source of wisdom, has fallen into disgrace among many people because some of those who study it are cheats or evildoers, causing damage to others by promising them to make gold out of matter which is no gold, to this it is said that such abuse tends to disgrace the men committing it, but not the praiseworthy science.
The sixth sign is magic, which is said to have been diligently practised a very long time ago by certain nations with knowledge of the causes, for though this is frightening, it is yet perceived what great learning has resulted from mathematics, which is regarded as the cause of such thorough knowledge, and what extraordinary wisdom existed among men in former ages, which time we call the Age of the Sages.
Now how in our view we can set out to attain thereto again, will be described generally by us in the subsequent Exposition. And how one might attain to the former knowledge of the planets' motions again, will be said even more properly in particular in the description of the planets' motions 1).
[In connection with a conversation be bad about the Age of the Sages with the jurist and humanist Hugo Grotius, Stevin received from the latter a list of references to classical authors who asserted that a very long time ago mankind possessed marvellous scientific knowledge. He includes this list in his text.]

Of the restoration of the Age of the Sages, being an exposition of how it seems one might set out to attain gradually to such great learning again as existed in the Age of the Sages.

Since it is certain that at one time mankind possessed the exceptional, great learning that has been set forth in the 6th definition, while as far as I know there is no evidence at all that human intelligence has the least bit deteriorated, there is reason to assume that it is possible for man to attain thereto again if he uses the same means to this end as formerly. This induced me to write down my view as to what man now lacks which he then had, comprising it all in four sections, the sum of which - to be set forth in greater detail hereinafter for each of them - is as follows.

[^146]
## I LIDT.

Ten eerften ghebreken ons feer veel dadelicke ervaringen daermen de confteneen valtengrontopgheeft. Om tot fulcke ervaringhen te gheraken, foo fouden hun feer veel menfehen t'Gmen daer toe moeten begheven.

## 2 LIDT.

Om te gheraken tot foogrooten menichte van menfchen als hier toe noodich fijn,foo fouden de voorfchreven ervaringhen en oeffeningen der conften ghehandelt moeten worden by een * gheflacht in fijn eyghen angeboren tael, welcke om wat befonders daer in uyt te rechten, befonderlick goet foude mocten wefen, 'twelck ick federt den Wyfentijt niet en merck ghefchiet te fijn, uytghenomen byde Griecken, maet datalleenlick int ftick der Meetconft, want de reften tueft niet.

## 3 LIDT.

Na dien goede talen noodich Gijn, men foude om na goede talen teconnen trachten, voor al moeten weten waer in talens goetheyt beftaet, want dierechte kennis nu by foo weynich menfehen is, datfe met d'ander wetenfchappen des Wyfentijts verloren fchijnt.

## 4 LIDT.

Anghefien goede oirden in befchrijving en leering der conften, tot haer bevoordering feer behulpich is, twaer oirboir daer op vlietich teletren, en met goedeoirdeel van dies t'beftete verkiefen. Tot welck eyndeick in fofder wifoonften gheen beter en merck,dan d'oirden des Wijientijts.

## VERCIARINGDESIIIDTS.

Maer om van elck defer vier leden breeder reden te geven: En ten cerften dat ons veel dadelicke ervaringhen gebreken, daermen de conften een vaften gront opgeff,ick fal tot verclaring van dien beginnen met voorbeelt desHemelloops, tot kennis van welckediedes $W$ yrentijts openbaerlick gherocht fijn deur een groote menichte vanervaringhen, als breeder daer af inde $\sigma$ bepalingghefeyt is, en noch breeder ghefeyt fal worden int eerte voorttel des volghenden boucx vande Somloop, voort inde boucken der Dwaelderloopen, daer wy berekende dachtafels voorbeettiche wijfe ghebruycken fullen al offe deur ervaringhen becommen waren, en bethoonen hoet'vinden der Dwaelderloopen daer deur al een ander lichte anvancken voortganck crijcht, danmen federt dén Wyfentijt ghebruyckt heeft.

Al dit overleyt wefende, ick acht openbaerghenouch te fijn, ghebreck van overvloet der ervaringen, oirfaeck te wefen dat de menfchen met groote moeyte en hoofibreking, hun tijt overbrenghen met te foucken Hemelloopfche gedaenten die alfoo niet vindelick en fijn. T'gaet hier me, op dat ickt deur voorbedt van Eertclootiche ftof noch opentlicker verclare, als met eenen varende langs de cant vant* onbekende Zuylandt, en fiende de mont van een groote rivier daer uyt aldus befote: Langs groote rivieren finn vruchtbaer landen: In vruchtbaer landen langs groote rivieren verkiefen veel menfchen haer wooning:Daer veel menfchen woonen geraken goede Steden:Daeroman die rivier

## 1st SECTION.

In the first place, what we lack is a large body of data obtained by practical experience, on which the sciences can be firmly founded. In order to arrive at such a body of data, a great many people would have to apply themselves jointly to this task.

## 2nd SECTION.

To arrive at so great a number of men as is needed for this, the aforesaid experiences and pursuit of the sciences would have to be practised by a nation in its own native language, which, if it is to accomplish something exceptional therein, would have to be exceptionally good, which I am not aware has been the case since the Age of the Sages, except among the Greeks, but this in the field of geometry alone, for to the rest it does not apply.

## 3rd SECTION.

Since good languages are needed, one would, to be able to strive after good languages, have to know before all what the excellence of a language consists in, for this proper knowledge is now possessed by so few men that it seems to have been losit along with the other sciences of the Age of the Sages.

## 4th SECTION.

Since good order in the description and teaching of the sciences is very conducive to their advance, it would be expedient to attend diligently thereto and judiciously to choose the best, for which I am not aware of any better order in the matter of mathematics than that of the Age of the Sages.

## EXPOSITION OF THE 1st SECTION.

Now to speak in greater detail about each of these four sections, and in the first place that what we lack is a large body of data obtained by practical experience, on which the sciences can be firmly founded, by way of illustration I will begin with the example of astronomy, the knowledge of which was evidently attained by the people of the Age of the Sages by means of a large body of empirical data, as has been stated more fully in the 6th definition and will be stated even more fully in the first proposition of the subsequent book of the sun's motion 1), further in the books on the planets' motions, where we shall use calculated ephemerides, for instance, as if they had been obtained by experience and show how the finding of the planets' motions thus starts and proceeds more easily than has been customary since the Age of the Sages.

All this being considered, I think it is evident enough that the lack of plenty of empirical data is the cause that people spend their time with great trouble and pondering in seeking for astronomical schemes which cannot thus be found. It is with this - if I may explain it even more clearly by a geographical example as with a man sailing by the shores of unknown Australia, who, seeing the mouth of a large river, should draw from this the following conclusion: Along large rivers lie fertile lands. In fertile lands along large rivers big numbers of people

[^147]VANSYNBEPALINGHEN INTGHEMEEN.
legghengrootewelvarende Steden. En of hy voort op fulck gheetelde(deur een ghefien deel vant heel befluytende) fulcke Landen en Steden in caerte teyckende, denckt cens wat fekerheyt of ghelijckheyt die mette Landen foude hebben, en hoe fulcke caerten en fchriften fouden overcommen metuer ghene men daer nadadelick fage,want daer deur machmen met een verffaen, wat fekerheyt datter can wefen in befluyt van eens Dwaelders heelen loop, uyt een ghefien deel ghetrocken, en hoe dat fulcke reghelen en fchrifien fouden connen overcommen mettetghene wy daer na dadelick fien.

Nu fulex als hier ghefey is vande noodighe ervaring hen in fofdes Hemelloops, dergelijeke is oock te verftaen van ander, als Ebbenvloet, tot wiens grondelicke kennis ons louter ervaringhen ghebreken, daer int volghende 6 bouck afghefeyt fal worden: S'gelijex vant Eertcloots Stofroerfel int volgende 2 bouck befchreven : Voort Ervaringhen der * Steroirdeelen, of voorfegginghen deur Iudiciarie Sterren:Oockder * Stoffcheyding: En Ghenefing, waer inmen (om niet te be- Alfrologie. wijfen met, Hippocrates fegt)al een ander dadelicke oeffening foude moeten wefen foo in * oprnijding, als onderfoucking vande ghedaenten der cruyden en Anasomia. * Gheneeffoffen, die veel door floffcheyding ghevonden worden. Maer want Medicaman. van elck van defe int befonder te fchrijven, meer tijts foude behouven dan nyy torum, te pas comt, en dan noodich fchijnt daer an te befteden, fo fal ickt cortheyts halven overllaen.

Ick houdedan voor openbaer, dat ghelijck int eerfelidt ghefeyt is, ons feet veel dadelicke ervaringhen ghebreken, daermen de conften een vafte grondt op gheeft. Maer om nu te verciaren dat (ghelijck daer voorder flaet) om rot fulcke ervarnghen te gheraken, feer veel menfchen t'famen hun daer toe fouden moeten begheven, ick fal weerom met voorbeelt des Hemelloops beginnen. Ten cerften, een menfch en can niet gheduerlick by dage by nachte, laer uyt Iaer in, ganaen de Dwaeldersplaetfen en alles datter noodich is: Maer cen feer groote menichte fulcx doende, t'ghene by d'een ghebreeckt, wort by d'ander bevon:den. Ten tweeden, de ervaringhen van eenen, al warenfe in haer félven gewis, foo en verfreckenfeanderen nochtans tot gheen feecker gront, om int veroirdenen der* fpieghelinghen daer op te werck te gaen, deurdiender gheen proef Theorianam. afen is:Maerfeer veel verfcheyden menfchens ervaringhen, die daer nae teghen malcander overleyt fijnde, bevonden worden fona tovercommen als de faeck vereyicht, daer machmen op fiteunen. Tot voorbeelt van defen connen verftrecken de ervaringhen onlancxghedaen tunichen den Doorluchtighen Vorft Willem Landgraef van Heffen, en den vermaerden * Ganagher Tuychobrabe in Obfervafodruck uytgaende: Ervaringhen voorwaer diens ghelijckeick federt den Wyfen- rem. tijt niet en merck ghebeurt te wefen. En fulcke foudemen dan metgroote menichte vinden. Ten derden, foo iffer dickwils tot fommighe plaetfen overtogen locht, inder voughen datmender in ettelicke weken geen Hemelfche lichten en fiet: In fulcken ghevalle canmen dan hebben dervaringhen van anderen ghedaen inde Landen daert clare locht was. Ten vierden foo fouder tuffchen de Gallaghers een eergiericheyt en twift te verwachten ftaen, willende elck het fijne voor beft bewijfen, waer me de conften(hoewel de menfchen daerentufchë int fuck der feden hun dickwils mifgaen) gemeenlick gheen cleene voortganck en crijghen: Daer anders den handel by weynich menfchen beftaende, elck fijn vonden bewaert en verberght.
Angaende fommighe achten de fof te weerdich te fijn om vande gemeente ghehandelt te worden, en alleen den Vorften toeftaet: Mijn ghevoelen is daer anders, wantde Vortten des Eertrijex fijn weynich,en onder die weynighe iffer
$B_{4}$ lutte!
choose to live. Where there live many people, good cities arise. Therefore on this river there are large and prosperous cities. And if further on this hypothesis (drawing a conclusion about the whole from the part he had seen) he were to draw a map of such lands and cities, just think what accuracy or similarity to the lands this would have and how such maps and descriptions would agree with what would be actually seen afterwards, for from this it may at the same time be understood what degree of certainty there may be in a conclusion about the whole motion of a planet drawn from the sight of a part, and how such rules and descriptions might agree with what we actually see afterwards.

The same statement that has here been made about the necessary empirical data in astronomical matters also applies to other subjects, such as ebb and flow, for the thorough knowledge of which we merely lack empirical data, about which something will be said in the subsequent 6th book. Likewise about the motion of the earth's matter, described in the subsequent 2nd book. Further empirical data concerning astrological judgments or predictions by means of the stars. Also empirical data of alchemy, and medical science, in which (to avoid proving things by means of the statement: Hippocrates says) there would have to be much more practical work, both in anatomy and in the examination of the properties of herbs and medicines, which are often found by means of alchemy. But because it would take more time to write about each of these subjects in particular than suits me and seems necessary to spend on it, I will, for the sake of brevity, omit this.

I therefore regard it as evident that, as has been said in the first section, what we lack is a large body of empirical data, on which the sciences can be firmly founded. Now to explain that (as is further said there), in order to arrive at such a body of data, a great many people would have to apply themselves jointly to this ask, I will again begin with the example of astronomy. In the first place, one man cannot continually, by night and by day, year in and year out, observe the positions of the planets and all that is necessary; but when a large number of people do this, what is lacking in the observations of one man will be found in those of another. Secondly, the data obtained by one man, even if they were exact in themselves, yet do not serve others as a sure basis on which to proceed in framing the theories, because they have not been checked. But when the data obtained by a great many different people, having been compared with each other, are found to agree as closely as the matter requires, one can rely thereon. As an example of this may be taken the data recently obtained on the one hand by the illustrious Prince William, Landgrave of Hesse 1), and on the other hand by the famous observer Tycho Brahe, whose work was then being published: data indeed which I am not aware have been equalled since the Age of the Sages. And such data would then be found very plentifully. Thirdly, the sky will often be overcast in some places, so that for some weeks no heavenly bodies are seen; in such a case one may then rely on the data obtained by others in the countries where the sky was clear. Fourthly, ambition and rivalry would be apt to arise among observers, each wishing to prove his own work best, owing to which the sciences (although men meanwhile often misbehave in moral respects) usually make no inconsiderable progress, whilst on the other hand, if the branch of science is

[^148]
## 20 BOVCR DESEERTCIOOTSCHRIFTS,

luttel dieder een natuerlicke gheneghentheyt toc hebben. Siet cens tot voorbeelt van defen t'gene den Coninck Alfonfus wecrvocr, die tottet maken der tafels op fijn naem uytgaende, over de vier hondert duylent ducaten oncoften dede:Seker fijn yver tor fulcken cont waslovelick, maer wat iffer eynelick uytgherechteniet befonders, want fijn Wifconftnacrs hebben fonder nicuwe ervaringhen, te werck ghegaen op Ptolemens bloote felling, waer uyt met die groote fehat nict dan war onfckers ghemaeckt en conde worden. Maer defe contt byde ghemeente ghehandelt wefende, men can alles met meerder fek erhcyt en kennisder oirfaken voor niet crijghen.

Nu fulcke voorbeelt alsick hier tot verclaring des voornemens ghetrocken heb uyt Hemelloopiche ftof,derghelijcke foudemen oock meughen bybrengen uyt ander conften: Maer achtende hier meghenouch te blijcken dat om in elck veel ervaringhen te crijgen, noodich is dat feer veel menfchen t'famen hun daer toe fouden moeten begheven, ick fal die om cortheydts wille oyerflaen, en voortvaren.

## VERCLARING DES2 LIDTS.

Angaende het tweede lidt, te weten dat om te gheraken tot foo grooten menichie van menfchen alshier toe noodich fijn, defe oeffening der conften foude moeten ghehandelt worden by een gheflacht in fijn erghen angheboren tael, welcke om wat befonderlicx dacr in uyt te rechten, befonderlick goet foude moeten wefen, hier op fegh ickaldus: Soude een ghemeente haer in een conft oeffenen, $f y$ foude moeten de tael verftaen daerfe in ghefchreven is, t'welck haep eyghen tael moeft wefen, want hoe wel ettelicke ouders hun kinderst'Latijn doen leeren, waer in men de vrye conften nu meeft handelt, de felve fijn weynich intanfien vande gemeente. Ten anderen leertmen de Ionckheyt tiLatijn, om hun eyntlick te begheven totte Rechten, Godheyt, of gheneling:IMer onder de fulcke ymant die hem daer na gantichelick totic Wifconften fchickt, dat ghebeurt feer felden, en ghemeenelick reghen hun ouders danck, ghelijck onder anderen den vermaerden Gaflager Tuychobrabe hem fchrijfr ghebcurt te fijn: Daer iffer onder die oock een grooten deel, welcke hun tijt voort deurbrenghen in oeffening der Latijnfche fpraeck, leerende veerfen der $*$ Dichters van buyten om opalle dingen die in gemeenet'faem/praeck voorvallen,een Latijns veers te connen vervoughen:Soucken voort bloemkens van woorden en fpreucken om in haer brieven en fehriften te pas te brenghen: En hoe wel fulcke opghetocyde ftijl an fommighe mifhaecht,fooiffer nochtans veel ander dieder hun niet me verfaen en connen. In fomme men vintter onder foodanige weynich die hun volcommelick totte wifconften begheven, en dacrom ift noodich ghelijck wy ghefeyt hebben defe fof ghehandelt te worden inde ghemeentens aengheboren tael. Doch moetfe dacr benevens noch goct fijn, connende alles uyibeclden dat totte faeck noodich is. Maer want dit ftuck der talen een vande voornaemfte punten is, die my doen wanhopen van weerom tot een wyfetijt te meughen gheraken, orn datals vooren ghefeyt is, metten onderganck van veel wetenfchappen des fiffden wyfentijts,oock iondergegaen fchijnt fmenfchen kennis of oirdeel van goetheyt der talen, en datter fwaricheyt fal hebben hun dat te doen verftaen, foo moet ick'na mijn vermeughen daer af breeder mijn ghevoelen verclaren. Tisopenbaer dat de Francoyicn (op dat wy mer voorbeelt der Eranfche tael beginnen)de vrye contten in haer fraeck meer befchrijven als an-
practised by few people, each of them will keep his findings to himself and conceal them.

Concerning the fact that some people consider the matter to be too sublime to be studied by ordinary people and to be fit only for princes, I hold a different view, for the princes of the earth are few, and among those few there are few who have a natural inclination for it. Just see, for instance, how King Alphonsus fared, who spent more than four hundred thousand ducats on the compilation of the tables published under his name 1). His zeal with respect to this science was indeed laudable, but what has been ultimately achieved? Nothing much, for his mathematicians proceeded without new-found empirical data on Ptolemy's mere hypothesis, from which with that large sum only something uncertain could be accomplished. Now when this science is studied by ordinary people, everything can be obtained for nothing with greater certainty and knowledge of the causes.

Now examples similar to the one I have here taken from astronomy, to explain my intention, might also be adduced from other sciences. But since I consider it is now evident enough that to obtain a large number of empirical data in each of them it is necessary that a great many people should apply themselves jointly to it, I will omit them, for brevity's sake, and continue.

## EXPOSITION OF THE 2nd SECTION.

As to the second section, to wit that to arrive at so great a number of men as is needed for this, the aforesaid pursuit of the sciences would have to be practised by a nation in its own native language, which, if it is to accomplish something exceptional therein, would have to be exceptionally good, about this I say as follows: if ordinary people were to study a science, they would have to understand the language in which it is written, which should be their own language, for though some parents have their children taught Latin, in which the liberal arts are now usually treated, these are few in comparison with the people at large. On the other hand young people are taught Latin in order that they may ultimately study law, divinity or medicine. It rarely happens that among these there is anyone who thereafter devotes himself wholly to mathematics, and then it is against his parents' wishes, as e.g. the famous observer Tycho Brahe reports it happened to him. There are also among them a great many who further spend their time in practising the Latin language, learning verses of the poets by heart in order that they may apply a Latin verse to anything occurring in an ordinary conversation. They further collect flowers of speech and aphorisms in order to quote them in their letters and writings. And although such an ornate style displeases some people, there are nevertheless many others who cannot get enough of it. Briefly, there are found few among them who devote themselves wholly to mathematics and for this reason it is necessary, as we have said, that this subject should be discussed in the native language of the community. But in addition this language also has to be good and to be able to render everything that is required for the matter. Now because this question of the language is one of the chief points which make me despair we shall ever reach an Age of the Sages again, because - as has been said before - along with the decline of many sciences of the said Age of the Sages men's knowledge or appreciation of the excellence of a language also seems to have declined, and it will be difficult to

[^149]Van syn bepalinghenint ghemeen.
der volckē, $t$ 'welck wel oirfaeck is datter hemlien in haer gemeente meer menfchen dacr in oeffené, dant foudè byaldienfer nict afen handeldẽ, maer wantfe daer in feer veel Grieckfche en A rabifche conftwoordē fellē, de groote voortganck met kennis der oirfakë, om weerom tot een Wijfentijttegeraken, encan daer uyt niet volgen:Want alfimẽ de conftwoorden niet grondelick en verftaet, als by voorbeelt inde Franfche tael te feggē van Prostapherefe, Parallaxe, R(adir, Almincantarat, en veel dergelijcke, haer beteyckening geducrlick tonthouden valt de gemeente laftich, de oeffening moeylick, verdrietich, en de faeck vä flappe voortganck, fy en con nē niet verbeteren gebreckige conftwoorden die dickwils beter bepaling vereylichen, noch de dwalingen mercken dieder uyt volgé, dan verblijden hun te connen fpreken woordē die ander haer lantlieden niet en verflaen, en datmen hun met verwondering voor Hoochgeleerden hout.
make them understand this, I have to set forth my view of this more fully to the best of my ability. It is known that the French (to start with the example of the French language) describe the liberal arts more frequently in their own language than do other nations, which is probably the cause that more of the community study them than would be the case if they did not discuss them, but great progress use in their studies very many Greek and Arabic technical terms, the great progress involving knowledge of the causes, necessary to reach an Age of the Sages again, cannot result therefrom. For when the technical terms are not thoroughly understood, as when, for instance, in the French language the words Prostaphérèse, Parallaxe, Nadir, Almucantarat and the like are used, it is difficult for ordinary people to remember their meaning constantly, the study of the sciences is difficult and annoying, and the progress of the matter is poor; they cannot correct defective technical terms, which often call for a better definition, nor note the errors resulting therefrom, but they are glad that they can use words which others of their countrymen do not understand and that they are looked upon with admiration as very learned men.
[In order to show bow the use of good technical terms affects the pursuit of science, Stevin points to the word "proportion", which: failed to be understood by students of musical theory, thus leading to confused and unpractical systems of tuning. If, bowever, the Dutch word "evenredigheid" ("equi-ratio") bad been used, equal temperament would automatically bave been adopted.

The admixture of foreign words with a language, such as it takes place in French, is an impoverishment rather than an enrichment. Contrary to the general view therefore Stevin asserts that the French language is neitber rich nor suitable for science. There are indeed charming French poems, which Stevin bimself bas read with great pleasire. But this merely proves that France counts many great poets; the language itself is extremely defective, because it contains so large a number of foreign words which ordinary people do not understand: -The same applies to Italian and Spanish, though to a less extent:

In order to assess the value of a language, Stevin wants to ascertain to what extent it is able to serve as a vebicle for science, in particular for mathematics.: French, Italian, Spanish or Latin cannot express the mathematical sciences unless by using Greek words. Greek on the contrary is a very suitable language, because compound words are formed very easily in that language. Even better is Dutch, which is able to forge even shorter and plainer compounds of this kind from mostly monosyllabic basic words.

To prove this, Stevin gives lists of more than two thousand monosyllabic Dutch words, whilst on the other band he finds only small numbers of monosyllabic Latin or Greek words. After this be shows by means of four instances bow the meaning of Dutch compounds is always unambiguous and immediately clear to anyone. He who gains an insight into the character of the Dutch language cannot but marvel at its excellence. In bistorical times there bas been no nation clever enough to grasp the great importance of such a language structure and to produce such a language. This language accordingly might bave arisen in the Age of the Sages. If the Dutch should properly appreciate again their language (which is spoken in its purest form in North Holland), they might belp to bring about the speedy restoration of the Age of the Sages.
Those who do not know what the language of science is, tbink that the acquisition of learning makes our lives gloomy and distracts us from important prattical matters. Thus there are many people who think that Prince Maurice by his devotion to the sciences is distracted from the business of government. But to this it has to be answered that the study of sciences in the systematic formulation and style of the Age of the Sages makes things easier and aids us in accomplishing many great things.
The modes of expression of scientific style are next dicussed by Stevin in five chapters.

1. The style of Euclid, in which a rigorous distinction is made between proposition and problem. Each of them is subdivided into the supposition, the property to be proved, the construction, and the proof (datum, quaesitum, constructio, demonstratio). Such a subdivision presents great advantages. One can first fully study the theoretical proposition, which one has to understand thoroughly; afterwards one can then give one's undivided attention to the practical rules (example: with multiplication, division, extraction of roots). Ptolemy did not make use of this mathematical style, which undoubtedly dates back to the

Age of the Sages. Peurbach, Regiomontanus, and Copernicus on the other band did make use of it, just like Stevin bimself in bis Mathematical Memoirs.
2. The propositions should be preceded by definitions. Stevin relates bow in certain circumstances be had to get to know more about earthwork; wattling, carpentry, brick-laying, forging, etc. For this, the workers in these trades were his best teachers. He began by asking them for the meaning of the words be did not understand, wrote down the definitions of these words, and learned them by heart. It appeared that be could then talk quite easily with the workers and that be thus quickly improved his knowledge.
In Stevin's "Arithmétique" all the definitions are given at the beginning; another time be would prefer to open each chapter with those definitions which pertain to that chapter.
3. Dichotomy.

By this, Stevin means the classification of the subject under discussion into two (or more) possible cases; in the discussion of the spherical triangle, for instance, the following cases are to be distinguished:
the side $A C$ is less than 90 degrees;
the side $A C$ is equal to 90 degrees;
the side $A C$ is more than 90 degrees.
4. Anaphora: the same concepts should invariably be referred to by the same terms ${ }^{1)}$.
5. The separate discussion of theory and practical application. In a final chapter Stevin shows that theory and practice are both necessary.]
${ }^{1}$ ) In rhetoric, this word designates a figure consisting in the repetition of a word or a phrase at the beginning of two or more successive sentences.

## Theoric $O$ <br> prasis. <br> VANTMENGHEN DER *SPIE-

GHELINGEN DAET.
TWAntter int ftick des oirdens noch een verfchil valt vant menghen der fpicgheling en daet,foo moet ick daeraf mijn ghevoelen feggen, eerft haer beteycikening verclarende voor de ghene diet onbekent mocht fijn: Spiegheling is een verdochten handel fonder natuerlicke ftof,ghelijck onderanderen fijn de Spieghelinghen des Spieghelaers Euclides, handelende * dcur ftelling van groothedenen ghetalen, maer elck ghefcheyden van natuerlicke ftof. Daet is een handel die wefentlick met natuerlicke ftof ghefchiet, als lane en wallen meten, de menichte der roen of voetentellen diederin fijn; en dierghelijcke. T'befluyt vandevoorftellen der Spiegheling is volcommen, maer der daet onvolcommen: Als by voorbeelt de Spiegheling vint en bewift tat

## Perpendick-

 den helft des uytbrengs vande * hanghende en gront eens wifconftich driehoucx, volcommelick gheeft hetinhoudt des plats fonder eenich gebreck of overfchot: Maer een wefentick driehouck van lant of ander glatter ftof dadelick ghemeten fijnde, t'belluyt is daer af onvolcommen, eenfdeels om dat wy gheer langde foo nau meten en connen, datter gheen duyfentite deel der dickte eens haers en fchilt, of al waert by gevalle hecl effen, tis onbewijfelick. Ten anderen om dat gheen natuerlicke linien foo heel recht,noch natuerlicke vlacken foo heel plat en fijn, als de wifconftighe bepalinghen vereyfcheh, of al waren fy foo beel recht en plat, ten is niet bewijfelick. De eyghienfchap en t'eynde der Spiegeling is datfe verftreckt tot feker gront vande manier der wercking inde daet, alwaermen deur nauwer en moes elicker toeficht de volcommenheyt der Spiegheling fo na mach commen, als de faccks einde tot Smenfchen ghebruyck verey fcht.Mathemati- Hier uyt is te verffaen, dat wanneer fommighe de * Wifconften van onvolcas artes. commenheyt befchuldighen; deur dien vecl dadelicke werckinghen niet heel effen uyt en commen, datrer kennis gebreeckt des onderfcheyts tuffehen Spiegeling en Daet,tuffchen Wifconfighen en tụchwerckelicken handel: Want de Dact of * tuychwerckelicken handel om de bovefchreven redenen altijt onvolcommen moet wefen.
Defe twee deelen Spiegeling en daet fijin fo verfeheydé, datinenich menfch hemt'eenemael tottet cen begheeft, fonder van t'ander kennis te hebben, Vijverfati. ghelijck menich leeraer met fijn tochoorders inde * ghemeen fcholen ghebeurt, diehun gheduerlickin Spieghelingen oeffenen, als in Euclides* beginfelen der Meetconft, fonder dadelick temeten landen, wallen, of vaten, of yet anders te doen daer de Daet in beftaet : En weerom verkeert fo vintmen dadelicke Lantmeters, welcke alle reghels diefe befighen gelooven, of toeftaen waer te wefen,fonder inde Spiegeling t'onderfoucken de oirfaken en bewijs: Ia fommighen en weten nict datter fulcke oirfaken en bewijs af fijn.

Angaen-

## ON THE COMBINATION OF THEORY AND PRACTICE.

Because, in the matter of orderly exposition, opinions differ with regard to the combination of theory and practice, I feel bound to give my view about this, first explaining their meaning for those who are not acquainted with it. Theory is a fictitious operation without natural material, such as e.g. the theories of the theoretician Euclid, which operate by the assumption of quantities and numbers, but each of them without connection with natural material. Practice is an operation which essentially takes place with natural material, such as the measurement of land and ramparts, counting the number of rods or feet contained therein, and the like. The conclusion of theoretical propositions is perfect, but that of practical propositions is imperfect. Thus, for instance, the theory finds and proves that half the product of the height and the base of a mathematical triangle perfectly gives the area of the plane surface, without any deficiency or surplus; but when a real triangle of land or smoother material is measured actually, the conclusion is imperfect, in the first place because we cannot measure any length so exactly that it does not differ by one thousandth part of a hair's breadth, or even if it is quite exact, it cannot be proved. In the second place because no natural lines are quite so straight nor natural plane surfaces quite so flat as the mathematical definitions require, or even if they are quite straight and flat, it cannot be proved. The property and the end of theory is that it furnishes a sure foundation for the method of practical operation, in which by closer and more painstaking care one may get as near to the perfection of the theory as the purpose of the matter requires for the benefit of man.

From this it is to be understood that if some people accuse the mathematical sciences of imperfection, because many practical operations do not produce results which are quite exact, they lack knowledge of the difference between theory and practice, between mathematical and mechanical operations, for practice or mechanical operation on the above account must always be imperfect.

These two sections, theory and practice, are so different that many people apply themselves altogether to the one, without being acquainted with the other, as is the case with many lecturers and their audience in the universities, where they constantly study theories, e.g. Euclid's elements of geometry, without actually measuring lands, ramparts or vessels or doing anything else in which practice consists. And, conversely, practical surveyors are to be found who take on trust all the rules they apply or regard them as true, without examining the causes and the proof in the theory; nay, some do not even know that such causes and proofs exist.

## Vansyn Bepalinghenint ghemeen.

Angaende ettelicke fegghen de Spiegheling fonder Daet onnut te wefen, het fehijot datmen de faeck met beter onderfcheyt foude meughen infien. Om hier af mijn ghevoelen te verclaren, ick regh by voorbeelt aldus : Datmen twerck cens aerbeyders die boomen int bofch af hout, foude voor onnutachten, om dat hyder felfgheen huyfen, fchepen, molens, fluyfen, tonnen, kiften, beelden, en dierghelijcke me en maeckt, dat en waer openbaerlick niet wel gheffyt, want hoewel fulcke wetenfchap in een menfch looflick is, nochtans ghemerckt hy met boomen af te houwen, an vecl ander ftoflevert, om elck hem in fijn ambacht te oeffienen, foo en is fijn aerbeyt niet te verachten: Maer dat hy die boomen afhieuwe om te laten verrotten, fonder nut daer af ic verwachiten, dat waer dwafelick ghedaen: En alfoo ilt oock mette Spieghelaers in vrye conften, fy connen den Doenders ftof leveren en voorderlick fijn, fonder felf Doenders te wefen: Als den Spieghelaer Euclides, die wy niet en bevinden Doender gheweeff te hebben, heefr nochtans voorftellen befchreven den dadelicken Boumeefters, Landmeters, en ander doenders fecr voorderlick: Den Spieghelaer Ptolemeus en meer ander die gheen dadelicke Stierlien en waren, hebben nochtans reghelen befchreven den dadelicken Stierlien op groote Zeevaerden, en ander hun daer in oeffenende feer nut:la fulcx dat de dadelicke Stierlien felf fich voor meefters achten, als fy verftaen de reghelen door fulcke Spieghelaers befchreven, hoewelfe nochrans gheen dadelicke Stierlien en waren. Daerom een Spieghelaers Spieghelinghen die ander Doenders te fta commen, en fijn niet onnut alen is hy felf gheen Doender.
Tot hier toe deur ettelicke omftandighen verclaert hebbende wat Spiegeling en Daet beteyckent, foo is te weten dar d'oude Wifconftenaers met oock ettelicke nieuwe, van yder dier twee declen onvermengt int befonder handelen; welcke oirden wy daert te pas comt oock volghen : Doch wantter by ettelicke een ander ghevoelen is, die Spiegheling en daer met malcander menghen, om teen metter andert'famen teleeren, fo moct ick om breeder reden mijns doens te verclaren, daer af mijn ghevoclen fegghen.
Voor al foo ift te weten dat der Menfchen natuerlicke gheneghenthedenangacndede Daet feer verfcheyden fijn, waer toe noch helpen de oirfaken die defen anders ontmoeten en dringhen als dien: Den eenen heeft natuerlicke luft met eenighe dringhende oirfaken totte Srercktebou, en dinghen de crijchangaende: Den anderen tot Landemeten: De derde tot Wijnfchroon: De vierde tot faken de groote Zeevacrden belanghende: De vijfde totten * Huyfbou:De Anchisetere fefte totte Spiegheling alleen: De fevende tot ettelicke van defe, of tor altemael, ramo met noch oneyndelicke ander. Nu alfo een der voornaemfte eynden vande befchrijving der virye conften ftreckt, om daer deur te crijghen veel menfchen, die ten ghemeenen oirboire met lichticheyt gheraken ter kennis van t'ghene daer fy hun toe begheven, foo willen wy eens overlegghen, of dat inde lecring gherchien can door vermenging des daets mette Spiegheling,tot welcken eynde ick aldus fegh: Alfmen onder fieghelighe voorftellen ettelicke des daets vermengt, en dat van een afcomit ghetrocken uyt de oneyndelicke menichte diemen dacr af beichrijft, de felve dadelicke voortellen en fullen miffchien niet fijn van die afcomf daer den leerlinck na tracht: Als by voorbeelt, datmen inde Meetconft tuffchen de fieghelighe voortellen cenighe befchrijft des daets, waer in voorbeelden commen neem ick der meting deur het * fchuyfcruys van ongherake- Rariumb licke veynfters en pylaren van gheftichten; Maer t'an ghebeuren dat den lecrlinck tot fulcke afcomft van Meedaet gheen luft en fal hebben, denckende miffchien dattet inde Daet luttel ghebruycx heeft, oock gheen ghenouchfaem fe-

As regards the assertion of some people that theory without practice is useless, it would seem that this matter should be considered more critically. To set forth my view about this, I say, for instance, as follows: it would evidently not be right to regard the work of a labourer, who cuts down trees in the wood, as useless because he does not personally make houses, ships, mills, canal-locks, barrels, chests, sculptures, and the like therewith, for although such knowledge is praiseworthy in a man, yet considering that by cutting down trees he supplies many others with material with which each of them can pursue his trade, his work is not to be despised. But if he were to cut down those trees to let them rot, without expecting any benefit of them, that would be acting foolishly. And thus it is also with the theoreticians in the liberal arts: they are able to furnish the practicians with material and to be of use to them, without themselves being practicians. Thus the theoretician Euclid, whom we do not find to have been a practician, nevertheless described propositions which are of great use to practical architects, surveyors, and other practicians. The theoretician Ptolemy and several others, who were no practical navigators, nevertheless described rules which are of great use to practical navigators during long voyages and to others pursuing this art, even to the extent that practical navigators consider themselves masters when they are conversant with the rules described by such theoreticians, although nevertheless the latter were no practical navigators. Accordingly the theories of a theoretician which are of use to others who are practicians are not useless; even though he himself is no practician.

Having so far explained by means of some ample considerations what is the meaning of theory and practice, I would say that it is to be noted that the ancient mathematicians as well as some modern ones treat of each of these two sections in particular without combining them, an order which we also follow where this is proper. But because a different view is held by some people, who combine theory and practice, in order to teach the two things together, I have to give my views about this, so as to explain the reason of my conduct more fully.

Before all it is to be noted that people's natural inclinations towards practice vary widely, a fact which is also promoted by the causes, which occur to and impel some people in a different way from others. One man has a natural liking, with some causes impelling him thereto, for the art of fortification and things concerned with war, another for surveying, a third for displacing barrels of wine, a fourth for matters concerned with great voyages, a fifth for architecture, a sixth for theory alone, a seventh for some or all of them, with an infinite number of others as well. Now since one of the main ends of the description of the liberal arts is thus to get many people who, for the benefit of all, easily acquire the knowledge of the subject to which they apply themselves, we will consider for a moment whether in instruction this can take place by a combination of practice and theory, to which end I say as follows: If among theoretical propositions one included some practical ones, and that of a species chosen from the infinite number described, these practical propositions may not be of the species the pupil is aiming at; thus, for instance, if in geometry among the theoretical propositions one describes some practical ones, in which there occur instances - I assume of measurements, by means of the cross-staff, of inaccessible windows and columns of buildings. But it may be that the pupil has no liking for this species of practical measurement, thinking perhaps that it is little used in practice nor produces

## 48. BOVCKDES EERTCIOOTSCHRIFTS,

 kerheyt, om op fulcke gevonden maten van pylaren in ander ghebou re werck tegaen, of ander invalken die hem meughen te voor commen : Boven dien en fal hyder niet vinden $*$ d'afcomit daer hy na tracht: Sulcx dat by aldien hy al wil verfaen watter ins bouck is, fal moeten lecren dathy niet en begheert te weten. Maer de Spiegheling als een oirdentlick geketent werck alleen befchreven fijnde, en den kerlinck die verftaende, fy verftreckt hem tot ghemeene gront, on innerlick te begrijpen alfulcken deel der Daet als hy uyt verfcheyden befchreven Daden int licht uyigaende, na fijn behaghen verkiefen fal.Voor befluyt, ick heb mijn ghevoelen verclaert hoet fchijnt datmen defaeck an mochis legghen, om metter tijt weerom te gheraken for fulckegroorewetenfchappen alffer inden Wyfentijtgheweeft fijn,ghelijck t'voornemen was. En met opficht van fulcken gront,fal ick de volghende handelinghen befchrijven,

## EERTHEOOTSCHRIFTS <br> EYNDE.


sufficient certainty to proceed for another building on the basis of the measures of columns this found, or for other reasons that may occur to him, while moreover he will not there find the species which he is aiming at, so that if he wants to understand all that the book contains, he will have to learn what he does not wish to know. But if the theory alone is described as a systematic chain of reasoning and if the pupil understands it, it will serve him as a general basis for grasping mentally any part of practice which he chooses at his own pleasure from different descriptions of practice that are published.

To conclude, I have set forth my view as to how it seems one might set out to attain gradually to such great learning again as existed in the Age of the Sages, as I intended to do. And with respect to this basis I will write the following treatises.

$$
\begin{gathered}
\\
\cdots \\
\because \\
\because \\
\because
\end{gathered}
$$

## INDEX

achtering, 40,41
ACosta, josé de, 403 n
advance, 41
advance-or-lag, 9, 41, 42
àequatio centri, 9,36
afkeering, $18,19,244-252$
afweging, $18,19,244-252$
af wijcking, $18,19,244-252,280$
Age of the Ignorants, 593,601
Age of the Sages, 10, 11, 55, 121, 209, 591-, 609 n
agonics, $364,371,379,402,403,405,408$, 416, 417
albategnius, al-battînî, io, 3 I
albert, Archduke, 345 n
alchemy, 605
alexander, 73, 597
algebra, 599
alphonso, King of Castile, 315, 613
amplitude, 383
anaphora; 6x7
anomalistic month, 8
aptanus, petrus, 479, 482, 491, 496, 497, 511, 543
apogee, $35,37$.
,arc of the -s, 37
,mean 一, 37
of Moon, 155
of planets, 85, 103, 131, 173-
of Sun, 63 -
apollonius, 10
apparent motion, 39
apparent planet, 39
Arabic books, 601, 605
arc of the apogees, 37
of the perigees, 37
archimedes, 595, 597
Ate des Maechts, 104
Arenarius, 595
aristarchus, 595, 597
Arithmétique, 617
arzahel (zarquâla, zarkali), 3 isn, 603
assembled secants, 483, 484, 527-534
astrolabium catholicum, 403, 413-417
astrology, 6 II
atmosphere, height of, $605 \%$
hachmann, ©. 5 S:
BACON, FRANCIS, $325-1$
BALMER, H., $392,396,39712403$ 息
barbarum saeculum; $593: \%$
barents (barendtz), wilekms jugn,
386, 398, 415, 41.5
BARLOW WMELAM, 385; 387 390\% 39 K
402n:
beghin 60 x
benedetti, G. b., 6
bensaude, J., $38 \mathrm{In}, 38 \mathrm{nn}, 394 \mathrm{n}, 395 \mathrm{n}$, 49 In
beyer, J. H., 5
Bima (Sumbawa), 370
blaeu, willem jansz., 399, 408, 409, 415
blundevile, thomas, 494
bodin, j., 5
borough, william, $374,383 \mathrm{n}, 384,385$, 387, 390, 409n, 417
borri, chr., see: burrus:
bouckcasse, 208
bourne, william, $366 n ; 37.3 ; 38.3$; 387 , 500
brouck, jan van den, 417
bRAhe, TYCho, 6, 2I, 6 II
breedeloop, 112, $212=, 254{ }^{-*}$
brucaeus, h., 5
bruno, giordano, 6
Bunam, see Bima
burrus, Chr., 4 II
caesar, julius, 33
CARDANO, G., 372
CASTRO, JOAO DE, $395,396,41$.
Cavendish, henry, 4 II
cespedes, andres garcia de, 388 n
ceulen, ludolf van, 389, 603
circle, concentric -, 33
eccentric -, 33
Clavius, Chr., $5,388 \mathrm{n}, 493$
clootsne, 596
COIGNET, MICHIEL, $366 \mathrm{n}, 380,386,396$, 400, 494, 500
COLOM, JACOB AERTSZ., 4 I5
COLUMBUS, CHRISTOPHER, 381, 393
commencement, Gor
Commentariolus, $12,14 n$
compass, $490,585,587,589$
compilation of data on planetary orbits, 169-179
conjunction, 9,45
, mean -, 45
Copernican System of the World, 5, 6, 119- and passim
copernicus, N ; , 5 -315 passim COŔNELIS ANTHONISzOON, 366n CORTEs, MABINT: 375, 494
Corvo (Azores), 370.
Cracow 395
CRESCENTIO, BARTOLOMEO, 396
cross-staff, 62 L
curved track, 480
dachtäfels, Berekende - 74
daet 92 ervarings 644 5
damphoogde， 604
DAVIS，JOHN，4II
day，equal 一， 33
，mean－， 33
，natural－，21， 3 I
，unequal 一， 31
DECKER，EZECHIEL DE， 498
declinatio，declination，19，245－253， 364
deferent， 37
deflexion，19，245－253
degrees of circle， 605
deviatio，deviation，19，73，245－253，364， 368， 409
dichotomy， 617
digges，L．， 6
digges，th．， 6
DIOPHANTUS，－599
distance， $48 \mathrm{r}, 485,487,498,499,5 \mathrm{r} 3-$ 519，535，549－569
doenders toppunt， 356
doge of venice， 375,376
donati，p．， 5
DOUWES，CORNELIS，319，413， 499
DRAKE，SIR FRANCIS， 402 n
DUDLEY，SIR ROBERT， 4 II
Dutch language， 616
duysteraat， 30
－langde， 62
－breede， 72
duysteringsnee， 158
Duyts， 616
dwaelder，32，38， 40
，schijnbaer－， 38
－wech，34，168－
－winst， 42
earth，moving－，II9
，orbit， 171
Ebb and Flow，Of the Theory of，323－，345n ebb circle， 335
ebbenvloet，van de spieghbling der， 323－， 345 n
eccentric circle， 33
eenheyt， 598
Egips jaer， 30
elements， 60 s
ephemerides，calculated， 45
，empirical， $7,45,51$
epicycle， 37
－theory，11，14， 18 and passim
equal days， 33 time， 3 I
equant， 20
equation of time， 9 ， 10
equatorial longitude， 10
ervarings dachtafels，7，45， 51
estuary of the Scheldt，347， 358
Euclid，599，601，605，616，619，621
evedag， 32
evenaer， 30
evenredenheyt， 594
eventijt， 32
EVERART，EVERAERTS，M．， 45
faleito，francisco， $38 \mathrm{I}, 382 \mathrm{n}, 383 \mathrm{n}$ ， 394， $40^{\circ}$
faleiro，ruy，394n
first advance－or－lag， 43. semi－circle，＇ 39
flood top， 335
fore－and－aft line，368，480，509，587， 589
FOURNIER，GEORGES，396，4IO
franco；salvador＇garcia， 393
françois van dieppe， 397
French，6is
FRISCH，CH．， 12
gain of a planet， 43
galilei，galileo， 326
galle，joan， 38 §n
gaslager， 52
geber，see albategnius
gemma frisius， SiI
geometry， 605
gheesthandel， 604
ghemeen scholen，619
gheneesstoffen， 610
gietermaker，claes heyndricks，493， 497
gilbert，william，6，13，14，129，406， 407，409， 410
GIRARD，A．，326， 380
globe，use of 一，481，487，515；523， 525 ， 547－571
great circle track，480，481，507，513－521， 543，569， 571
gront， 122
GROTIUS，HUGO， $367,375,376,380,411$ ， 607
GUillen，Felipe， 382 n
halfront，eerste —，tweede－， 38
hall， 411
halley，edmund， 412
harradon，h．D．， 382 n
har（r）IOt，thomas，382， 493
harris，A．， $329 n$
haeyen，albert，407， 409
Heavenly Motions，3， 23
heaven of planet，II，12，13，14，131， 133
heemskerck，jacob vina， $315 \mathrm{n}, 386,398$
St．Helena，Isle of， 357
hellmann，G．， $382 n$
hemelbol， 12
Hemelloop，Van den，3， 23
hemelloopstuych， 168
hemel van planeet，II， 132
heniry，Prince of Wales；＇ 377
herbsne，herftsne， $33^{8}$
Hermes， 595
－Trismegistos，Gos
herwartus，J．G．， 326
hipparchus, $51,53,283,593,597,599$
hippocrates, 6 II
HONDIUS, JOD., 399, 408, 409, 414
HONDIUS, JR., JOD., 399
HOOD, THOMAS, 383 n
houckmaetmaecksel, 600, 602
HOUTMAN, CORNELIS DE, 400, 4OI, 402n:
HOUTMAN, FREDERIK, 402
HUES, ROBERT, 408, 488, 492, 573
hUYGENS, ChRISTIAAN, $363-407$ passim
inclination, 374
inequality, second -, 593,595
intont, 36
inrontdragher, 36
inrontwech, 36
isogonics, 364
JABIR, See ALBATEGNIUS
JACOBSZ. LAURENS, 398
JOAO DE LISBOA, 393, 395
Juliaensche jaer, 32
Jupiter, 13, 171; 175, 241, 301
keerpunt, 3 I6
keertijt, 44
KENDALL, ABRAHAM, 4 II
KEPLER, J., 6, 19, 21, 326, 410
KETELTAS, BARENT EVERARDUS, 408, 409
KEUNING, J., 366 n
KIRCHER, ATHANASIUS, 41 II
LAENSBERGH, LANSBERGEN, LANSBERGIUS, 317
lag of a planet, 41
langren, Jac. Flor. van; 399
language, 609-
LASTMAN, CORN. JANSZ:, 499
Latin, 613
latitude, motions in 一, II, 18, I9, II3,

$$
213-255-
$$

LAVANHA, JOAO BAPTISTA, 383 n
leecketijt, 592
lentsne, 338
LEONINUS, A., 5
Leowitz (leovitius), c., 45
line of eccentricity, 35
LINSCHOTEN, JAN HUYCHEN VAN, 387, 401, 403n, 4II
LINTON, ANTHONY, 377
LIPPMANN, E. O. VON, 392 n
longitude, determination (chronometer), 364-
, - (lunar distances), 364-
, equatorial - , 10

- finder of Plancius, 403, 415-4i7
loxodrome, $480,48 \mathrm{I}, 491,492,494,498$, 509, 511, 515, 517, 521-525, 543, 569577, 581
, copper -, $481,485,487,497,523$,
$525,547,549,555,559,561,565,567$
, drawing of -, 481, 485,487,491-493, 497, 521-525, 547-559, 563; 565,569 , eighth - $, 482,485,488-490 ; 496,499$,

$$
541-546,569,571,585
$$

loxodromic sailing, 509, 551-569
lunation, 9
LUYS, INFANTE DOM; 395
Magellan, F. DE, 394
magic, 607
magini (maginus), G. Ai, 5, 45
magnetic meridian, 364,368
pole, $368,372,377-379$, 396-400, 402-404, 423 rest, 14,127-
magnetism, 14, 127-, 364-
Mars, 13, 15, 16, $171,175,181-, 241,301$
mathematical operations, III
mavrice, Prince of Orange; Count of
Nassau, 7, 53, $337,339,343,367,375$,
$376,408,43 \mathrm{I}, 479,490,505,51 \mathrm{I}, 515$, 543, 616
MAY, JAN CORNELIS, 406n
mean conjunction; 45
days, 33
motion, 4 I
opposition, 45
planet, 41
time, 9, 33
MEDINA, PEDRO DE, $366 \mathrm{n}, 382,386,392$, 500
MELANCHTON, PH., 5
Memorie van Plancius, 402-405
MERCATOR, GERH.; 372, 396-400, 403, 410, 479, 491-495
MERCATOR, RUMOLDUS, 398
Mercury, 9, 18, 20, $21,123,171,179$, 243-, 293-, 313
meridional parts, $483,486,493-495,498-$ 500
METIUS, ADR., 408, 409, 498
middachront, 30
middeldag, 32
middeldwaelder, $40^{\circ}$
middelloop, 40
middelpuntichront, 32
middelsamingh, middeltegestand, 44
middeltijt; 32
MITCHELL, O., I2n
moon, distance, 10
, floodtop, 335
, nodes, 159
, orbit and motion, $8-$, 1 $55-$, 169
MOXON, JOSEPH, $377,378,4 \mathrm{II}, 494$
MULLER, J. (REGIOMONTANUS), IO, 319 ,
$597,601,603,617$
NABER, S. P. L'HONORÉ, 315 ni, 417
naestepunt, 34, 36
naestepuntensbooch, 36
natuerlicke dach, 30
natuerlick jaer, $30^{\circ}$
natural day, 3 I
year, $31,55,75$
nautonier, guillaume de, 410
navarrete, 387
NEANDER, M., 5
NECK, JACOB VAN, 401
NIEROP, DIRK REMBRANTSZ VAN, 500
nierop, pieter rembrantsz van, 500 noortstant, 598
NORMAN, ROBERT, 374, 375,384
north and south line, magnetic, 364,368 , true - 364,368
Northumberland, Earl of 488
NORWOOD, RICHARD, sOO, sOI
Nottingham, Charles, Earl of, 376
Novaya Zemlya phenomenon, 21, 3 IS
numerical point, 601
NUNES, PEDRO, $382 \mathrm{n}, 395,479,488,49 \mathrm{r}$,
492, 494, 497, 500, 573, 575
oneven dach, 30 tijt, 30
onevenheyt, tweede -, 592, 594
onevenheytspunt, 292
operations, mathematical, II
opposite of Moon, 333
opposite's flood top 335
opposition, 45
, mean -, 45
opsnijding, 610
orbis, ${ }^{2} 2$
orbit, planet's, 37
orthodrome, 481, 509, 513-521
oscillations, 18
Ostend, 345n
paul iit, Pope, 12
perigee, 35,37
, arc of -, 37
, mean -, 37
perihelion of the earth, igi
period of revolution, 47
perrenot, ant., 397
peucer, k., $s$
peuerbach (purbach), g. von, 18, 315 , 319, 603, 617
philip in, King of Spain, 382 n
philolaus, 595
philosophi, 605
PIETERSZ, REYNIER, 372, 379; 381, 387, 388-391, 467
PIETERSZ, SIMON, 500
pigafetta, ant., 394
pLANCIUS, PETRUS, 368-372, 377-379,
385, 398-405, 408, 409, 413-417, 433, 449
planet, definition, 33, 39, 41
, data on -s , $169^{-}$
, gain of -, 43
,, orbit of -, 35
plantijn, chris., 367, 375, 378
plinius, 325
point, numerical, 601
POULTER, RICHARD, 376
practice, 619
precession, 9, 13, 21, 109-, 315
proclus, 309
proportion, 616
prosthaphairesis, $9,4 \mathrm{In}, 615$
Prussian tables, 5
PTOLEMY, CL., 9-319 passim, 593-621
punctum aequans, 20
pytheas, 325
ravelingen, chris. van, 367, 375, 378, 421
reflexio, 19, 245
refraction, 21, 315
regiomontanus (müller), j.; io, 319 , 597, 601, 603, 617
reinhold (rheinoldus); E., 5, 10, 45
RENARD, LOUIS, 412
rhaeticus, georg joachim, 397 n , 495
rio riaño, andres del, 387 n
rosen, e., 12 n
rothmann, chr., 6
rutters, 365
RUYSCH, 396
SACROBOSCO, J. DE, 5
sailing track, 480 , 507
saming, 44, 168
Sand Reckoner, 595
SANTA CRUZ, ALONSO DE, $38 \mathrm{In}, 382 \mathrm{n}, 4 \mathrm{II}$
Santtal, 594
Saturn, 8, 10, 18, 79-, 171, 172, 215-, 301
sCaliger, J. C., 325,389
scaliger, J. J., 325, 595, 601
Schelde, $346,350,358$
Scheldt, 347, 351, 358
schijnbaer dwaelder, 38
loop, 38
schuyfcruys, 620
second advance-or-lag, 43
second inequality, 594, 595
second semi-circle, 39
semi-circle, first -, 39
, second' $\frac{39}{}, 39$
SEville, JEAN DE, $386^{\prime}$
sexagesimals, $55,57 \mathrm{n}, 169 \mathrm{n}$
seylsteenighe stilstand, 14, 127-
shackleton, e., 3 ISn
sichteinder, 314
Signa Hermetis, 595
sine tables, 601,603
slangstreken, 480
snellius, w., 326, 367, 389, 498
spheres, heavenly (see also: heaven), i2
Spica, 9, 105, 107
spiegelingh, 52, 618-
SPINOLA, 345 n
spirales, 480
sprinckvloet, 332, 348
spring-tide, 333, 349
stadius, J., 5, 7, 9, 43, 45, 51, 55, 65, 77,
103, 105, 107, and passim
Stadtholder (see also maurice), 369,370
stars, 9, 105-, 315, 599
StEENSTRA, PYBO, 413
stelling, 109 n
stelreghel, 598
steroirdelen, 610
STÖFfler (Stofflerus), J., 45
stofscheyding, 604
Strabo, 325
Stradanus, joan, 38 gn
straight track, 480
Sun, apogee, perigee, 7,63
, diameter, distance, 10
, orbit, motion, 7, 9, 57-, 169-
tabit (thabit, thebit), 3 IS
tables, Alphonsine -, 5, 315n
, Prussian -, 5
, sine -, 6or, 603
of Toledo, 315 n
tables of loxodromes, 481 1-488, 494-498,
500, 525, 527, 535-541, 575, 581-585
talpunt, 600
taylor, eva G. R., $382 \mathrm{n}, 493 \mathrm{n}$
teghepunt der Maen, 332
teghestand; 44
telconstigh, 600
teldact, 600
telders, 598
Tenth, The, 601
theory, 52, 109, 619
Thoth, 6osn
tides, 323 -
time, equal -, 31
, mean -, 9, 33
, unequal -, 31
timocharis, 597, 599
Toledan tables, 315 n
total advance-or-lag, 43
trappen, 46
tweede onevenheyt, 592, 594
unequal days, 31
time, 31
unity, 601
unknown motions, $11,20,21,113,283-$
uytmiddelpunticheyt, 30
uytmiddelpunticheytlijn, 34
uytmiddelpuntichront, 32
variation, $364,365,368$
veen, adriann, 366n, 399
veer, G. DE, 315
Venus, $9,16,17,21,123,171,175,195-$, 253-, 307
vernerus, J., 3 I5
versaemde snijlijnen, 526-534
verstepunt, 34,36
der dwaelders, 84, 102, 130, 172-
der Maen, 154
der Son, 70
verstepuntenbooch, 36
vertooch, 194
vierdeschijn, 332
visser, s. w., 315 n
vloettop, 334
vondel, joost van den, 39 in
voordering, $4^{\circ}, 4^{1}$
voorofachtering, $9,40,41$
, eerste -, tweede -, 42
voorstel, 277n
vRIES, KLAAS DE, 497
walsperger, andreas, 396
walther (waltherus), b., 319
wanschaeuwing, 314
wechs eerste halfront, 38 tweede -, 38
werckstuk, 194
WERNER, J., 3 ISn
whitwell, Charles, 385
william, Landgrave of Hesse, 6 II
winds(vientos), 509 n
winter, h., 392 n
wisconstenaers, 604
Wisconstighe Ghedachtenissen, 367, 378, 379,
406, 409, 496, 498
wisconstighe wercking, IIO
wisconstuygen, 44
Wright, edward, 367, 376, 377, 378, 382n, $410,411,479,482,483,485-488$,
490, 491, 493-497, 527, 573, 575
Wiysentift, $10,11,54,120,208,591-, 609 n$
year, duration, 7

> Egyptian -, 31
> , Julian -, 33
> , length, 599
> natural -, $31,55,75$
zamorano, rodrigo, 366n, 382, 387, 500
zarquîla, zarkali, see arzahel
zinNer, E., 5, 6

## TABLE OF CONTENTS

## THE ASTRONOMICAL WORKS

De Hemelloop. The Heavenly Motions ..... 3
Introduction ..... 5
Eerste Boeck. First Book ..... 26, 27
Tweede Boeck. Second Book ..... 108, 109
Derde Boeck. Third Book ..... 114, 115
Bijvough. Supplement ..... 254, 255
Anhang. Appendix ..... 282, 283
Contents of the Heavenly Motions ..... 320, 321
Van de Spiegheling der Ebbenvloet. Of the Theory of Ebb and Flow ..... 322, 323
Introduction ..... 325
Historical Remarks ..... 325
Summary of the Work ..... 327
Van de Spiegheling. der Ebbenvloet. Of the Theory of Ebb and Flow ..... 330, 331
THE NAUTICAL WORKS
De Havenvinding. The Haven-Finding Art.
§ 1 Introduction and General Remarks363
§ 2 The Place of The Haven-Finding Art among Sixteenth-Century Textbooks on Navigation ..... 365
§ 3 The Contents of The Haven-Finding Art of 1599 ..... 367
a) Stevin's conjecture about terrestrial magnetism ..... 367
b) The measurement of the variation of the compass according to Stevin ..... 372
c) The Latin translation ..... 375
d) The English translation ..... 376
e) The French translation ..... 378
f) Stevin's opinion on the system of The Haven-Finding Art in 1608 ..... 378
§ 4 The Measurement of the Variation of the Compass ..... 380
a) The measurement of the variation of the compass before Stevin's day ..... 380
b) Reynier Pietersz and his "Golden Compass" ..... 388
$\S 5$ The Determination of Longitude at Sea from the Variation of the Compass ..... 392
a) The earliest views ..... 392
b) Mercator ..... 397
c) Plancius ..... 398
d) Stevin ..... 404
e) The evolution of the subject in the 17 th and 18 th centuries ..... 411
§ 6 Appendix
a) The construction and the use of the astrolabium catholicum ..... 413
b) The construction and the use of the longitude-finder of Plancius ..... 416
De Havenvinding. The Haven-Finding Art ..... 418, 419
De Zeijlstreken. The Sailings.
Introduction ..... 479
$\S 1$ The Contents of the Treatise devoted to the Zeijlstreken ..... 479
§ 2 Apian, Nunes, Mercator, and Wright, Stevin's Predecessors ..... 491
§ 3 Conclusion ..... 496
De Zeijlstreken. The Sailings ..... 502, 503
De Wijsentijt. The Age of the Sages ..... 591
Index ..... 625
Table of Contents ..... 631


[^0]:    ${ }^{1}$ ) Ph. Melanchthon, Initia Doctrinae Physicae, 1549 (Ed. Bretschneider in Corpus Reformatorum, Vol. 13, p. 179). Cf. p. 216 Liber I.
    ${ }^{2}$ ) Erasmus Reinhold, Prutenicae Tabulae coelestium motuum (Tübingen, 155 I).
    ${ }^{3}$ ) Joh. Stadius, Ephemerides novae et exactae, ab Anno 1554 (Köln, I556).
    ${ }^{4}$ ) Ernst Zinner, Entstehung und Ausbreitung der coppernicanischen Lehre (Erlangen, 1943).
    ${ }^{5}$ ) Chr. Clavius, Opera mathematica V tomis distributa (Mainz, 1612).
    ${ }^{6}$ ) Kaspar Peucer, Hypotheses astronomicae ( 157 I).-Hartmann Beyer, Quaestiones novae (1549-1573, 6 impressions).-Michael Neander, Elementa Sphaericae doctrinae (156I).-

[^1]:    ${ }^{15}$ ) See Vol. I, p. 7 and 46 and the selection at the end of Vol. III.

[^2]:    ${ }^{16}$ ) Orbis is not identical with the modern concept of orbit; its English equivalent is orb, e.g. in the title of O. Mitchell's popular work The Orbs of Heaven (London 1853).
    ${ }^{17}$ ) Edward Rosen (in the Introduction to the booklet Three Copernican Treatises) summarizes the discussion of all these cases as follows: "When he deals with the planetary theory, he uses orbis to mean the great circle in the case of the earth and the deferent in the case of the other planets" (p. 21). "But when he is speaking more generally about the structure of the universe or the principles, orbis regularly means sphere" (p. 19).
    ${ }^{18}$ ) Johannis Kepleri Opera III, p. 464.

[^3]:    ${ }^{19}$ ) It is to be noted that the constant direction of the axis in space had already been mentioned by Copernicus and had even been compared to a magnet in his Commentariolus. The Commentariolus was not printed in the i6th century, but circulated in a few handwritten copies. It is not probable that Stevin had seen one of these; Gilbert's work is quite sufficient as the source of his theory that the earth itself is a magnet.

[^4]:    ${ }^{1}$ ) Work XI; i, I 4. See Vol. II B, p. 755.
    ${ }^{2}$ ) Syntaxis III, i (Translation of Manitius, I, p. 146).
    3) Abu-'Abdallâh Muhammad ibn Jâbir ibn Sinân al-Battâni, al-Harrâni, al-Sâbi (born near Harran in Mesopotamia, 850?-Damascus 928?). His principal work, al-Zîdj, translated into Latin in the early part of the 12 th century, and into Spanish somewhat later, was printed at Marburg (De Scientia Stellarum, i 536) and at Nuremberg (De Motu Stellarum, 1537 ).

[^5]:    ${ }^{1}$ ) In the Dutch text, for $K$ read $M$ and for $M$ read $K$.

[^6]:    ${ }^{1}$ ) This expression, being the English equivalent of Stevin's Dutch word, will be used here instead of Ptolemy's Greek word prosthaphairesis.

[^7]:    ${ }^{1620}$ (Venice, 1582 ), later extended to 1608 - 1630 (Frankfurt 1608 and 1610) ; a supplement appeared in 1614 (Venice) and 1615 (Frankfurt).

    Martin Everart or Everaerts (born at Bruges), mathematician and surgeon. Ephemerides meteorologicae anni 1583 (Antwerp 1582); Ephemerides novae et exactae (Leiden 1597), relating to the years ${ }^{1} 590-1610$. In new editions, they were extended up to 1615 (Heidelberg, 1600 and 1602 ).
    ${ }^{1}$ ) This explanation is not found in the Appendix.

[^8]:    ${ }^{1}$ ) See note p. 45 -

[^9]:    ${ }^{1}$ ) In sexagesimals of a day, hence meaning $365+\frac{14}{60}+\frac{48}{3600}$ days.
    ${ }^{2}$ ) In angular (or analogous) quantities written sexagesimally, the successive sexagesimal subdivisions (which Stevin indicated by writing the digits $1,2, \ldots$ in small circles) in accordance with modern practice are separated by commas. The whole numbers are followed by a semi-colon. If there are only few subdivisions, the ordinary notation in degrees, minutes, and seconds is used.

[^10]:    ${ }^{1}$ ) For 45 in the Dutch text read 54 .
    ${ }^{8}$ ) For 146 in the Dutch text read 346.
    ${ }^{8}$ ) This example has been taken from the tables of the moon (Book I, second chapter, p. 47 of the Dutch text).

[^11]:    ${ }^{1}$ ) Instead of $91^{\circ} 51^{\prime}$, a value of $91^{\circ} 15^{\prime}$ has been used in the subsequent computations.

[^12]:    ${ }^{1}$ ) The sense of the passage in parentheses is not clear; there must be a clerical error in it. The quotation refers to Syntaxis III, 4 (Manitius, I, p. 167).
    $\left.{ }^{2}\right)$ Stevin's duysteraerbreeden (ecliptical latitudes) is an error for evenaerbreeden.

[^13]:    ${ }^{1}$ ) Ptolemy here uses sexagesimals of a day: $0 ; 0,12=\frac{12}{3600}=4 \mathrm{~m} 48 \mathrm{~s}$.

[^14]:    ${ }^{1}$ ) For $s y n$ in the Dutch text read het.

[^15]:    ${ }^{1}$ ) For middelpuntich in the Dutch text read uytmiddelpuntich.

[^16]:    ${ }^{1}$ ) See note p. 45 .

[^17]:    ${ }^{1}$ ) The words corter dueren in the Dutch text should be corter sijn, which means just the reverse.

[^18]:    ${ }^{1}$ ) By a printing error in the original text the preceding page 114 has been called 104 .
    ${ }^{2}$ ) Syntaxis VII, 5 (Manitius II, p. 48).

[^19]:    ${ }^{1}$ ) The word stelling, as used by Stevin, corresponds literally to supposition, assumption. In the following we have translated it by theory, because of the vast scope of the Ptolemaic or Copernican conceptions, their numerous consequences, and the great amount of work which has been devoted to their development. In treatises on the history of Astronomy, the expression "planetary theories" is commonly used.

[^20]:    1) For van Oosten na Westen in the Dutch text read van Westen na Oosten.
    ${ }^{2}$ ) Syntaxis I, 7 (Manitius p. 19).
[^21]:    ${ }^{1}$ ) William Gilbert (Colchester 1544 -London 1603 ), physician to Queen Elizabeth in London, author of De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure; Physiologia Nova (London, 1600 ).
    ${ }^{2}$ ) This refers probably to The Haven-Finding Art (Work XI, i 25).

[^22]:    ${ }^{1}$ ) For Maenswechs in the Dutch text read Marswechs.

[^23]:    ${ }^{1}$ ) This or some such word must have been omitted in the Dutch text.

[^24]:    ${ }^{1}$ ) Apparently this number has been inadvertently omitted in the original text.

[^25]:    ${ }^{1}$ ) The longitude "in its orbit" is reckoned from the apogee.

[^26]:    ${ }^{1}$ ) For eerste stelling in the Dutch text read tweede stelling.

[^27]:    ${ }^{1}$ ) For $G F K$ in the Dutch text read $G A K$.
    ${ }^{2}$ ) For $A M$ in the Dutch text read $I M$.

[^28]:    ${ }^{1}$ ) Stevin does not here allude to instruments for observing the stars, but to structures, mostly of cardboard and parchment, such as were often made in those days to facilitate the understanding of the planctary orbits.
    ${ }^{2}$ ) Sexagesimal division was used in ancient science for linear distances as well. The unit of distance was put 60 parts, and the first- and second-order subdivisions were indicated by the symbols now used for minutes and seconds of arc.

[^29]:    ${ }^{1}$ ) For 7,502 in the Dutch text read 7,402.
    ${ }^{2}$ ) For Saturnus in the Dutch text read Venus.

[^30]:    ${ }^{1}$ ) These propositions, on the pages 171, 201 and 221 of the Dutch original, concern the distances of the Earth to the Moon, to the Sun and to Saturn, all expressed in the semi-diameter of the Earth.

[^31]:    ${ }^{1}{ }^{1}$ ) See Stevin's "2nd Method" in the 19th proposition of the ist book, p. 97.
    ${ }^{2}$ ) Here advance-or-lag is used, as it was in the 18th Definition of the First Book, for the total deviation, by the epicycle as well as by the eccentricity.
    ${ }^{3}$ ) For Saturnuswechs in the Dutch text read Marswechs.
    4) For des inronts middelpunt in the Dutch text read an expression equivalent to "the planet itself".

[^32]:    ${ }^{1}$ ) For des inronts middelpunt in the Dutch text read the equivalent of "Mars itself". Here the parallelism of $Q V$ to $G R$ is demonstrated: $Q V$ belongs to the theory of the moving Earth, in which no epicycles occur, $V$ is the position of Mars.
    ${ }^{2}$ ) Note that $V$ is not really situated on the epicycle $S T$, but only on the orbit $M N$.
    ${ }^{8}$ ) For Saturnus in the Dutch text read Mars.
    4) For Saturnus in the Dutch text read Mars.

[^33]:    ${ }^{1}$ ) Stevin's Trigonometry, Work XI; i, 12, Appendix on Plane Polygons. See Vol. II B, p. 755. In the 6 th proposition he considers a quadrangle and shows how all 8 angles and sides may be found, if 5 independent ones are given.
    ${ }^{2}$ ) For Saturnus in the Dutch text read Mars.
    ${ }^{3}$ ) For Saturnus in the Dutch text read Mars.

[^34]:    ${ }^{1}$ ) For Saturnus in the Dutch text read Mars.

[^35]:    ${ }^{1}$ ) For this theory, see the explanatory diagrams and text in the Introduction, p. 16-17.

[^36]:    ${ }^{1}$ ) For $G A$ in the Dutch text read $G H$.
    ${ }^{2}$ ) For inrontswech in the Dutch text read inront.
    ${ }^{\text {s }}$ ) For inront in the Dutch text read ront.

[^37]:    ${ }^{1)}$ For andercortste in the Dutch text read aldercortste.

[^38]:    ${ }^{1}$ ) See note ${ }^{1}$ ) on p. 189.

[^39]:    ${ }^{1}$ ) Syntaxis XIII, 6 (Manitius II, p. 376), where also the tables for the other planets are found.

[^40]:    ${ }^{1}$ ) For $E C$ in the Dutch text read FC.

[^41]:    ${ }^{1}$ ) For deses 4 boucx in the Dutch text read deses 3 boucx.
    ${ }^{2}$ ) Stevin's Trigonometry (Work XI; i, 12), p. 152. - See Vol. II B, p. 755.

[^42]:    ${ }^{1}$ ) For 5 in the original read 1 .

[^43]:    ${ }^{1}$ ) See p. 189 , note I .

[^44]:    ${ }^{1}$ ) See p. 223, note 2 .

[^45]:    ${ }^{1}$ ) For $E N D$ in the Dutch text read $N E D$.
    2) Stevin's Trigonometry (Work XI; i, I2), p. 147.
    ${ }^{8}$ ) For $217^{\circ} 54^{\prime}$ in the Dutch text read $175^{\circ} 4^{\prime} 8^{\prime}$.
    ${ }^{4}$ ) For $C F$ in the Dutch text read $C E$.

[^46]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 12), p. 147.

[^47]:    ${ }^{1}$ ) $C f$. footnote ${ }^{3}$ ) to p. 279.
    ${ }^{2}$ ) The provenance of the longitudes $44^{\circ} 12^{\prime}$ and $215^{\circ} 4^{\prime}$ is not clear. The values are obtained when twice the angle $2^{\circ} 6^{\prime}$ is added to $40^{\circ}$ and subtracted from $220^{\circ}$.

[^48]:    ${ }^{1}$ ) The term "deviation" is used here in a more restricted sense than previously, e.g. page 75 , line 5 and further on; where it was the translation of afuycking in general. The name for the second oscillatory motion of Mercury, afwycking, has been translated "declination", in accordance with the Latin term in the margin, though this word has .here quite a different meaning from that of the later equatorial co-ordinate, which in Dutch books is often denoted by the same word. For the corresponding verb, afneyghen is sometimes used; this is translated here by "to diverge". For the Latin reflectio, here indicating bending back, we have taken "deflection" as the best English equivalent.

[^49]:    ${ }^{1}$ ) For $\mathcal{N}$ in the Dutch text read $I$.

[^50]:    ${ }^{1}$ ) This value is not to be found in Proposition 21 of the Third Book.

[^51]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, i2) p. 156.

[^52]:    ${ }^{1}$ ) Stevin designates Ptolemy's chapters by the same name of Voorstel which he also uses for the propositions.

[^53]:    ${ }^{1}$ ) Page 270.
    ${ }^{2}$ ) This value is not found in the 13 th proposition. Compare footnote to page 269.
    ${ }^{\text {8 }}$ ) ${ }^{4}$ ) Stevin is wrong here, because he overlooks Ptolemy's remark that before entering the table of the sixtieths the argument has to be increased by $50^{\circ}$ (for Saturn; decreased by $20^{\circ}$ for Jupiter).

[^54]:    ${ }^{1}$ ) As contrasted with an eccentric circle.
    ${ }^{2}$ ) Meaning an epicycle whose centre describes a centric circle.

[^55]:    ${ }^{1}$ ) For Houtmaetmaecksel in the Dutch text read Houckmaetmaecksel. See Work XI; i, 11, p. 60 .

[^56]:    ${ }^{\text {1 }}$ ) For 21 (1) in the Dutch text read 21 tr.
    ${ }^{\text {2 }}$ ) Abû-l-Hasan Thâbit ibn Qurra ibn Marwân al-Harrânî (Harran 826-Bagdad goi), mathematician and astronomer at the court of the Caliph Almustadid. His theory of ,trepidation" became known mainly through al-Zarkali and the tables of Toledo; a treatise of Thâbit was translated into Latin and printed at Leipzig (1503).
    The Alphonsine Tables were constructed about $1250-1300$ under the patronage of King Alphonso $X$ of Castile. The original version is unknown, but modified tables bearing the same name existed in Paris about 1320; they came into general use and were repeatedly printed between 1483 and 1649: Alphonsi, regis Castellae, caelestium motuum tabulae (Venice 1483).

    Georg von Peuerbach or Purbach (Peurbach in Austria 1423 -Vienna 1461), professor in Vienna. His treatise, Theoricae novae planetarum, passed through many editions from 1507 onwards, during the whole of the 16 th century.

    Johannes Werner (Nuremberg 1468-ibid. 1528), astronomer, mathematician and cartographer, discussed the precession in his treatises: De motu octavae sphaerae; Summaria enarratio Theoriae motus octavae Sphaerae (Nuremberg 1522). - For Venerus in the Dutch text read Vernerus.
    ${ }^{3}$ ) Novaya Zemlya. - Towards the end of the sixteenth century Dutch navigators tried to discover a passage towards the Indies through the arctic seas. These pioneers were obliged to winter on N.Z., where relics of their equipment have been found. See the account of the voyage by one of the participants, G. de Veer: Reizen van Willem Barents, Jacob van Heemskerck, Jan Cornelisz. Rijp en anderen naar bet Noorden (1594-1597). Edited by S. P. L'Honoré Naber (Linschoten Vereniging XIV, 1917); translated by the Hakluyt Suciety (1876).
    The Novaya Zemlya phenomenon has been discussed by several modern authors, of whom we mention especially S. W. Visser (Proc. Acad. Amsterdam, Ser. B, vol. 59 (1956), p. 375. The exceptional refraction of $4^{\circ} 17^{\prime}$ may be explained by a pronounced ground inversion, extending over a large distance. A similar observation was made by Shackleton in 1915, when the refraction reached $2^{\circ}$.

[^57]:    ${ }^{1}$ ) Philippus van Laensbergh or Lansbergen (Ghent ${ }_{5} 5$ 6 - Middelburg 1632 ), surgeon and clergyman, studied the motion of the planets and advocated the theory of Copernicus from 16ig onwards. His Opera Omnia were published at Middelburg, 1663. In his printed works, no considerations about abnormal refractions are found.

[^58]:    ${ }^{1}$ ) Johannes Müller (Unfind near Königsberg 1436 -Rome ${ }^{1476 \text { ), }}$, celebrated astronomer, pupil and collaborator of Peurbach, worked in Vienna, in Italy, Hungaria, and Nuremberg.
    Bernhard Walther (Nuremberg 1430 -ibid. 1504), a wealthy citizen, gave financial aid to Regiomontanus and continued his observations. Only parts of his manuscripts have been preserved.
    Georg von Peuerbach, see note p. 3 I5.

[^59]:    ${ }^{1}$ ) An extensive historical survey of the investigations on the tides is found in: Rollin A. Harris, Manual of Tides (Appendix 8 to U.S. Coast and Geodetic Survey, 1897). Pytheas wrote about 325 B.C.
    ${ }^{2}$ ) Strabo (c. 54 B.C.-c. 24 A.D.), Geography, 1.3.11-12. cap. 54 \& 55; 3.5.8. cap. 173-174.
    ${ }^{\text {8 }}$ ) Plinius (23-79 A.D.), Natural History, II. 212-222 (Loeb Classical Library, 1938, ed. Rackham).
    ${ }^{4}$ ) J. C. Scaliger, scientist and physician (Padua 1484-Agen 1558), Exotericarum Exercitationum ad Cardanum (Exerc. LII).
    ${ }^{5}$ ) Francis Bacon 1561-1626, De fuxu et refluxu maris (Ed. Spedding, Vol. V, p. 441).

[^60]:    ${ }^{6}$ ) Francis Bacon, Works, l.c., p. 448.
    ${ }^{7}$ ) Joh. Kepler, Gesammelte Werke, Vol. XIII, P. 193 (München, 1945).
    ${ }^{8}$ ) Joh. Kepler, Astronomia Nova (Gesammelte Werke, Vol. III, p. 26. Ed. Max Caspar, München 1937).
    ${ }^{9}$ ) Galileo Galilei, Discorso sopra il fusso e refusso del mare (Ediz. Nazion. V, 371); also: Dialogo (4th dialogue) (Ediz. Nazion. VII, 442).

[^61]:    ${ }^{1}$ ) IFG is a printer's or clerical error in the Dutch text.

[^62]:    ${ }^{1}$ ) Stevin's Spherical Trigonometry (Work XI; i, 13), p. 234.
    ${ }^{2}$ ) For weerelts aspunten in the Dutch text read duysteraers aspunten.

[^63]:    ${ }^{1}$ ) This passage gives rather precise information on the year when Stevin's $E b b$ and Flow was written. Ostend was besieged from 1601 to 1604 by the Archduke Albert and the Spanish general Spinola; finally it was taken and entirely destroyed.

[^64]:    ${ }^{1}$ ) This has been demonstrated in The Elements of Hydrostatics, Proposition XI. See Vol. I, p. $4^{21}$.

[^65]:    ${ }^{1}$ ) See the map on pag. 358.

[^66]:    ${ }^{2}$ ) See the map on p. 358.
    ${ }^{2}$ ) These numbers fit only if it were high tide at Blankenberge at 1.30 p.m.

[^67]:    ${ }^{1}$ ) When, more than sixty years later, in his Kort Onderwijs aengaende het gebruyck der Horologien tot het vinden der lenghten van Oost en West (see: Oeuvres Completes de Chr. Huygens, Vol. XVII; La Haye 1932, pp. 191-237) Christiaan Huygens explains the use at sea of his pendulum clock, he cites a perfectly similar instance of a considerable misconjecture and great uncertainty. This concerned a fleet which in 1664 wanted to make land at Fogo, one of the Cape Verde Islands, on account of water shortage.

[^68]:    ${ }^{\text {a }}$ ) In $\S 5$ this subject is to be briefly discussed under this title.
    -) Works, X .

[^69]:    $\left.{ }^{5}\right)$ See: Cornelis Anthoniszoon, Onderwijsinge vander zee, om stuermanschap te leeren, derdewerf nu ghedruckt, neerstelijck ghecorregeerdt ende verbetert. Anno 1558. Described by J. Keuning, Tijdschrift Kon. Ned. Aardrijkskundig Genootschap, 1950, p. 687. See further the works of Lucas Jansz. Waghenaer and others.
    ${ }^{6}$ ) Pedro de Medina, Arte de navegar. Valladolid 1545.
    7) Pedro de Medina, De zeevaert oft conste van ter zee te varen. In onse nederduytsche tale overgeset ende met annotatièn verciert bij M. Merten Everaert Brug. Antwerp 1580.
    ${ }^{\text {s }}$ ) Michiel Coignet, Nieuwe onderwijsinghe op de principaelste puncten der zee-vaert. Antwerp 1580.
    ${ }^{9}$ ) Rodrigo Zamorano, Compendio de la arte de navegar. Seville 158 I .
    10 Rodrigo Zamorano, Cort onderwijs van de Conste der zeevaert. Amsterdam 1598.
    ${ }^{11}$ ) William Bourne, A Regiment for the Sea. London 1574 .
    ${ }^{19}$ ) William Bourne, De const der zee-vaerdt. Amsterdam 1594.
    13) Contained in his book: Tractaet vant Zee-bouck houden op de ronde gebulte pas-kaert, Amsterdam 1597, which forms part of his Napasser, Amsterdam 1597. Adriaan Veen tried to overcome the defects inherent in the sea charts of those days by teaching his readers to work out the sailing problems on segments of the globe.

[^70]:    -14) Works, X.
    ${ }^{15}$ ) Willebrord Snellius, Tiphys Batavus sive histiodromice de navium cursibus et re navali. Leiden 1624 , p. 67.

[^71]:    ${ }^{16}$ ) The course which is steered and kept while sailing by the compass is the angle between the compass needle and the fore-and-aft line. It is read into degrees or points on the division at the circumference of the compass card. Since the present discussion does not take account of deviation due to iron in the vicinity, the direction pointed by the compass needle implies the direction of the magnetic north and south line. In this case therefore the course steered is the angle between the magnetic north and south line and the fore-and-aft line. Because this course is measured by reference to the magnetic north and south line it is called the magnetic course ( 1 ).

    The direction of the ship may also be measured by reference to the meridian. This

[^72]:    course is called the true course; it is the angle between the meridian (or true north and south line) and the fore-and-aft line (2).

    The course steered, which is read on the compass-in this case the magnetic courseis reduced to the true course with the aid of the variation. The amount of the variation in degrees therefore has to be added or subtracted. Once the true course is known; the direction of the path followed by the ship can be drawn on the chart in relation to the meridian.

[^73]:    $\left.{ }^{17}\right) 46$ German miles stand for a distance of 184 nautical miles, because ${ }_{15}$ German miles are reckoned for one degree of latitude of 6o nautical miles. Bunam or Bima, on the north coast of "Java Menor", is to be found on the map of China, etc. by Van Langeren 1595 (reproduced in Vol. XLIII of the Linschoten Ver., Map V) and on the map of Java (in the Caert-thresoor, 1598, p. 61). It is referred to as Buma on the page of the 2nd edition of the map of the world of Plancius, reproduced in Wieder, Monumenta Cartografica, Vol. II, 1926, p. $4^{\circ}$ III. The place Bima and Bima Bay are situated on the north coast of the island of Sumbawa.

[^74]:    ${ }^{18}$ ) These words will have to be interpreted as a not untimely warning: do not take bearings of the moon. The reason why this should not be done is not expressed very felicitously. It is especially the rapid change in the declination between the instants of observation which may give rise to errors, for an increase or decrease of $2^{\circ}$ is quite conceivable. Other inaccuracies fall within the limits of the errors of observation. Perhaps Stevin considered it superfluous to give an exact explanation.

[^75]:    ${ }^{19}$ ) Stevin has omitted to draw attention to an influence due to the change in the latitude through the movement of the ship and one in the declination of the sun between the forenoon and the afternoon observation. Either he forgot to mention it or he considered these influences to be of minor importance for practical purposes. The change in the declination, which can be no more than a few minutes of arc, indeed does not have to be taken into account. The change in the latitude will seldom have amounted to more than one degree.
    ${ }^{20}$ ) Robert Norman, The Newe Attractive: containing a short discourse of the magnes or loadstone, and amongst other his vertues of a new discovered secret and subtill propertie, concerning the declining of the needle, touched therewith under the plaine of the Horizon. London 1581 . Reprinted in 1585 , in 1596 , and again in 1614.
    ${ }^{21}$ ) Norman ( $\dagger{ }^{1596}$ ), who in the 18 or 20 years of his seafaring life had diligently collected data about the behaviour of the compass-needle and who, after having settled on shore, became known as "Norman, the compass-maker", was the discoverer of the inclination of the magnetic needle, which phenomenon he describes in his booklet. "A matter never before found or written by any", thus William Borough calls this phenomenon in the preface to his book A Discourse of the Variation of the Cumpas or Magneticall. Needle, London 1581, which was intended as an "annexe" to Norman's treatise.

[^76]:    ${ }^{22}$ ) Works, X.

[^77]:    ${ }^{23}$ ) Works, X.

[^78]:    ${ }^{24}$ ) Newes of the complement of the art of navigation and of the mightie Empire of Cataia together with the Straits of Anian. by A. L., London 1609.

    The author mentions his name, Anthonie Lynton, in the dedicatory epistle on page 1.

[^79]:    28) Works, XI, i, 25.
[^80]:    ${ }^{29}$ ) Works, XI, b.
    ${ }^{20}$ ) Works, XIII.

[^81]:    ${ }^{31}$ ("Taking a bearing of Polaris" or of the sun is the process of measuring the angle between the compass needle on board and the azimuthal direction of Polaris or the sun, as the case may be.
    ${ }^{32}$ ) This manuscript is discussed in §5, p. 393
    ${ }^{33}$ ) Francisco Faleiro, Tratado del esphera y del arte del marear. Seville 1535 . Facsimile reprint edited by J. Bensaude, Histoire de la science nautique portugaise. Vol. 4, Berne/ Munich 1915. Chapter VIII, Del nordestear de las agujas, p. 79.
    ${ }^{34}$ ) Alonso de Santa Cruz-an inhabitant of Seville, who died there in 1572-in 1536 was appointed cosmografo real and was a renowned cartographer. He also made contributions to the development of the art of navigation, in particular to the problem of the determination of longitude. Following his attendance of a junta of cosmographers, astronomers, and scholars he wrote a treatise entitled:

[^82]:    $\left.{ }^{39}\right)$ Such tables were widely used in the eighteenth century.
    Tables of the amplitude of the sun are also to be found in: Joao Baptista Lavanha, Regimento Nautico. Lisbon 1595, 2nd ed. 1606.
    ${ }^{40}$ ) Reprints in 1576, 1577, and 1580. After the author's death in 1588 the book was republished by Thomas Hood in 1592, 1596, and 1601 . The numerous reprints and the translation indicate that the book was widely diffused and well known in nautical circles.
    ${ }^{41}$ ) William Borough, A Discourse of the Variation of the Cumpas or Magneticall Needle, wherein is mathematicallie shewed the manner of the observation, effects and application thereof, made by $W$. $B$. London 158 I. Reprints in 1585,1596 , and ${ }_{1614}$. The title-page has the statement: "and is to be annexed to The New Attractive of R:N.".

[^83]:    ${ }^{42}$ ) Joan Stradanus, Nova reperta. Engraved by Joan Galle. Antwerp, n.d. (about 1600).

[^84]:    ${ }^{43}$ ) Jean de Séville, dit le Soucy, Le compost manuel calendier at almanach perpetuel, principalement pour la longitude de l'est et ouest. Rouen 1586 . Reprint 1595.

[^85]:    ${ }^{44}$ ) Jan Huychen van Linschoten, Reijs-Gheschrift, 1595, p. 19. Beschrijvinghe van de Coursen nae Oost-Indien. Printed in Vol. XLIII of Werken der Linschoten Vereeniging, pp. 34, 35.
    ${ }^{45}$ ) In the Spanish language there exists a booklet which, as the title reveals, is entirely devoted to such an instrument and which in connection with our subject is a very important treatise because it deals with the measurement of the variation, the importance of the variation for the determination of longitude, etc. It is:

    Andres del Rio Riaño, Tratado de un instrumento por el qual se conocera la nordesteacion o
    noroesteacion de la aguja de marear, navegando por la mayor altura del sol o de otra estrella o por dos alturas yguales y de la utilidad que del se á de seguir. Seville, n.d.
    One copy of this treatise is present in the library of the Museo Naval at Madrid. From an exhaustive search by the director of this museum it appears that it is not to be found in any other library. The copy in question is thus unique.

    The year of its publication is mentioned neither on the titlepage nor anywhere else in the book. It was known at the time to Navarrete, who mentions it in his Biblioteca maritima Española, 1851 , Vol. I, p. 97. He relates that it appeared subsequent to another work of Riaño, which was published in 1585 . Further it is cited in the Ensayo de bibliografia maritima Española, Barcelona 1943, under No 220 . In a note it is said that Navarrete puts it after 1585 and that Mendez Bejarano assumes it appeared in 1589 . In the Museum it is put at 1585 .

    If this were true, it might just be possible that one specially interested in the subject, like Stevin, might have been acquainted with its contents. Further inquiry, however, proves it to be impossible.

    The reader will encounter many statements implying an indication of time, e.g. "the
    (Continuation on next page).

[^86]:    ${ }^{50}$ ) G. Doorman, Octrooien 1940, p. 97. Also printed in De Jonge, Opkomst; Vol. I, p. 176. Original: Public Record Office, Records of the States General, item 3328 of the inventory, fol. 243.
    ${ }^{51}$ ) De Jonge, Opkomst, Vol. I, p. 176. Resolutie Staten van Holland, 13th March 1598.
    De Jonge here adds a note reading: This instrument is illustrated in the Haven-Finding Art of Simon Stevin.
    ${ }^{52}$ ) G. Doorman, Octrooien 1940, p. 288. Staten van Holland en West-Friesland, ist September 1611, p. 174.

[^87]:    ${ }^{53}$ ) The unsteadiness of the compass was so familiar a thing that it had even become known outside nautical circles. The great seventeenth-century Dutch poet Joost van den Vondel, who celebrated navigation in his work and who borrowed numerous expressions from its idiom in his poetry, was also acquainted with the phenomenon. In his Gijsbrecht van Aemstel ( 1637 ) he alludes to the oscillation of the compass-needle and the unreliability of its indications. In the Prologue he says that the armorial bearings of the city of Amsterdam will in future be a reliable guide for the seaman and, leading him on like

    On high, unsoiled by fog or earthly mist,
    Give heart to the heroic helmsman
    Where, frighted by the needle's swinging, he
    Drifts in the Arctic Sea.
    (transl. James S. Holmes)

[^88]:    ${ }^{58}$ ) This method was already cited in § 4, p. 382
    ${ }^{50}$ ) Salv. Garcia Franco, Historia del arte y ciencia de navegar. Madrid 1947, Tomo I, p. 49 .
    $\left.{ }^{60}\right)^{\circ}$ Livro de Marinharia, tratado da agulha de marear, de fono de Lisboa, copiado e coordenado por J. I. de Brito Rebello. Lisbon 1903.

[^89]:    61) Premier voyage autour du monde par le Chevalier Ant. Pigafetta sur l'escadre de Magellan ${ }^{1}$ 1519-1522, Paris, an IX (1801), p. 281, quoted in Linschoten Verceniging, Tweede Schipvaart, Vol. XLIV, p. XXXII.
    J. A. Robertson, Magellan's Voyage Around the World by Ant. Pigafetta. Cleveland 1906. Vol. I, p. 89 and p. 253, Note 229.

    Linschoten Vereeniging, Reizen van Barents, Heemskerck, Rijp, en anderen. Vol. XV, p. XXI, Note 2 : reference to Relazione di Ant. Pigafetta sul primo viaggio, Rome 1894.
    J. Bensaude (Histoire de la science nautique portugaise, Résumé, Geneva 1917, pp. 12-22) is of the opinion that Pigafetta's remarks are based on the work of the Portuguese Ruy Faleiro-brother to Francisco-who studied the problem of the determination of longitude. He had proposed three methods, viz. two with the aid of the moon and the third by means of the variation of the compass. The latter method is identical with that of Joao de Lisboa, 1514 , according to which the longitude is proportional to the amount of the variation.

[^90]:    ${ }^{62}$ ) It forms part of: Pedro Nunez, Tratado da sphera, 1537, an extremely rare book, which was published in facsimile by J. Bensaude, Histoire de la science nautique portugaise, Vol. 5, Berne/Munich 1915.
    ${ }^{63}$ ) Joao de Castro, Roteiro de Lisboa a Goa. Annotado por Joao de Andrade Corvo. Lisbon 1882.

[^91]:    64) Bartolomeo Crescentio, Nautica Mediterranea. Rome 1607.
    ${ }_{65}{ }^{65}$ ) Georges Fournier, Hydrographie. Paris 1643, p. 550.
    ${ }^{68}$ ) Balmer, Beiträge zur Geschichte der Erkenntnis des Erdmagnetismus. Aarau 1956, p. 533.
    ${ }^{67}$ ) ibid. Die Sage vom Magnetberg, p. 65 I . Hennig, Terrae Incognitae, Vol. III, Chapter 149: Die Seefahrt eines Oxforder Geistlichen in den Atlantischen Norden und die Frage des Magnetbergs. 1360.
    ${ }^{68}$ ) The map of Ruysch is to be found in the edition of Ptolemy's atlas of 1508 . The map is discussed and reproduced by Nordenskjöld, Facsimile Atlas, p. 65, and map XXXII. The legend reads: hic incipit Mare Sugenum. Hic compassus navium non tenet, nec naves quae ferrum tenent revertere valent.

    Nordenskjöld utters the suspicion that these words might perhaps point to the experience that the compass becomes useless in the extreme north, i.e. in the neighbourhood of the magnetic pole.
    ${ }^{\text {69 }}$ ) Michiel Coignet, Nieuwe onderwijsinghe op de principaelste puncten der Zee-vaert. Antwerp 1580 , p. 5 verso.

[^92]:    ${ }^{70}$ ) In 1539 Rheticus had found $13^{\circ}$ at Danzig. See: Balmer, p. 103. Letter reproduced in Balmer, p. 313.
    ${ }^{71}$ ) Drei Karten von Gerhard Mercator. Europa, Britische Inseln, Weltkarte. Facsimile-Lichtdruck nach den Originalen der Stadtbibliothek zu Breslau. Herausgegeben von der Ges.für Erdkunde zu Berlin. 1891.

[^93]:    ${ }^{72}$ ) This text has been taken from: The Hydrographic Review, Vol. IX, No 2, Nov. 1932, p. 7. Text and translation of the legends of the original chart of the world by Gerhard Mercator, issued in 1569.
    ${ }^{73}$ ) It occurs in: Galliae tabulae geographicae per Ger. Mercatorem. Duisburg, 1585.
    ${ }^{74}$ ) It appears on p. 73 of: Mercator, Atlas sive cosmographicae meditationes de fabrica mundi et fabricati figura. Ed. decima. Henr. Hondius. Amsterdam 628.
    ${ }^{75}$ ) It is curious that the atlas mentioned in Note 74 has on p. 65 a map of Asia, in which the magnetic pole has been maintained on the 180 th meridian, which clearly proves the uncertainty prevailing with respect to the position of the magnetic mountains.
    ${ }^{76}$ ) Reproduced in Vol. XV of Werken uitgegeven door de Linschoten-Vereeniging: Reizen van Willem Barents, Jacob van Heemskerck.
    ${ }^{17}$ ) See: F. C. Wieder, Monumenta Cartographica, reproductions. Vol. II. 1926. Text and map pages 27,30 , and 35 .

[^94]:    ${ }^{78}$ ) It was described and reproduced by Marcel Destombes. La mappemonde de Petrus Plancius, gravée par Josua van den Ende, 1604, d'après l'unique exemplaire de la Bibliothèque Nationale de Paris. I 944 . Publications de la Société de Géographie de Hanoi.
    ${ }^{79}$ ) World Map 1605 Willem Jansz. Blaeu, facsimile of the unique copy belonging to the Hispanic Soc. of America, text Edw. L. Stevenson, New York 1914.
    ${ }^{80}$ ) The Map of the World on Mercator's Projection by Jodocus Hondius, Amsterdam 1608. From the unique copy in the collection of the Royal Geographical Society with a memoir by Edw. Heawood. London 1927.
    ${ }^{81}$ ) World Map by Fodocus Hondius, 16ri. Ed. by Edw. L. Stevenson and J. Fisher, New York 1907.
    ${ }^{38}$ ) This globe is present in the Netherlands Historical Maritime Museum at Amsterdam. On another, undated specimen, also present there, the same legend is to be found.

[^95]:    ${ }^{83}$ ) Thus to be found in the first edition of 1580 , published at Antwerp, as well as in the fourth edition, Amsterdam 1598.
    ${ }^{84}$ ) Public Record Office, The Hague. Loketkas Admiraliteit No 10.

[^96]:    ${ }^{\text {85) }}$ ) The treatises mentioned sub 2 and 3 are included in: De Jonge, De opkomst van het Nederlandsch gezag in Oost-Indië, Vol. I, 1862, pp. 184-194 and 194-200.
    ${ }^{86}$ ) Seè: Werken uitgegeven door de Linschoten-Vereeniging, Vol. XLIII, Het Itinerario van Jan Huygen van Linschoten, 1579-1592, Vols IV and V, 1939.
    ${ }^{87}$ ) Idem, Vol. V, pp. $3^{67-370}$,

[^97]:    ${ }^{88}$ ) In this context reference may be made to the very rare book of William Barlow, The Navigator's Supply, London 1597. The author speaks about a voyage made by Sir Francis Drake from the western tip of Cuba to Virginia: "and found his destination only through the navigator's knowledge of the variation of the compass".
    ${ }^{89}$ ) Werken uitgegeven door de Linschoten-Vereeniging, Vol. XXXII. De eerste schipvaart der Nederlanders naar Oost-Indië onder Cornelis de Houtman, 1595-1597. Part III, 1929, pp. 411-432.

[^98]:    ${ }^{\text {97) }}$ ) The quotations have been taken from the English translation of De Magnete by Silvanus P. Thompson, London 1900.
    ${ }^{98}$ ) Een corte onderrichtinge belanghende die kunst van der zeevaert, waer in ghehandelt wordt hoe men die selfde sullen moghen verbeteren ende oock met een wederleijt, die abuysen die daghelicks door onbequame leer-meesters om havens te vinden, wassen ende toenemen, allen die ter zee handelen tot een ghetrouwe waerschouwinghe door Aelbert Hendricksz, anders Aelbert Haeyen. Amsterdam 1600 .

[^99]:    ${ }^{99}$ ) Adr. Metius. Nieuwe geographische onderwijsinge. Amsterdam 1621.
    ${ }^{100}$ ) Barent Ev. Keteltas, Het ghebruijck der naeld-wijsinge tot dienste der zee-vaert beschreven. Amsterdam 1609.
    ${ }^{101}$ ). Robert Hues, Tractaet ofte handelinge van het gebruyck der hemelscher ende aertscher globe, in 't Latijn beschreven door Robert Hues en nu in Nederduytsch over-gheset ende met Annotatien vermeerdert door Judocum Hondium. Amsterdam 1623. First edition 1597.

[^100]:    ${ }^{102}$ ) A. M. Dermul, De aard-en hemelgloben van W. Jansz Blaeu in de Antwerpsche Bibliotheek. Antwerp 1940.
    ${ }^{103}$ ) William Borough, A Discourse of the Variation of the Cumpas or Magneticall Needle. 1585. Also in an edition of $1596, \mathrm{Ch}$. 10.

[^101]:    ${ }^{104}$ ) Guillaume de Nautonier, Sieur de Castelfranc en Languedoc, Mécometrie de Leymant, c'est à dire la manière de mesurer les longitudes par le moyen de l'eymant . . . . aussi facilement comme la latitude. Imprimé à Venes chez l'autheur. 1603.
    ${ }^{105}$ ) Georges Fournier, Hydrographie, contenant la théorie et la practique de toutes les parties de la navigation. Paris 1643 .
    ${ }^{106}$ ) Guilielmi Gilberti Colcestrensis, medici Londinensis, De magnete, magneticisque corporibus et dè magno magnete tellure; Physiologia nova, plurimis $\mathcal{E}$ argumentis $\mathcal{E}$ experimentis demonstrata. London 1600 .

[^102]:    ${ }^{107}$ ) Athanasius Kircher, Magnes sive de arte magnetica. Rome 1641 (as well as Cologne 1643).
    ${ }^{108}$ ) Robert Dudley, Arcano del mare. Florence. - ist ed. 1646-1647, present in the University Library, Leiden. - 2nd ed. 1661, present in the Netherlands Historical Maritime Museum, Amsterdam.

[^103]:    ${ }^{109}$ ) Nova et accuratissima totius terrarum orbis tabula nautica variationum magneticarum index. Juxta observationes anno 1700 habitas constructa per Edm. Halley.

[^104]:    ${ }^{110}$ ) Verhandeling om buiten den middag op zee de ware middagsbreedte te vinden. Verhandelingen Hollandsche Maatschappij der Wetenschappen, Haarlem 1754, p. 146.
    ${ }^{111}$ ) Pybo Steenstra, Openbaare lessen over het vinden der lengte op zee. Amsterdam 1770, p. 45 .

[^105]:    ${ }^{112}$ ) World Map by Jodocus Hondius 16I I. Edited by Edw. L. Stevenson and J. Fisher. New York 1907.

[^106]:    ${ }^{1}$ ) Stevin here assumes that the variation holding good for a given place is invariable. However, it is now well-established that the variation at any one place is slowly changing with time.

[^107]:    ${ }^{1}$ ) For the construction of such compasses, see the Introduction, § 3b, p. 369.

[^108]:    *) This term will here be used to render the Dutch "perck", which stands for the part of the earth's surface that is bounded by two half-meridians.

[^109]:    (For notes, see p. 441).

[^110]:    ${ }^{1}$ ) The ship, starting from Amsterdam, navigates first in the section BNC ("decreasing easterly variation of the ist segment"); then in the section ANB ("increasing easterly variation of the ist segment'"). See p. 451 .

[^111]:    ${ }^{1}$ ) See the Introduction, § 4 b. : Reynier Pietersz and his "Golden Compass".

[^112]:    ${ }^{1}$ ) Cosmographicus liber Petri Apiani mathematici studiose collectus (Landshut 1524). This book was particularly widely distributed. It was translated into many languages and passed through a great many reprints in the sixtenth and the early seventeenth century.
    ${ }^{2}$ ) Peter Apian, whose real name was Benewitz or Bienewitz, born at Leisnig in Saxony, geographer and astronomer, from 1527 Professor of Mathematics at Ingolstadt. Maker of maps and instruments, and famous as an observer of astronomical phenomena.

[^113]:    ${ }^{3}$ ) Certaine Errors in Navigation, arising either of the ordinarie erroneous making or using of the sea chart, compasse, crosse staffe and tables of declination of the sunne and fixed starres, detected and corrected by Edward Wright (London 1599 ). Copies in the British Museum, London, and in the Bodleian Library, Oxford; not in the National Maritime Museum, Greenwich. ${ }^{4}$ ) The present-day definition is as follows: meridional parts for any latitude is the length of a meridian, expanded on a Mercator chart, between the equator and that parallel of latitude expressed in minutes of arc of the equator.

[^114]:    ${ }^{5}$ ) The meaning is: place this number in the table, for the latitude of the first point of intersection, against $1^{\circ}$ of difference of longitude.

[^115]:    ${ }^{6}$ ) Robert Hues (1553-1632) accompanied Thomas Cavendish on his voyage round the world (1586-1588). He was a mathematician and a geographer. Like Hariot and some others, he was patronized by the Earl of Northumberland; he is known in particular for his book Tractatus de globis et eorum usu (London 1593), of which an edition appeared at Leiden in 1594.

[^116]:    ${ }^{7}$ ) see: next page.

[^117]:    ${ }^{7}$ ) This value is correct and is found as the result of one of the formulas for the rightangled spherical triangle: $\operatorname{tg} b=\operatorname{tg} E \sin \Delta \mathrm{~L}$ or $\operatorname{tg} b=\operatorname{tg} 78^{\circ} 45^{\prime} \sin 1^{\circ}$.

[^118]:    ${ }^{8}$ ) Nunes, from 1529 onwards cosmographer to King Emanuel of Portugal, Professor of mathematics at Coimbra University, founder of scientific navigation.
    ${ }^{9}$ ) This treatise, together with another treatise and the translation of the famous work of Sacrobosco, forms the Tratado da Sphera of Pedro Nunes, published in 1537 at Lisbon. This work was published in facsimile in 1915 by J. Bensaude.
    ${ }^{10}$ ) Nam serem os rumos circulos, mas linhas curvas irregulares; que vam fazendo com todo los meridianos que passamos angulos iguales.
    ${ }^{11}$ ) A. Fontoura da Costa in his A marinharia dos descobrimentos (Lisbon 1933) says (p. 423) that some authors assume an earlier edition of this work appeared in 1546 at Coimbra. Thus, already Röding in his Allgemeines Wörterbuch der Marine (Hamburg 1794) mentions such an edition. But Luciano Pereira da Silva, who described the works of Nunes (As Obras de Pedro Nunes. Sua crcnologia bibliográfica. Coimbra 19ı5), denies that such an edition ever existed.

[^119]:    ${ }^{12}$ ) 'This invention and idea of drawing rhumb lines on a globe is rather old. Petrus Nonius from Portugal speaks repeatedly about it in the two books he has written on the subject of navigation. Mercator, too, has represented them on his globes."
    ${ }^{13}$ ) Gerhard Mercator (or Kremer), a Flemish cartographer, nautical expert, maker of instruments, globes, and atlases at Louvain, later Duisburg.
    ${ }^{14}$ ) A specimen of it is to be found in the National Maritime Museum, Greenwich. ${ }^{15}$ ) The English translation of all the Latin legends on the chart is to be found in The Hydrographic Review, Vol. IX-2 (1932).

[^120]:    ${ }^{18}$ ). This is the conclusion reached by $D$. Gernez in a paper entitled "Quel procédé Mercator employa pour. tracer le canevas de sa carte de 1569 à l'usage des marins.?" published in the Communications of the Académie de Marine de Belgique, Tome I, 1936-37. In this paper the writer reviews the numerous hypotheses about this matter and gives his own opinion.
    ${ }^{17}$ ) The manuscript was described by Prof. Eva G. R. Taylor in The Journal of the Institute of Navigation, Vol. VI, 1953, p. 131. For Hariot, reference may also be made to her book The Mathematical Practitioners, Cambridge 1954.
    ${ }^{18}$ ) Clavius, whose real name was Christoph Schlüssel, a Jesuit and a teacher of mathematics in Rome as well as Vatican astronomer, was one of the most diligent commentators on Sacrobosco.

[^121]:    19) The title-page of the book, the "Praeface", and "A table for the true dividing of the meridians in the sea chart" are reproduced in The Hydrographic Review, May 1931, under the title of : Origin of Meridional Parts.
[^122]:    ${ }^{20}$ ) George Joachim Rheticus, whose real name was Joachim von Lauchen, born at Feldkirch (Vorarlberg, Austria), in the former province of Rhätikon and called Rheticus on this account. Mathematician and astronomer: 1537 Professor at. Wittenberg; cooperated with Copernicus; 1542 Professor at Leipzig.

[^123]:    ${ }^{21}$ ) In the third edition this reply to Stevin is again included, in the same words. The only difference is that the tables have now been printed in a more compact form.

[^124]:    ${ }^{22}$ ) Willebrord Snellius, mathematican and physicist, Professor at Leiden, famed for his method of measuring a degree of latitude and for his law of refraction.
    ${ }^{23}$ ) Works XIb.
    ${ }^{24}$ ) Willebrord Snellius van Royen, Tiphys Batavus, sive histiodromice, de navium cursibus et re navali (Leiden 1624).
    ${ }^{25}$ ) Tiphys was the steersman of the ship "Argo", known from Greek mythology through the voyage of the Argonauts. Tiphys Batavus presumably means: the Dutch Tiphys, or the Dutch steersman.
    ${ }^{26}$ ) Ez. de Decker lived at Gouda, later at Rotterdam. He admired Stevin and is known to have published the first Dutch table of logarithms: Nieuwe Telkonst, inhoudende de logarithmi (Gouda 1626).

[^125]:    ${ }^{27}$ ) Cornelis Jansz. Lastman, Lastmans beschrijvinge van de Kunst der Stuerlieden (Amsterdam). Many editions are known: 1642, 1648, $1653,1657,1661,1675,1714$. In addition: Vlissingen i659.
    ${ }^{28}$ ) Corn. Douwes was mathematician to the Admiralty, to the East India Company, and to the city of Amsterdam, examiner of naval officers and navigators, teacher at the "Zeemans-Collegie", on Oude Zijds Achterburgwal, Amsterdam.
    Douwes made the seaman independent of the determination of latitude which was based on the observation of the sun at the moment of its meridian passage. He discovered a simple scheme of calculation, which could be applied by the common seaman, with the aid of which the latitude could be figured out from two altitudes of the sun outside the meridian, the time interval between the observations being known. His method was applied from 1750 to about 1850 by all seafaring nations of the world, in the Netherlands to the end of the nineteenth century. The possibility created by Douwes greatly promoted the safety at sea. From the English, Douwes received a remuneration for his discovery (cf. my book Cornelis Douwes, I7I2-1773, zijn leven en zijn werk (Haarlem i941).
    ${ }^{29}$ ) De noodige en bij ondervinding beproefde nieuw uitgevondene Zeemans-Tafelen en voorbeelden tot het vinden der breedte buiten den middag, door Cornelis Douwes (Amsterdam 1761). Up to 1858 this table passed through 16 editions in the Netherlands. It is met with in numerous tables, e.g. in English and American tables.

[^126]:    ${ }^{30}$ ) Pieter Rembrantsz van Nierop, Verbeterde en vermeerderde Nieroper Schat-Kamer (Amsterdam 1697).
    ${ }^{81}$ ) Probably this has to be 1631 .
    ${ }^{\text {.32 }}$ ) Simon Pietersz. Stuermans Schoole, in welcke de navigatie ofte Konst der Stuerluyden seer ordentelick en bequamelijck voorgestelt en geleert wert. Oock heel gedienstigh om in de schoolen der navigatie.ghebruyckt te worden (Amsterdam 1659).
    ${ }^{33}$ ) Traverse Table of Lastman.

[^127]:    ${ }^{34}$ ) This table is to be found in his textbook The Sea-Mans Practice (London 1637). The book, which was very popular and the 15th edition of which appeared in 1682, was reprinted and used up to the early eighteenth century (in 1716, for instance).

[^128]:    ${ }^{1}$ ) Orthodromes.
    ${ }^{2}$ ) Loxodromes. This is the term that will be used in the translation.

[^129]:    ${ }^{1}$ ) Winds = Spanish vientos, the word commonly used in sixteenth-century Spanish textbooks, meaning "directions".
    ${ }^{2}$ ) Fore-and-aft line. See pag. 368.

[^130]:    ${ }^{1}$ ) Stevin invariably uses the word "distance", no matter whether it is taken along the great circle or the loxodrome.

[^131]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 13), p. 295. See Vol. II B, p. 755.

[^132]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 13), p. 295.
    ${ }^{2}$ ) ibid., p. 245.
    8) ibid., p. 245 .

[^133]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 13), p. 255.

[^134]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, I3), p. 255.
    ${ }^{2}$ ) Cf. Introduction, p. 482-483.

[^135]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 12), p. 147.

[^136]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, 11), p. 58, where he explains how one is to find the sine of a given angle by means of the tables.

[^137]:    1) Cf. Introduction, p. 488 .
    2) Cf. Introduction, p. 482, 483,494.
    3).Cf. Introduction, p. 491-492.

    Cf. Introduction, p. 49г.

[^138]:    1) Stevins's Trigonometry (Work XI; i, 13), p. 302.
    ${ }^{2}$ ) This must be the meaning, but the original text is not clear in this respect.
[^139]:    ${ }^{1}$ ) Stevin's Trigonometry (Work XI; i, ir), Fol. i.

[^140]:    ${ }^{1}$ ) Fore-and-aft line.

[^141]:    ${ }^{1}$ ) Stevin means a rotation through so many degrees.

[^142]:    ${ }^{1}$ ) Joseph Julius Scaliger (Agen 1540-Leiden 1609), Italian humanist, philologist and chronologist, professor at Ghent and at Leiden. He published excellent editions of Latin authors and wrote the monumental works De emendatione temporum (1583), Thesaurus Temporum (1606). Cf. note 4 on p. 325.
    ${ }^{2}$ ) This interesting passage shows that Stevin visited Poland. Cf. Biographical introduction, Vol. I, p. 5. Such monsters belong to the world of Accadian and Sumerian mythology and astronomy.
    ${ }^{3}$ ) The word leerlinghen in the Dutch text is evidently a printer's error for leeringhen.
    4) De placitis philosophorum III, cap. 13.
    ${ }^{5}$ ) Commonly called: the Sand Reckoner (= Arenarius). Opera, ed. Heiberg (Leipzig 1913) II, 218.

[^143]:    ${ }^{1}{ }^{1}$ ) Syntaxis I, cap. 13.
    ${ }^{2}$ ) By "addition and subtraction of ratios" Stevin means what we should call „multiplication and division of ratios".
    ${ }^{3}$ ) In the Dutch original the orthography Timochares is used. This Greek astronomer lived at Alexandria around 230 B.C.

[^144]:    ${ }^{1}$ ) Actually this is the penultimate proposition of the first book.
    ${ }^{9}$ ) Diophantus lived at Alexandria about A.D. 250. Stevin seems to have a mistaken view of the epoch when this mathematician flourished. His Arithmetica is actually a textbook of algebra.

[^145]:    ${ }^{1}$ ) Hermes Trismegistos is the mythical author of several treatises on alchemy, magic, and philosophy. He has many traits in common with the ancient Egyptian god Thoth, the god of the craftsmen, scribe of the gods, and inventor of writing.

[^146]:    ${ }^{1}$ ) See the note on p. 608.

[^147]:    ${ }^{1}$ ) From this sentence it appears that originally the treatise on the Age of the Sages was intended to precede The Heavenly Motions, whereas it is now the introduction to the Physical Geography.

[^148]:    ${ }^{1}$ ) Wilhelm IV von Hessen (Kassel 1532-ibid. 1592) was a diligent observer up to 1567, when he succeeded his father; later he was able to attract excellent collaborators to Kassel. He gave special care to the determination of time.

[^149]:    ${ }^{1}$ ) See note 2 on p. 315.

